

Received: 12 February 2024

Revised: 24 April 2024

Accepted: 28 April 2024

THE IMPACT OF STRATEGIC AGILITY ON OPERATIONAL RESPONSIVENESS AND FIRM PERFORMANCE OF IMPORT, EXPORT, AND LOGISTICS ENTERPRISES

Orawee SRIBOONLUE¹, Umawasee SRIBOONLUE^{2*} and Suraporn ONPUTTHA²

1 Kasetsart University, Thailand; orawee.sr@ku.th

2 Rajamangala University of Technology Thanyaburi, Thailand;

umawasee_s@rmutt.ac.th (U. S.) (Corresponding Author); suraporn_o@rmutt.ac.th (S. O.)

Handling Editor:

Professor Dr. Wing-Keung WONG

Asia University, Taiwan

(This article belongs to the Theme 1: Business Performance, Competitiveness, and Sustainability)

Reviewers:

1) Assistant Professor Dr. Laddawan SOMERAN RUS, Thailand

2) Assistant Professor Dr. Wanamina Boston ALI Prince of Songkla University, Thailand

3) Dr. Phutthiwat WAIYAWUTHTHANAPOOM SSRU, Thailand

Abstract

The purpose of this research was to study the impact of strategic agility comprising technology capability, collaborative innovation, organizational learning, and internal alignment on operational responsiveness and firm performance of import, export and logistics enterprises. The research methodology was quantitative research with survey method by using questionnaires for data collection. The respondents were 400 importers, exporters, and logistics service providers located in the Bangkok Metropolitan Region. Samples were selected using non-probability sampling with a purposive sampling technique. Descriptive statistics used for data analysis included frequency, percentage, mean, and standard deviation. Due to hypothesis testing, inferential statistics used were Pearson's Product Moment Correlation Coefficient and Partial Least Squares-Structural Equation Modeling. The findings indicated that strategic agility had the strongest positive effect on operational responsiveness and firm performance, and operational responsiveness mediated the effect of strategic agility on firm performance at a significance level of 0.001. Besides, operational responsiveness had positive and significant effect on firm performance at a significance level of 0.001.

Keywords: Strategic Agility, Operational Responsiveness, Firm Performance, Import and Export, Logistics Enterprises

Citation Information: Sriboonlue, O., Sriboonlue, U., & Onputtha, S. (2024). The Impact of Strategic Agility on Operational Responsiveness and Firm Performance of Import, Export, and Logistics Enterprises. *Asian Administration and Management Review*, 7(1), 145-158. <https://doi.org/10.14456/aamr.2024.14>

Introduction

In the era of the digital economy, where the business environment is highly dynamic, continuous changes occur both externally at the regional level and within the industry. This dynamic landscape necessitates businesses to focus on competitive advantage, emphasizing improvements in speed and operational efficiency. However, not every company can successfully transform its operations into sustainable performance, even if they invest in enhancing competitiveness by improving speed and operational efficiency. Challenges may arise due to unforeseen environmental changes and unexpected challenges. Therefore, firms should not only aim for operational efficiency but also consider the importance of building agility and adaptability to increased challenges. Lee (2004) highlights that firms need to concentrate on creating agility and adaptability as they seek to be successful in the rapidly changing business environment.

Agility in business research has various interpretations, categorized into two perspectives. One perspective is general agility which focuses on external factors that help firms rapidly improve operations to cope with fluctuating, unpredictable market conditions and sudden changes in customer demands (Braunscheidel & Suresh, 2009). On the other hand, strategic agility involves not only the ability but also the strategy that collaborates with systems, operational processes, or holistic management approaches resulting from multiple capabilities (Cao & Dowlatshahi, 2005; Li et al., 2008; Brannen & Doz, 2012). Firms with agility must not only possess operational flexibility but also demonstrate agility in crafting new strategies to rapidly respond to environmental changes.

The alternative perspective on agility holds greater appeal, as coping with the ever-changing business landscape requires institutions to introduce innovative ideas and undergo transformations. To thrive in this dynamic environment, institutions must adopt a comprehensive approach, integrating novel concepts and adaptive behaviors across various facets, including products, services, processes, technology, and management techniques (Daft, 1978). Nevertheless, the majority of existing empirical investigations define agility as a primary capability and utilize scales commonly associated with flexibility, including manufacturing lead time, delivery speed, customization, and responsiveness. For instance, Gerwin (1993) interprets flexibility and responsiveness as the capacity to swiftly modify a firm's objectives to align with new conditions.

Information technology plays a pivotal role in enhancing organizational competitiveness, particularly for small and medium-sized enterprises (SMEs) (Nugroho, 2015). Policies promoting a digital economy aim to leverage technology across sectors (Mohanarajan, 2016). In industries like import, export, and logistics, strategic agility is vital for adapting to customer demands and improving competitive advantage. Researchers explore its impact on operational responsiveness and firm performance in these sectors to drive efficiency. Entrepreneurs in the import, export, and logistics service industries needed to employ strategic agility to achieve flexible operations, concentrating on enhancing competitive advantages. This involved adapting and adjusting to customer requirements for efficient operational outcomes. Strategic agility, encompassing technology capability, collaborative innovation, organizational learning, and internal alignment, and operational responsiveness had a significant impact on firm performance. Therefore, researchers were interested in studying the impact of strategic agility on operational responsiveness and firm performance of import, export and logistics enterprises. This research aimed to provide insights for driving more efficient operations in the industry.

Literature Reviews

Strategic Agility

The research partially employed the concept of strategic agility (Doz & Kosonen, 2008; Brannen & Doz, 2012). Doz & Kosonen (2008) explained that strategic agility results from

strategic sensitivity, leadership unity, and resource fluidity. On the other hand, Brannen & Doz (2012) viewed strategic agility as the ability to develop strategic alternatives and make reasoned and timely decisions. According to Kumkale (2016), strategic agility serves as a mechanism for establishing a competitive advantage within the organization. Păunescu et al. (2018) support the significance of value creation for the business environment, and Adamik et al. (2018) show the importance of achieving the competitive advantage.

Shin et al. (2015) developed a theoretical framework related to strategic agility, utilizing data from field interviews, triangulation for construct development, and empirical research. The study identified four foundational dimensions of strategic agility consisting of technology capability, collaborative innovation, organizational learning, and internal alignment. First of all, technology capability is crucial for adapting to evolving customer needs (Saha et al., 2017; Sheel & Nath, 2019; Monyei et al., 2021), with prior literature indicating a positive correlation between strategic agility and technology capability (Lu & Ramamurthy, 2011; Panda & Rath, 2021). Information technology plays a strategic role in enhancing agility (Zaheer & Zaheer, 1997), as confirmed by Shin et al. (2015). In terms of collaborative innovation, it involves flexible process configuration to meet diverse customer needs (Roberts & Grover, 2012), aligning with the concept of collaborative work process innovation (Lee et al., 2010). Shin et al. (2015) found a positive relationship between strategic agility and collaborative work process innovation. Organizational learning, including creativity and knowledge replication, enhances organizational intelligence (Bahrami et al., 2016), contributing to improved task performance (Braunscheidel & Suresh, 2009). Strategic agility necessitates fostering employee capabilities through a flexible work environment (Li et al., 2008), aligning with the findings of Shin et al. (2015) on the positive influence of strategic agility on organizational learning. Internal alignment, crucial for SMEs (Pett & Wolff, 2007), involves ensuring unity and agreement among leaders and units (Robinson & Stern, 1998). Shin et al. (2015) demonstrated a positive relationship between strategic agility and internal alignment. Overall, the study of Shin et al. (2015) highlights the importance of these dimensions in fostering strategic agility, which is vital for organizational adaptability and competitiveness.

Operational Responsiveness

Operational responsiveness refers to an organization's ability to swiftly adapt to business uncertainties (Nenavani & Jain, 2023; Santosa & Triwulandari, 2023). Hoyt et al. (2007) identified key factors enabling this responsiveness, including environmental scanning and flexible manufacturing. Numerous research has investigated the correlation between supply chain responsiveness and operational performance, specifically in the setting of supply chain uncertainty (Mbah & Okwo, 2022; Nenavani & Jain, 2023; Santosa & Triwulandari, 2023). These studies have shown that supply chain responsiveness may serve as a mediator, mitigating the influence of uncertainty on operational performance. Proactive risk management protects the firm's assets, reputation, resilience, and long-term success (De Araújo Lima et al., 2020). Furthermore, McLean et al. (2022) have highlighted strategic supplier connections, customer relationships, and capacity planning as crucial elements which significantly influence supply chain responsiveness (Nenavani & Jain, 2022). Operational responsiveness can be enhanced through communication, workforce planning, and technology (Sahi et al., 2019). Industries like export-import rely on it for managing uncertainties (Ando & Iriyama, 2009).

The pursuit of strategic agility by the top management was associated with improving the company's responsiveness in its operations (Swafford et al., 2006; Braunscheidel & Suresh, 2009). Operational responsiveness represented a high level of flexibility to meet customer and market demands (Gerwin, 1993; Choi & Krause, 2006). Therefore, it emerged as the most evident outcome in the pursuit of strategic agility, as indicated by all possible performance metrics. In addition, Inman et al. (2011) and Whitten et al. (2012) hypothesized the positive influence of agility or flexibility on operational performance. In other words, Inman et al.

(2011) found a positive relationship between the agile manufacturing of a company and its operational performance, contributing to the company's improved marketing performance. Furthermore, the study by Whitten et al. (2012) revealed that the triple-A supply chain paradigm, consisting of agile, adapt, and align elements, positively influenced the operational performance of the supply chain, acting as a mediating variable between the triple-A supply chain and financial performance. Shin et al. (2015) concluded that strategic agility had a significantly positive impact on operational responsiveness. Therefore, the following hypothesis was proposed for this research:

H1: Strategic agility significantly impacts operational responsiveness.

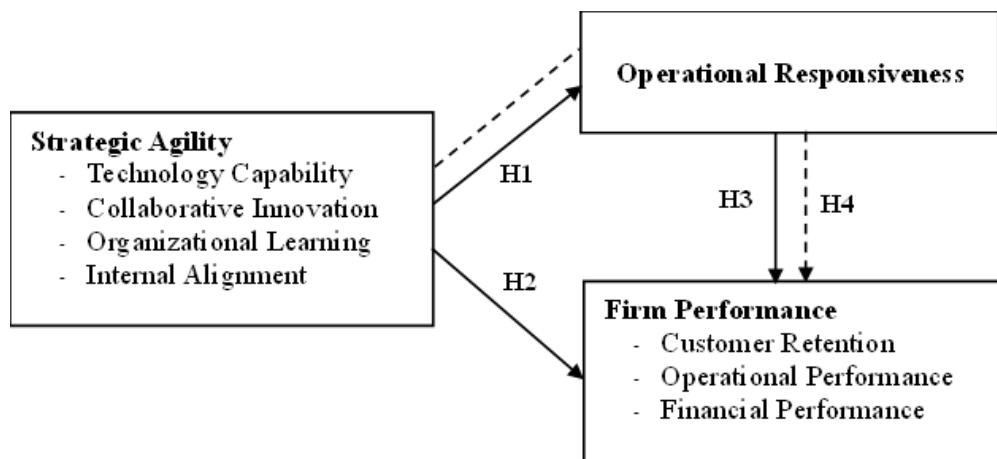
Firm Performance

Firm performance, assessed over previous and ongoing periods, encompasses financial, operational, and client retention aspects (Herciu & Ţerban, 2018; Dwivedi et al., 2021). Financial performance encompasses the evaluation of a company's strategies and activities in terms of money, assessing its profitability and financial stability throughout a defined timeframe. This assessment entails various dimensions, including production and productivity, profitability, liquidity, leverage, asset utilization, and growth (Kuo et al., 2020; Novatiani, 2021; Panigrahi, 2019). Operational performance refers to the total efficacy and efficiency of a company's operations in accomplishing its goals and objectives (Liew et al., 2022; Wang et al., 2018). Customer retention involves various factors like performance expectancy, satisfaction, loyalty programs, CRM, service, marketing, sales, product quality, and pricing (Sohail et al., 2023; Thomas et al., 2023). Key performance determinants include liquidity, leverage, firm size, operational strategy, profitability, solvency, governance factors like board size and ownership structure (Bariyyah & Malau, 2023; Khan & Mahmood, 2023).

The research investigates the relationship between strategic decision-making practices and operational and financial performance. Swafford et al. (2006) and Vickery et al. (2010) link supply chain agility to financial performance. Tallon & Pinsonneault (2011) investigate agility's effect on financial performance under environmental volatility. Sud-on (2014) supports the positive impact of agile capabilities on operational performance. Customer retention, especially in B2B markets, is crucial for SMEs, as emphasized by Choi & Krause (2006). Shin et al. (2015) found that strategic agility, aimed at responding to unpredictable market shifts and customer demands, significantly enhances customer retention for SMEs. Therefore, the following hypothesis was proposed for this research:

H2: Strategic agility has a significant impact on firm performance.

The Mediating Role of Operational Responsiveness


The conceptual framework, rooted in the structure-conduct-performance (SCP) paradigm of industrial organization (Scherer & Ross, 1990), faces limitations in capturing the nuances of firms' behaviors due to their varying sizes, resources, and strategies (Barney, 1991; McWilliams & Smart, 1993). Business research has shifted towards examining how strategy influences performance through conduct and resources (Barney, 1991). Operational responsiveness, crucial for adapting to dynamic business environments, has been linked to improved performance (Nenavani & Jain, 2023; Santosa & Triwulandari, 2023), particularly in industries facing changing customer needs and market disruptions (Ando & Iriyama, 2009; Sahi et al., 2019). Shin et al. (2015) proposed a strategic agility framework, testing operational responsiveness as a mediator between strategic agility and firm performance (LeBreton et al., 2009), emphasizing its role in enhancing customer retention. However, its impact on financial performance remains inconclusive (Shin et al., 2015). Consequently, the following hypotheses were therefore proposed for this research:

H3: Operational responsiveness has a significant impact on firm performance.

H4: Strategic agility has a significant impact on firm performance through operational responsiveness.

Conceptual Framework

The conceptual framework had been drawn as shown in figure 1 below:

Figure 1 Conceptual Model

Research Methodology

Population and Samples

The population utilized in this research comprised importers, exporters, and logistics service providers in the Bangkok Metropolitan Region, including Bangkok, Samut Prakan, Nonthaburi, Pathum Thani, Nakhon Pathom, and Samut Sakhon; however, the exact population size was unknown. The sample size determination employed Cochran's (1953) formula, resulting in a calculated total sample of 385 participants. However, for structural equation modeling statistics, a minimum sample size of 400 is recommended by Yuan & Bentler (2000) and Savalei & Bentler (2005). Therefore, additional samples were collected to meet this criterion, resulting in a total sample size of 400 importers, exporters, and logistics service providers. Samples were selected using non-probability sampling with a purposive sampling technique.

Data Collection

The research methodology was quantitative research conducted by using survey method. The questionnaires were used as the research instrument for data collection, and they were distributed to importers, exporters, and logistics service providers in the Bangkok Metropolitan Region. The questionnaires were divided into four sections as follows. Section 1-3 were five-point Likert scale questions regarding strategic agility, operational responsiveness, and firm performance ranging from 1 = strongly disagree to 5 = strongly agree. Section 4 consisted of closed-ended questions regarding company general information, such as type of enterprise, total employee, and experience in this industry.

Data Analysis

Descriptive statistics used in quantitative data analysis included frequency, percentage, mean, and standard deviation. Due to hypothesis testing, inferential statistics used were Pearson's Product Moment Correlation Coefficient, and Partial Least Squares-Structural Equation Modeling (PLS-SEM).

Research Results

The results of the research showed that most of respondents were exporters (38.0%), had the total employees between 50-100 employees (58.8%), and had experience in this industry for approximately 6-10 years (51.0%). The research results further revealed that most of the respondents had agreements toward overall strategic agility at the agree level with the mean of

3.92, comprising average means of 3.82 on technology capability, 3.94 on collaborative innovation, 3.94 on organizational learning, and 3.98 on internal alignment, respectively. Besides, most of the respondents had agreements toward operational responsiveness at the agree level with the mean of 4.03. The respondents had agreements toward overall firm performance at the agree level with the mean of 4.02, comprising average means of 3.98 on customer retention, 4.00 on operational performance, and 4.08 on financial performance, respectively.

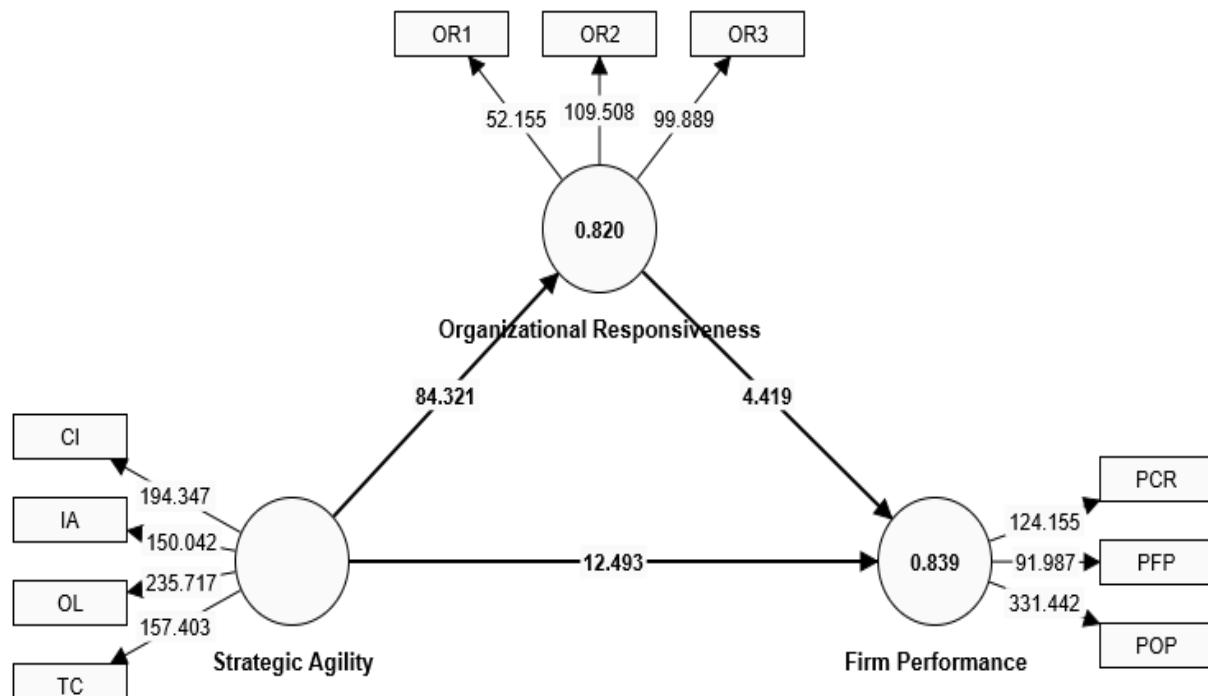
Validity and Reliability: The researchers had experts in related fields inspected the accurateness and consistency of contents and questions and recommended the improvement and revision. Cronbach's alpha and composite reliability were investigated to measure construct reliability as shown in Table 1.

Table 1 Factor Loading, Cronbach's Alpha Coefficient (CA), Composite Reliability (CR) and Average variance extracted (AVE) for Measurement Model

Latent Variable	Indicators	Loads	CA	CR	AVE
Strategic Agility (SA)			0.97	0.97	0.91
Technology Capability (TC)	TC1	0.90	0.86	0.91	0.78
	TC2	0.86			
	TC3	0.89			
Collaborative Innovation (CI)	CI1	0.90	0.85	0.91	0.77
	CI2	0.86			
	CI3	0.87			
Organizational Learning (OL)	OL1	0.90	0.88	0.92	0.74
	OL2	0.83			
	OL3	0.84			
	OL4	0.87			
Internal Alignment (IA)	IA1	0.90	0.84	0.90	0.76
	IA2	0.86			
	IA3	0.85			
Operational Responsiveness (OR)	OR1	0.83	0.86	0.91	0.78
	OR2	0.91			
	OR3	0.91			
Firm Performance (FPerf)			0.94	0.94	0.89
Customer Retention (PCR)	PCR1	0.83	0.84	0.90	0.76
	PCR2	0.88			
	PCR3	0.89			
Operational Performance (POP)	POP1	0.80	0.92	0.93	0.70
	POP2	0.83			
	POP3	0.85			
	POP4	0.87			
	POP5	0.85			
	POP6	0.84			
Financial Performance (PFP)	PFP1	0.82	0.89	0.92	0.65
	PFP2	0.77			
	PFP3	0.66			
	PFP4	0.79			
	PFP5	0.89			
	PFP6	0.90			

In Table 1, in terms of composite reliability, all factor loading values ranged from 0.66 to 0.91, which were more than the recommended value of 0.50; hence, the constructs in the research model are acceptable (Bagozzi & Yi, 2012). The Cronbach's alpha coefficient of each construct ranged from 0.84 to 0.97, meaning that all constructs are acceptable according to the recommended threshold value of 0.70 (Fornell & Larcker, 1981). The value of AVE was in the range of 0.65 to 0.91, which exceeded the minimum threshold value of 0.50, confirming convergent validity.

Table 2 Discriminant Validity


Variables	Strategic Agility	Operational Responsiveness	Firm Performance
Strategic Agility	0.95		
Operational Responsiveness	0.91	0.94	
Firm Performance	0.91	0.87	0.88

Note: The value in main diagonal were square roots of AVE.

In Table 2, the discriminant validity was tested, and the square roots of AVEs were more than the minimum threshold of 0.70, and all values were more than the correlations among the latent constructs (0.87-0.95); thus, it is valid.

Analysis of Structural Model and Hypothesis Testing

From the structural model in this research, the direct effects indicated that R^2 of the dependent variable, or firm performance was 0.839 indicating that 83.9% of firm performance variance was explained by independent variables. For the indirect effects, R^2 of the mediating variables as operational performance was 0.820.

Figure 2 The results of testing the structural model of the theoretical framework

Table 3 Structural Model

Hypothesis	Standardized Estimate (β)	T Statistics	P-Values	Results
H1: Strategic Agility → Operational Responsiveness	0.905	84.321	0.000***	Supported
H2: Strategic Agility → Firm Performance	0.681	12.493	0.000***	Supported
H3: Operational Responsiveness → Firm Performance	0.253	4.419	0.000***	Supported
H4: Strategic Agility → Operational Responsiveness → Firm Performance	0.229	4.447	0.000***	Supported

Note: * $p < .05$; ** $p < .01$; *** $p < .001$ (two-tailed test)

The results of structural model in Table 3 showed that strategic agility had the strongest positive effect on operational responsiveness ($\beta = 0.905$, $p < 0.001$) and firm performance ($\beta = 0.681$, $p < 0.001$), so H1 and H2 were supported. The results also revealed that operational responsiveness had positive and significant effect on firm performance ($\beta = 0.253$, $p < 0.001$), so H3 was supported. Finally, the results also revealed that strategic agility had positive and significant effect on firm performance through operational responsiveness ($\beta = 0.229$, $p < 0.001$), so H4 was supported.

Conclusion & Discussion

The results of this research, which examined H1 and H2, indicate that strategic agility has the most significant beneficial impact on both operational responsiveness and firm performance. Strategic agility is of utmost importance in import, export, and logistics firms. It enables these businesses to promptly adjust to shifting market dynamics, consumer needs, and regulatory requirements (Brannen & Doz, 2012). These firms may enhance their operational responsiveness and boost firm performance by swiftly adjusting and readjusting their business strategies (Tallon & Pinsonneault, 2011; Vickery et al., 2010). Strategic agility enables these businesses to recognize and exploit new possibilities, negotiate obstacles, and consistently enhance their operating procedures (Sud-on, 2014). Moreover, strategic agility enables import, export, and logistics firms to efficiently adapt to alterations in the competitive environment. In order to retain a strong position in the market, it is crucial to swiftly adapt and react to the emergence of new rivals and the continuous evolution of current competitors. Strategic agility allows firms to swiftly adapt their strategies and operations in order to counter competitive challenges, thereby helping them to sustain a competitive advantage in the market (Robinson & Stern, 1998; Doz & Kosonen, 2008). Consequently, this results in improved operational agility, which is crucial for satisfying client requirements and providing exceptional services (Sohail et al., 2023; Thomas et al., 2023).

Another point from the examination of H3 also demonstrated that operational responsiveness has a favorable and substantial impact on the performance of the firm. Operational responsiveness is crucial for organizations to adapt to the rapidly evolving business landscape (Nenavani & Jain, 2023; Santosa & Triwulandari, 2023). In the present globalized and interconnected world, businesses in this sector encounter evolving customer demands, market disruptions, and regulatory limitations. These organizations possess the ability to quickly adjust their supply chain, inventory, and transportation operations in order to meet the demands of the market. The adaptability is achieved via operational responsiveness (Nenavani & Jain, 2023). Besides, this adaptability enhances customer satisfaction, reduces costs, and enhances performance (Shin et al., 2015). Moreover, operational responsiveness plays a crucial role in

the effective management and mitigation of risks for import, export, and logistics firms. These businesses face geopolitical instability, natural disasters, and disruptions in their supply chains. By being responsive, organizations are able to promptly recognize and address potential hazards, formulate backup strategies, and minimize the impact of unforeseen events on their activities (Nenavani & Jain, 2023; Santosa & Triwulandari, 2023). Implementing proactive risk management strategies safeguards the firm's assets, reputation, resilience, and long-term viability (De Araújo Lima et al., 2020). Operational responsiveness enhances innovation and efficiency in import-export and logistics firms. Organizations that are operationally responsive may achieve a competitive advantage by continuously optimizing, embracing new technologies, and enhancing current procedures (Ando & Iriyama, 2009; Sahi et al., 2019). Operational responsiveness enhances ongoing improvement and effectiveness, leading to improved corporate performance via the use of advanced tracking and tracing technologies, optimization of warehouse management, and enhancement of supplier communication and collaboration (Sahi et al., 2019).

Furthermore, the findings of the H4 indicate that strategic agility has a positive and significant influence on firm performance through operational responsiveness. A firm characterized by strategic agility demonstrates greater proficiency in identifying and adjusting to changes in the market, consumer demands, and competitive forces (Lee et al., 2010). By combining strategic agility with operational responsiveness, firms are able to quickly and efficiently execute changes, thereby improving their capability to take advantage of opportunities and reduce risks. Consequently, this may result in enhanced firm performance in relation to increased revenue, profitability, and market competitiveness (Kuo et al., 2020; Novatiani, 2021; Panigrahi, 2019). Besides, operational responsiveness enables firms to consistently adjust and optimize their plans in response to immediate feedback and market advancements (Liew et al., 2022; Wang et al., 2018). The process of strategy adaptation and operational execution enables organizations to respond effectively to evolving market conditions, thereby improving their long-term competitiveness and performance (Doz & Kosonen, 2008; Herciu & Ţerban, 2018).

Limitation

The researchers' focus in this research was on strategic agility, operational responsiveness, and firm performance from import, export, and logistics enterprises in the Bangkok Metropolitan Region ignoring those in other industries. Since the data were collected from 400 respondents using some specific enterprises, the generalization of the results could be limited. Other variables, such as organizational commitment, organizational leadership or organizational culture were not included in this research. As this research was cross-sectional, data were collected at one specific time point. In addition, the hypotheses were tested utilizing quantitative research approach, while the qualitative approach techniques such as in-depth interview or focus group were excluded from the research.

Recommendations

The findings from this research indicated that strategic agility had direct effects on operational responsiveness and firm performance, and also it showed indirect effects on firm performance through operational responsiveness as a mediating variable. Therefore, one practical implication of this research is the significance of allocating resources toward technology and innovation. Firms must constantly enhance their systems and procedures to guarantee their ability to promptly adapt to market fluctuations. This may include integrating sophisticated logistics management software, using data analytics to enhance visibility in the supply chain, and embracing emerging technologies like automation and artificial intelligence. Furthermore, the research might provide insights into the importance of organizational culture and leadership in promoting strategic agility and operational responsiveness. For a business to be agile and responsive, it is very important to have effective communication, cooperation, and empowerment of people. Leaders must establish a culture that fosters innovation, risk-taking,

and the ability to learn from setbacks. This is crucial for adjusting to a swiftly changing environment.

The research was limited to the only import, export, and logistics industry. In order to generalize the results, future research may consider extending the study to the other industries. This way can help the researchers to compare the results and conclude explicit phenomena. In addition, this research was purely on quantitative research, thus the other approaches such as mixed method or purely qualitative research can be possibly employed for future research. Lastly, this research was limited to variables covering strategic agility had direct effects on operational responsiveness and firm performance. Further research could extend to other variables such as organizational commitment, organizational leadership, or organizational culture.

References

Adamik, A., Nowicki, M., & Szymańska, K. (2018). Openness to co-creation as a method of reducing the complexity of the environment and dynamizing companies' competitive advantages. *Management & Marketing. Challenges for the Knowledge Society*, 13(2), 880-896.

Ando, M., & Iriyama, A. (2009). *International production networks and export/import responsiveness to exchange rates: The case of Japanese manufacturing firms* (Working Paper ERIA-DP-2009-09). Jakarta: Economic Research Institute for ASEAN and East Asia.

Bagozzi, R., & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models. *Journal of the Academy of Marketing Science*, 40(1), 8-34.

Bahrami, M., Kiani, M., Montazeralfaraj, R., Zadeh, H., & Zadeh, M. (2016). The mediating role of organizational learning in the relationship of organizational intelligence and organizational agility. *Osong Public Health and Research Perspectives*, 7(3), 190-196.

Bariyyah, S., & Malau, M. (2023). Effect of liquidity, asset structure, managerial ownership and growth rate on company performance. *Journal of Economics, Finance and Accounting Studies*, 5(3), 87-95.

Barney, J. (1991). Firm resources and sustained competitive advantage. *Journal of Management*, 17(1), 99-120.

Brannen, M., & Doz, Y. (2012). Corporate languages and strategic agility: Trapped in your jargon or lost in translation?. *California Management Review*, 54(3), 77-97.

Braunscheidel, M., & Suresh, N. (2009). The organizational antecedents of a firm's supply chain agility for risk mitigation and response. *Journal of Operations Management*, 27(2), 119-140.

Cao, Q., & Dowlatshahi, S. (2005). The impact of alignment between virtual enterprise and information technology on business performance in an agile manufacturing environment. *Journal of Operations Management*, 23(5), 531-550.

Choi, T., & Krause, D. (2006). The supply base and its complexity: Implications for transaction costs, risks, responsiveness, and innovation. *Journal of Operations Management*, 24(5), 637-652.

Cochran, W. (1953). *Sampling techniques*. New York: John Wiley & Sons. Inc.

Daft, R. (1978). A dual-core model of organizational innovation. *Academy of Management Journal*, 21(2), 193-210.

De Araújo Lima, P., Crema, M., & Verbano, C. (2020). Risk management in SMEs: A systematic literature review and future directions. *European Management Journal*, 38(1), 78-94.

Doz, Y., & Kosonen, M. (2008). The dynamics of strategic agility: Nokia's rollercoaster experience. *California Management Review*, 50(3), 95-118.

Dwivedi, R., Prasad, K., Mandal, N., Singh, S., Vardhan, M., & Pamucar, D. (2021). Performance evaluation of an insurance company using an integrated Balanced Scorecard (BSC) and Best-Worst Method (BWM). *Decision Making: Applications in Management and Engineering*, 4(1), 33-50.

Fornell, C., & Larcker, D. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. *Journal of Marketing Research*, 18(3), 382-388.

Gerwin, D. (1993). Manufacturing flexibility: A strategic perspective. *Management Science*, 39(4), 395-410.

Herciu, M., & Șerban, R. (2018). Measuring firm performance: Testing a proposed model. *Studies in Business and Economics*, 13(2), 103-114.

Hoyt, J., Huq, F., & Kreiser, P. (2007). Measuring organizational responsiveness: the development of a validated survey instrument. *Management Decision*, 45(10), 1573-1594.

Inman, R., Sale, R., Green Jr., K., & Whitten, D. (2011). Agile manufacturing: Relation to JIT, operational performance and firm performance. *Journal of Operations Management*, 29(4), 343-355.

Khan, K., & Mahmood, Z. (2023). Impact of corporate governance on firm performance: A case of Pakistan stock exchange. *Liberal Arts and Social Sciences International Journal*, 7(1), 24-38.

Kumkale, İ. (2016). Organization's tool for creating competitive advantage: Strategic agility. *Balkan and Near Eastern Journal of Social Sciences*, 2(3), 118-124.

Kuo, K., Lu, W., & Dinh, T. (2020). Firm performance and ownership structure: Dynamic network data envelopment analysis approach. *Managerial and Decision Economics*, 41(4), 608-623.

LeBreton, J., Wu, J., & Bing, M. (2009). The truth(s) on testing for mediation in the social and organizational sciences. In C. Lance, & R. Vandenberg. (eds.). *Statistical and methodological myths and urban legends: Doctrine, verity and fable in the organizational and social sciences* (pp. 107-141). London: Routledge.

Lee, H. (2004). The triple-a supply chain. *Harvard Business Review*, 82(10), 102-112.

Lee, J., Swink, M., & Pandejpong, T. (2010). The roles of worker expertise, information sharing quality, and psychological safety in manufacturing process innovation: An intellectual capital perspective. *Production and Operations Management*, 20(4), 556-570.

Li, X., Chung, C., Goldsby, T., & Clyde, W. (2008). A unified model of supply chain agility: The work-design perspective. *The International Journal of Logistics Management*, 19(3), 408-435.

Liew, C., Prakash, J., & Ong, K. (2022). Integration of financial performance measure with overall equipment effectiveness for assessing operational performance: A structured literature review. *International Journal of Productivity and Quality Management*, 37(1), 119-142.

Lu, Y., & Ramamurthy, K. (2011). Understanding the link between information technology capability and organizational agility: An empirical examination. *MIS Quarterly*, 35(4), 931-954.

Mbah, A., & Okwo, I. (2022). Responsiveness of operational performance to liquid asset management of industrial goods firms in Nigeria. *European Journal of Accounting, Auditing and Finance Research*, 10(12), 14-28.

McLean, J., Clark, C., McKee, A., Legue, S., Cocking, J., Lamarche, A., & DiDiodato, G. (2022). Pandemic responsiveness in an acute care setting: A community hospital's

utilization of operational resources during COVID-19. *Journal of Multidisciplinary Healthcare*, 15, 1309-1321.

McWilliams, A., & Smart, D. (1993). Efficiency v. structure-conduct-performance: Implications for strategy research and practice. *Journal of Management*, 19(1), 63-78.

Mohanarajan, A. (2016). "Business" as an art form. [Unpublished master thesis]. Ontario College of Art and Design University.

Monyei, E., Okeke, P., & Nwosu, K. (2021). Strategic agility: A prospect for sustainable performance of micro-businesses in South-Eastern Nigeria. *Journal of Sustainable Tourism and Entrepreneurship*, 2(3), 187-198.

Nenavani, J., & Jain, R. (2022). Examining the impact of strategic supplier partnership, customer relationship and supply chain responsiveness on operational performance: The moderating effect of demand uncertainty. *Journal of Business & Industrial Marketing*, 37(5), 995-1011.

Nenavani, J., & Jain, R. (2023). Uncertainty, responsiveness and operational performance in supply chain: a conceptual study using contingency theory approach. *International Journal of Services and Operations Management*, 45(2), 207-231.

Novatiani, R. (2021). Analysis of financial performance affecting corporate value. *Turkish Journal of Computer and Mathematics Education*, 12(8), 1006-1009.

Nugroho, M. (2015). Impact of government support and competitor pressure on the readiness of SMEs in Indonesia in adopting the information technology. *Procedia Computer Science*, 72, 102-111.

Panda, S., & Rath, S. (2021). How information technology capability influences organizational agility: Empirical evidences from Indian banking industry. *Journal of Indian Business Research*, 13(4), 564-585.

Panigrahi, A. (2019). Analysis of financial performance: A study of selected pharmaceutical companies. *Global Management Horizon, Annual Referred Journal of Global Institute of Management*, 8, 47-56.

Păunescu, C., Argatu, R., & Lungu, M. (2018). Implementation of ISO 22000 in Romanian companies: Motivations, difficulties and key benefits. *Amfiteatru Economic*, 20(47), 30-45.

Pett, T., & Wolff, J. (2007). SME performance: A case for internal consistency. *Journal of Small Business Strategy*, 18(1), 1-16.

Roberts, N., & Grover, V. (2012). Investigating firm's customer agility and firm performance: The importance of aligning sense and respond capabilities. *Journal of Business Research*, 65(5), 579-585.

Robinson, A., & Stern, S. (1998). *Corporate creativity: How innovation and improvement actually happen*. California: Berrett-Koehler Publishers.

Saha, N., Gregar, A., & Sáha, P. (2017). Organizational agility and HRM strategy: Do they really enhance firms' competitiveness?. *International Journal of Organizational Leadership*, 6(3), 323-334.

Sahi, G., Gupta, M., Cheng, T., & Lonial, S. (2019). Relating entrepreneurial orientation with operational responsiveness: Roles of competitive intensity and technological turbulence. *International Journal of Operations & Production Management*, 39(5), 739-766.

Santosa, W., & Triwulandari, S. (2023). Examining the impact of strategic supplier partnerships, customer relationship, postponement, and supply chain responsiveness on operational performance: The moderating effect of demand uncertainty. *Business and Entrepreneurial Review*, 23(1), 19-32.

Savalei, V., & Bentler, P. (2005). A statistically justified pairwise ML method for incomplete nonnormal data: A comparison with direct ML and pairwise ADF. *Structural Equation Modeling*, 12(2), 183-214.

Scherer, F., & Ross, D. (1990). *Industrial market structure and economic performance*. 3rd ed. Massachusetts: Houghton Mifflin.

Sheel, A., & Nath, V. (2019). Effect of blockchain technology adoption on supply chain adaptability, agility, alignment and performance. *Management Research Review*, 42(12), 1353-1374.

Shin, H., Lee, J., Kim, D., & Rhim, H. (2015). Strategic agility of Korean small and medium enterprises and its influence on operational and firm performance. *International Journal of Production Economics*, 168, 181-196.

Sohail, H., Tariq, S., & Tariq, A. (2023). Evaluating antecedents of online customer retention. *Pakistan Journal of Humanities and Social Sciences*, 11(2), 1337-1351.

Sud-on, P. (2014). *Exploring the relationship between manufacturing practices, agile capabilities and organisational performance: A case of the Thai automotive parts industry*. Doctor of Philosophy Thesis, RMIT University.

Swafford, P., Ghosh, S., & Murthy, N. (2006). A framework for assessing value chain agility. *International Journal of Operations & Production Management*, 26(2), 118-140.

Tallon, P., & Pinsonneault, A. (2011). Competing perspectives on the link between strategic information technology alignment and organizational agility: Insights from a mediation model. *MIS quarterly*, 35(2), 463-486.

Thomas, N., Singh, S., & Gangwar, M. (2023). Customer retention using loyalty cards program. *International Journal of Business Innovation and Research*, 30(2), 200-217.

Vickery, S., Droke, C., Setia, P., & Sambamurthy, V. (2010). Supply chain information technologies and organisational initiatives: Complementary versus independent effects on agility and firm performance. *International Journal of Production Research*, 48(23), 7025-7042.

Wang, K., Lee, C., Zhang, J., & Wei, Y. (2018). Operational performance management of the power industry: A distinguishing analysis between effectiveness and efficiency. *Annals of Operations Research*, 268, 513-537.

Whitten, G., Green, K., & Zelbst, P. (2012). Triple-A supply chain performance. *International Journal of Operations & Production Management*, 32(1), 28-48.

Yuan, K., & Bentler, P. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. *Sociological Methodology*, 30(1), 165-200.

Zaheer, A., & Zaheer, S. (1997). Catching the wave: Alertness, responsiveness, and market influence in global electronic networks. *Management Science*, 43(11), 1493-1509.

Data Availability Statement: The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright: © 2024 by the authors. This is a fully open-access article distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).