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Abstract  
Prior research has primarily examined the average economic effects of digital transformation, with limited 
attention to its heterogeneous treatment effects. This study applies the Bayesian Additive Regression Tree 
(BART) approach to analyze how digital transformation influences firms’ pollution emissions and its broader 
economic implications. Using a dataset of 32,340 firm-year observations from Chinese A-share listed 
companies (2007–2022), we find that the impact of digital transformation on pollution emissions varies 
significantly across firms. The key economic mechanisms driving this effect include increased green 
innovation, more efficient factor allocation, and enhanced firm positioning within social networks. These 
findings offer new insights into the role of digital transformation in corporate environmental strategies, firm 
productivity, and economic sustainability, highlighting its differential effects across firms. 
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1. Introduction
China’s initial phase of rapid economic expansion led to severe environmental pollution, making 

pollution control a crucial aspect of green development. In response, the Chinese government has set ambitious 
targets, including reaching carbon peak by 2030 and achieving carbon neutrality by 2060, demonstrating a 
strong commitment to combating climate change. As these goals are pursued, innovations in artificial 
intelligence, blockchain, cloud computing, and data analytics (Hallioui et al., 2022) are driving a digital 
transformation. This transformation is increasingly integrated into enterprise decision-making, leading to a 
substantial reorganization of traditional production resources and technological strategies (Miao & Chen, 2022). 

Can digital transformation reduce pollution emissions? If so, what mechanisms drive this effect? 
Investigating these questions is crucial for maximizing the environmental benefits of digital transformation within 
firms and for providing valuable insights to countries pursuing sustainability and enhanced environmental 
stewardship. 

Digital transformation involves adopting digital technologies and leveraging data elements. With 
characteristics such as scalability, editability, openness, and connectivity, digital transformation significantly 
reduces costs and mitigates information asymmetries in resource search, factor allocation, and green 
technology innovation (Bharadwaj et al., 2013; Vial, 2019). As a result, it enhances firms’ ability to acquire, 
integrate, reorganize, and utilize resources for pollution control (Mikalef et al., 2019). Beyond improving the 
efficiency of internal resource allocation, digital transformation also strengthens external relationship networks, 
which are critical for accessing external resources and technologies, thereby reducing innovation risks (Borgatti 
& Foster, 2003). Through the strategic use of social networks, firms can access a broader spectrum of 
knowledge and capabilities that drive innovation (Tsai & Ghoshal, 1998). Additionally, these networks facilitate 
information exchange and collaboration among various stakeholders, which is essential for integrating diverse 
resources (Ahuja, 2000). Therefore, understanding the mechanisms by which digital transformation impacts 
pollution emissions is of paramount importance. 

This study engages with two key strands of literature: one examining the factors influencing pollution 
reduction and the other analyzing the effects of digital transformation. In the context of pollution reduction, 
scholars have investigated macro- and micro-level factors, laying the groundwork for understanding how digital 
transformation might influence them. At the macro level, the literature has explored the effects of economic 
growth (Grossman & Krueger, 1995), environmental policies (Shahzad, 2020), technological innovation (Hao et 
al., 2020), and domestic and international trade (Copeland & Taylor, 2001) on environmental pollution and 
quality. At the micro level, research has focused on how factors such as financial performance (Trumpp & 
Guenther, 2017) and financing constraints (Goetz, 2018) influence corporate environmental performance. 

Studies on corporate digital transformation have examined its implications for various areas, including 
economic development (Glinskiy et al., 2020), labor structure (Dou et al., 2023), industrial organization (Imran 
et al., 2021), innovation (Li et al., 2023), and environmental sustainability (Feroz & Chiravuri, 2021). Research 
on the relationship between digital transformation and environmental quality has primarily focused on its effects 
on green total factor productivity (Wang et al., 2023), green innovation (Feng et al., 2022), the green 
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development of manufacturing firms (Chen et al., 2023), and carbon emissions (Shang et al., 2023). While much 
of the literature highlights the positive impact of digital transformation on green economic transformation and 
environmental quality, several gaps remain. 

First, most studies focus on regional or industrial-level analyses, with limited attention to micro-level 
assessments of enterprise digitalization and pollution emissions. Second, existing research relies heavily on 
panel data and mean effect tests, lacking a detailed exploration of individual treatment effects of corporate 
digital transformation on pollution reduction. Third, while internal mechanisms, such as productivity 
improvements, are well-studied, external mechanisms, particularly the role of social networks, remain 
overlooked. 

To bridge these gaps, this study leverages data from Chinese A-share listed manufacturing firms from 
2007 to 2022. It develops firm-level indices for digital transformation, pollution emissions, and social network 
positions, utilizing the Bayesian Additive Regression Trees (BART) method to assess the individual treatment 
effects and internal mechanisms of corporate digital transformation on pollution reduction. The BART method 
is particularly advantageous because it can model complex, nonlinear relationships and interactions among 
variables, thereby reducing the risk of model misspecification. Furthermore, its ability to estimate individual 
treatment effects allows this study to identify variations in how digital transformation affects pollution emissions 
across firms. By prioritizing the relative importance of predictors, BART enables a deeper investigation into the 
underlying mechanisms driving these effects, making it a powerful tool for analyzing the multifaceted influence 
of digital transformation. The findings reveal that the impact of digital transformation on pollution emissions is 
not uniform across firms, with green innovation, optimized factor allocation, and enhanced social network 
positions serving as the key channels driving these effects. 

This study makes several contributions to the literature. It provides a detailed micro-level analysis of 
both internal and external mechanisms associated with digital transformation, offering deeper insights into its 
impact on pollution reduction. Additionally, it introduces novel approaches, such as textual data analysis, to 
measure enterprise digitalization more precisely. By integrating these methodologies within a unified analytical 
framework, the study clarifies the key mechanisms through which digital transformation contributes to 
environmental improvements. Furthermore, by applying the Bayesian Additive Regression Trees (BART) 
method, this research advances existing methodologies and uncovers individual treatment effects that have 
previously been overlooked. 

The paper is structured as follows. Section 2 outlines the theoretical framework and research 
hypotheses, providing the foundation for the study. Section 3 details the research design, including data 
sources, variable definitions, and methodology. Section 4 presents the empirical results, highlighting the key 
findings. Section 5 explores the underlying mechanisms, explaining how digital transformation influences 
pollution reduction through green innovation, factor allocation, and social networks. Finally, the last section 
summarizes the study, discusses policy implications, and suggests avenues for future research. 
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2. Theoretical Analysis and Hypotheses Development 
2.1 Green Innovation Enhancement Effect 
Green innovation refers to the creation and application of environmentally sustainable technologies, 

products, and processes that reduce pollution while maintaining economic and social benefits (Liu & Xiao, 
2022). It encompasses both technological advancements and organizational practices aimed at minimizing 
environmental impacts. In the context of digital transformation, green innovation plays a particularly crucial role, 
as digital technologies enhance resource efficiency, improve collaboration, and accelerate innovation cycles. 

Digital transformation facilitates the integration of digital technologies and data elements into 
production and business processes (Zhang, H. et al., 2024), thereby strengthening firms’ ability to control 
pollution through enhanced innovation. First, digital transformation can increase R&D investment in digital 
technologies (Zhao et al., 2022), reducing reliance on traditional production factors and fostering innovation in 
clean and efficient production methods. The adoption of digital technologies and data elements supports the 
upgrading of corporate production models, leading to shorter R&D cycles for clean technologies (Tang et al., 
2023). 

Second, enterprise digitalization enhances resource openness and knowledge sharing, enabling the 
efficient dissemination of data elements and technology (Feng et al., 2022). This process encourages greater 
interdepartmental collaboration within enterprises during technology development while amplifying the spillover 
effects of technology and knowledge. As a result, enterprises improve their capacity for co-innovation and 
integration of green innovation resources (Hu et al., 2024). 

Finally, digital transformation enables enterprises to rapidly access market competition information and 
anticipate technological trends, thereby intensifying R&D and innovation efforts in green and clean products 
(Ren et al., 2023). Based on this, we propose the following hypothesis: 

H1: Digital transformation reduces pollution emissions by enhancing green technology innovation. 
2.2 Factor Allocation Optimization Effect 
The optimization of factor allocation in firm production is primarily reflected in enhanced input efficiency 

and improved utilization of resources and production factors. Digital transformation strengthens the integration 
of data elements and technology in resource allocation, improving overall resource efficiency and reducing 
pollution emissions. 

First, the data-driven nature of digital transformation allows for the adoption of technologies that are 
low in pollution, energy consumption, and marginal costs (Chen & Hao, 2022). The increased incorporation of 
data, knowledge, and information resources into production processes helps firms reduce dependence on 
high-energy-consuming, inefficient, and polluting production factors, leading to a more sustainable input 
structure (Shang et al., 2023). 

Second, digital transformation, powered by data and technology, fosters the creation of new forms of 
labor, new technologies, and innovative production elements (Bresciani et al., 2021). These elements interact 
dynamically with traditional production factors, encouraging firms to increase investments in digital 
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technologies and data-driven decision-making. This iterative process optimizes resource allocation structures, 
increasing the proportion of knowledge-intensive and technology-driven inputs, which ultimately supports 
pollution reduction efforts (Lv & Wu, 2024). 

Based on this, we propose the following hypothesis: 
H2: Digital transformation reduces pollution emissions by optimizing factor allocation. 
2.3 Social Network Position Improvement Effect 
Network position arises from the relationships established among actors and is a pivotal concept in 

social network analysis (Qian et al., 2010). A firm’s network position significantly influences its learning 
effectiveness, making it a crucial form of social capital, often referred to as location capital (Huang & Wang, 
2008). An improved social network position enables firms to gain better access to innovation-related information 
while expanding their information channels and collaboration opportunities. Firms with strong network positions 
are more likely to acquire complementary skills from other enterprises and engage in strategic partnerships 
with high-performing firms. 

Digital transformation plays a key role in enhancing firms' communication with neighboring businesses, 
fostering a sense of belonging and social recognition that strengthens trust-based relational networks. Within 
these networks, shared behavioral norms and social standards increase social proximity among firms, leading 
to greater informal cooperation (Capello, 2014; Granovetter, 1985). These cooperative relationships, supported 
by mutual trust, help reduce environmental governance costs and ensure that firms adhere to established norms 
and market regulations in pollution control practices (Ostas, 2003). 

Furthermore, digitalized relational networks expand firms’ access to diverse resources, including key 
production factors, technological knowledge, and information exchange platforms. This facilitates the discovery 
of new innovation opportunities and enhances firms’ ability to identify and utilize valuable resources for 
environmental innovation and pollution control (Uzzi, 1996). By stabilizing inter-firm relational networks, digital 
transformation maximizes efficiency gains and pollution reduction benefits associated with network externalities 
and social proximity (Borgatti & Foster, 2003). 

Based on this, we propose the following hypothesis: 
H3: Digital transformation reduces pollution emissions by improving firms’ social network positions. 
2.4 Heterogeneous Effect of Digital Transformation on Pollution Emissions 
Existing research suggests that enterprise digital transformation has the potential to reduce pollution 

emissions through multiple mechanisms, including green technology innovation, optimized factor allocation, 
and improved social network positions. However, the extent of these effects varies across firms, indicating 
heterogeneous impacts. These differences in outcomes may stem from varying levels of digital transformation 
adoption and its effectiveness in enhancing green innovation, optimizing resource allocation, and strengthening 
network positions. 

First, the impact of digital transformation on green technology innovation differs depending on a firm’s 
capacity to adopt and integrate digital technologies into its R&D processes. Firms with high digital maturity are 
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more likely to experience greater advancements in green technology innovation, as they can effectively utilize 
digital tools to enhance sustainable production practices. Conversely, firms with low digital adoption may 
struggle to fully leverage digital transformation, leading to less impactful green innovations (Feng et al., 2022; 
Zhao et al., 2022). 

Second, the ability of digital transformation to optimize factor allocation also varies across firms. 
Companies with better access to digital infrastructure, financial resources, and skilled labor are more likely to 
reallocate resources efficiently toward low-pollution, high-efficiency production processes. In contrast, firms 
with limited resources or inadequate digital infrastructure may face constraints in optimizing factor allocation, 
thereby limiting their ability to reduce emissions (Lv & Wu, 2024; Shang et al., 2023). 

Third, digital transformation’s impact on firms' social network positions is highly dependent on their 
level of integration into digital networks. Firms that are well-connected can leverage digital platforms to enhance 
collaboration, knowledge sharing, and access to cutting-edge technologies, all of which contribute to pollution 
reduction. On the other hand, firms that are less integrated into digital networks may not fully benefit from 
external knowledge spillovers and innovation-driven sustainability efforts, resulting in weaker pollution reduction 
outcomes (Capello, 2014; Granovetter, 1985). 

  Based on these varying effects, we propose the following hypothesis: 
  H4: The impact of digital transformation on pollution emissions varies across firms, depending on 

differences in green innovation, factor allocation optimization, and social network position improvement.  
 

3. Research Design 
3.1 Data 
This study focuses on Chinese A-share manufacturing firms. Financial data were obtained from the 

China Stock Market & Accounting Research (CSMAR) database, while pollution emission data were sourced 
from annual reports, corporate social responsibility reports, and company websites. To ensure data reliability 
and representativeness, firms with Special Treatment (ST) or Particular Transfer (PT) statuses, along with 
observations containing significant missing data, were excluded from the sample. 

In this study, “ST” (Special Treatment) refers to a status assigned by the stock exchange to companies 
that have suffered losses for two consecutive years or have abnormal financial conditions. These companies 
are subject to special regulatory requirements and trading restrictions. “PT” (Particular Transfer) refers to a 
transfer mechanism for stocks of companies that have encountered serious financial difficulties and are at risk 
of delisting. Such companies also fall under special regulatory oversight. 

To manage potential data distortions, winsorization was applied at the 1% and 99% levels. This method 
addresses extreme values that could disproportionately impact statistical analyses. Specifically, values below 
the 1st percentile were replaced with the 1st percentile value, and values above the 99th percentile were 
replaced with the 99th percentile value. Winsorization reduces the influence of extreme outliers, thereby 
improving the accuracy of statistical inferences and regression analyses. Additionally, observations with 
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missing values in key variables were excluded. 
The final dataset comprises 3,645 firms, resulting in 32,340 firm-year observations spanning the period 

2007 to 2022. 
3.2 Variables 
3.2.1 Firm Pollution Emissions 
The pollution emission data primarily encompass five types of pollutants: chemical oxygen demand 

(COD) and ammonia nitrogen for water pollution, and sulfur dioxide (SO₂), nitrogen oxides (NOₓ), and 
particulate matter for air pollution. To calculate a firm-level composite pollution emission index, we follow these 
steps:  

First, the raw data is standardized using the extremum method, resulting in the standardized 
emission of the kth pollutant. The formula is as follows: 

      𝑟𝑝𝑜𝑙𝑘𝑖𝑡 =
𝑝𝑜𝑙𝑘𝑖𝑡−𝑚𝑖𝑛 𝑝𝑜𝑙𝑘𝑖𝑡

𝑚𝑎𝑥 𝑝𝑜𝑙𝑘𝑖𝑡−𝑚𝑖𝑛 𝑝𝑜𝑙𝑘𝑖𝑡
,                                                                                 (1) 

 

Where subscriptions k, i, t represents the kth pollutant, firm and year, respectively.𝑝𝑜𝑙 indicates the 
amount of the pollutant emission. Max and min respectively represent the maximum and minimum values of 
the kth pollutant emissions from all firms in a year. 

Next, to calculate the coefficient ϕ for the kth pollutant for firm i, which is calculated as the ratio of 
the standardized emission of the kth pollutant to its mean standardized emission across firms. The formula is: 

𝜙𝑛𝑖𝑡 =
𝑟𝑝𝑜𝑙𝑛𝑖𝑡

𝑟𝑝𝑜𝑙𝑛𝑖𝑡
,                                                                                                                  (2)      

                                               
Finally, the composite pollution emission index (P) for firm i is determined by summing these 

coefficients for all pollutants, see 

𝑃𝑖𝑡 =
1

5
∑ (𝑟𝑝𝑜𝑙𝑛𝑖𝑡 × 𝜙𝑛𝑖𝑡)𝑛                                                                                                     (3)    

                                                                 
3.2.2 Enterprise digital transformation 
Following existing studies (e.g., Gao et al., 2022; Huang et al., 2021), we employ a text-based 

methodology to develop an index of firm-level digital transformation. The construction of this index involves 
several steps. First, we collected the content of annual reports from 2007 to 2022. Next, we refined keywords 
in five key areas - Artificial Intelligence (AI), Blockchain, Cloud Computing, Big Data, and Digital Technology 
Applications - by reviewing relevant academic literature and policy documents to create a digital transformation 
dictionary. Using this dictionary, we then searched for, matched, and counted the frequency of these keywords 
in each annual report. Finally, we measured the level of digital transformation (lnSzh) by taking the logarithm of 
one plus the frequency of the identified keywords.1 

 
1 The detailed steps are presented in appendix. 



 
132 Xu, X. and Chen, X. 

3.2.3 Other variables 
Following Peng & Tao (2022), we incorporate several control variables, including the number of 

employees, capital, return on assets (ROA), and the cash flow to assets ratio. Detailed descriptions of these 
variables are provided in Table 1. 

The descriptive statistics for key variables are summarized in Table 2. The pollution emission index (P) 
has a mean of 1.821 and a standard deviation of 0.309, with values ranging from 0.858 to 2.393. This indicates 
considerable variation in pollution emissions across firms, suggesting that while most firms exhibit moderate 
pollution levels, some have significantly lower or higher emissions. 

For labor (lnl) measured as the natural logarithm of labor amount, the mean value is 7.650, with a 
standard deviation of 1.387. The minimum value is 2.079, while the maximum reaches 13.223, reflecting 
significant variability in the labor size of firms in the sample. 

The capital intensity (lnk), which reflects the amount of capital used by firms, has a mean of 22.123 
and a standard deviation of 1.521, with values ranging from 14.108 to 30.967. This suggests that firms in the 
sample differ substantially in their capital requirements, with some being highly capital-intensive. 

Return on Equity (ROE), a key measure of firm profitability, has a mean of 0.040 and a standard 
deviation of 0.033. The ROE values range from a negative minimum of -0.007 to a maximum of 0.100, reflecting 
a broad range of profitability among the firms. Some firms are experiencing losses, while others maintain 
positive profitability, though the majority fall within a narrow range around the mean. 

The cash flow to assets ratio (Cr), an indicator of liquidity, has a mean of 0.047 and a standard deviation 
of 0.054, with values ranging from -0.039 to 0.134. This suggests that while many firms have low liquidity, some 
may face liquidity challenges, as indicated by the negative minimum value. 

Finally, the digital transformation index (lnSzh), which captures the extent of digitalization within firms, 
has a mean of 0.982 and a standard deviation of 1.253. The values range from 0 to 5.690, indicating that many 
firms are still in the early stages of digital transformation. The wide variation in this index highlights significant 
differences in the level of digitalization across firms in the sample. 

 
Table 1: Definition of control variables 
Variables Sign Measurement 
number of employees lnl The natural logarithm of the number of employees 
capital lnk The natural logarithm of capital stock is represented by the total 

assets of the enterprise minus the net value of intangible assets 
and the net value of goodwill. 

return to assets roa Total asset growth rate (%) 
cash flow to assets ratio Cr The ratio of net cash flow from operating activities to total assets 

Source: Peng and Tao (2022) 
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Table 2: Descriptive statistics 
Var Obs Mean SD Min Median Max 
P 32,340 1.821 0.309 0.858 1.883 2.393 
lnl 32,340 7.650 1.387 2.079 7.609 13.223 
lnk 32,340 22.123 1.521 14.108 21.906 30.967 
roe 32,340 0.040 0.033 -0.007 0.034 0.100 
Cr 32,340 0.047 0.054 -0.039 0.046 0.134 
lnSzh 32,340 0.982 1.253 0.000 0.000 5.690 

Source: Authors’ calculation 
 

3.3 Methodology 
The heterogeneity of treatment effect (HTE) refers to the variation in individual responses to the same 

treatment. While most studies focus on estimating the average treatment effect (ATE) to summarize the overall 
impact across an entire sample, traditional methods for analyzing HTE often examine individual characteristics 
in isolation. These methods attempt to identify differences in treatment effects based on specific variables but 
often fail to account for the potential synergistic effects that may arise among multiple correlated characteristics. 
As a result, this approach risks overlooking nuanced relationships between variables and may lead to biased 
or incomplete conclusions. 

To address these limitations, we employ the Bayesian Additive Regression Trees (BART) method, 
which offers a robust solution for capturing complex heterogeneity in treatment effects. Unlike conventional 
approaches, BART can identify nonlinear relationships and interactions within the data, hierarchically prioritizing 
them based on their relative importance. This method minimizes researcher bias and reduces the likelihood of 
model misspecification, a common issue in traditional interaction testing methods. 

In this study, we utilize BART to assess the heterogeneous treatment effects of digital transformation on 
firms' pollution emissions. By leveraging the flexibility and adaptability of BART, we can uncover subtle 
variations in how digital transformation influences pollution outcomes across firms, providing a more precise 
and comprehensive understanding of its environmental impact. 

BART is designed to estimate a model for the outcome Y, specified as 𝑌 = 𝑓(𝑧, 𝑥) + 𝜀, where z 

represents the treatment, x denotes the confounding covariates, and 𝜀 represents independent and identically 
distributed (iid) errors. Tree-based models explain the variation in an outcome variable by repeatedly 
partitioning the sample into increasingly homogeneous subgroups. The construction of a tree begins with the 
root node, which includes the entire sample. Nodes in the tree structure can be terminal (leaf nodes) or non-
terminal (intermediate nodes), with non-terminal nodes always splitting into two daughter nodes. These splits 
are determined by Boolean questions about a single predictor. For example, a split is made based on a 

condition such as: 𝑋𝑖 ≤ 𝜃𝑗  where 𝑋𝑖 is the value of a predictor variable for observation i, and c is a threshold 
value. Depending on whether the answer to the Boolean condition is "yes" or "no," each observation in the node 
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is assigned to one of the two daughter nodes. Unlike single-decision tree models, BART employs an ensemble 
of m trees, where m typically ranges in the hundreds. This ensemble approach allows BART to capture complex 
relationships between variables while reducing the risk of overfitting. BART can be applied to both binary and 
continuous outcomes. For continuous outcomes, BART models the outcome Y as an unknown function f of a p-
dimensional predictor vector x plus an iid error term:  

𝑌 = 𝑓(𝑥) + 𝜀                                                                                                        (4) 
 
We begin by introducing the notation for a single tree. Let T represent a tree consisting of a set of 

interior nodes, terminal nodes, and the decision rules that connect these nodes. In other words, T encapsulates 
all the information necessary to define a decision tree model. Let M denote a set of parameters associated with 
the b terminal nodes of T. In a single tree model, these b parameters represent the fitted values for the terminal 
nodes. Given T and M, the output of the function g(x;T,M) is obtained by first dropping an observation with 
characteristics x down the tree until it reaches a terminal node, and then reporting the value M associated with 
that terminal node:   

g(x;T,M)=M(x)                                                                                     (5) 
 
Instead of fitting a single tree, BART fits an ensemble of mmm trees, typically in the hundreds. This 

sum-of-trees model is expressed as:  

𝑌 = ∑ 𝑔𝑗
𝑚
𝑗=1 (𝑥; 𝑇𝑗 , 𝑀𝑗) + 𝜀                                                                          (6) 

 
For each Tj and its associated set of terminal node parameters Mj , the output of gj(x;Tj,Mj) is the value 

obtained by dropping an observation with characteristics x down the tree until it reaches a terminal node, then 
reporting the appropriate terminal node parameter Mj(x). Under this model, Y equals the sum of all terminal 
node parameters assigned to an observation with characteristics x by gj . Each tree Tj may represent a main 
effect when gj(x) depends on only one component of x, or an interaction effect when gj(x) depends on more 
than one component. In this way, BART naturally incorporates both main and interaction effects, with some 
trees representing main effects and others capturing interactions. Since the trees in the ensemble can vary in 
size, the interactions can be of varying orders, allowing BART to provide extremely flexible fits, with each tree 
specializing in fitting a particular aspect of the data. 

 

4.Empirical results 
4.1 Baseline results 
Figure 1 illustrates the individual treatment effect of digital transformation on pollution emissions for 

each observation. The results are categorized into three groups, represented by green, orange, and blue scatter 
points. The green scatter points, which are statistically significant at the 5% level, indicate that digital 
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transformation reduces pollution emissions. This finding aligns with the theoretical perspective that digital 
transformation enhances production efficiency and resource utilization, ultimately leading to lower pollution 
levels. Firms that adopt advanced digital technologies can improve their production processes, optimize energy 
consumption, and thereby reduce pollutant emissions. This result is consistent with prior studies, which have 
demonstrated that digitally transformed firms are better equipped to manage resources efficiently and 
implement cleaner production methods (Sun et al., 2024; Zhang, C. et al., 2024).  

The orange scatter points, which represent insignificant effects, suggest that for some firms, digital 
transformation may not have an immediate or direct impact on pollution emissions. Several factors could explain 
this result, including industry characteristics, the stage of digital adoption, and the presence of other 
confounding variables. In traditional manufacturing industries, for example, the adoption of digital technologies 
may be more challenging, and the expected pollution reduction benefits may take longer to materialize due to 
technological adaptation constraints and capital investment requirements. 

The blue scatter points, which are statistically significant at the 5% level, indicate a positive relationship 
between digital transformation and pollution emissions. This seemingly counterintuitive finding may be 
attributed to short-term disruptions caused by the implementation of digital technologies. During the initial phase 
of digital transformation, firms may experience operational inefficiencies or increased energy consumption, as 
they adapt to new systems and integrate digital infrastructure (Li et al., 2021). For instance, the adoption of 
automated production processes and smart manufacturing technologies often requires significant power 
consumption, software adaptation, and workforce reskilling, which could lead to a temporary increase in 
emissions before the long-term benefits of efficiency and sustainability improvements are realized. 

Overall, Figure 1 clearly illustrates the heterogeneous impact of digital transformation on pollution 
emissions across firms, emphasizing the complexity of this relationship. These findings highlight the necessity 
for further investigation into the underlying mechanisms driving these varying effects, particularly the role of 
industry characteristics, firm capabilities, and the temporal dynamics of digital transformation. 

 

 
Figure 1: Individual treatment effect of digital transformation on pollution emissions 
Source: Authors’ calculation 
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Notes: “1” indicates the coefficients of digital transformation are significant negative at 5% level; “2” indicates the coefficients of 
digital transformation are insignificant; “3” indicates the coefficients of digital transformation are significant positive at 5% level. 
 

4.2 Robustness checks 
4.2.1 Replacing the measurement of pollution emission 
The absolute value of pollution emissions may be influenced by firm size, making it less effective in 

assessing pollution control efficiency. In contrast, pollution emission intensity (PEI) provides a more accurate 
measure of a firm's pollution control efficiency relative to its production process. Therefore, to ensure the 
robustness of our findings, we construct a composite indicator based on pollution emission intensity and use it 
as an alternative dependent variable for robustness testing. The firm’s composite pollution emission intensity 
(PEI) is calculated as follows:  

First, we measure the emission intensity for the kth pollutant (poli) by using the ratio of its pollutant’s 
emission volume (pol) to the firm’s main business revenue (revenue).  

𝑝𝑜𝑙𝑖𝑘𝑖𝑡 =
𝑝𝑜𝑙𝑘𝑖𝑡

𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑖𝑡
                                                                                                 (7)                                                     

 

Next, the poli are standardized, resulting in the standardized emission of the kth pollutant. The 
formula is as follows: 

𝑟𝑝𝑜𝑙𝑖𝑛𝑖𝑡 =
𝑝𝑜𝑙𝑖𝑛𝑖𝑡−𝑚𝑖𝑛 𝑝𝑜𝑙𝑖𝑛𝑖𝑡

𝑚𝑎𝑥 𝑝𝑜𝑙𝑖𝑛𝑖𝑡−𝑚𝑖𝑛 𝑝𝑜𝑙𝑖𝑛𝑖𝑡
,                                                                     (8) 

 

where max and min respectively represent the maximum and minimum values of the kth pollutant emissions 
intensity from all firms in a year. 

Next, calculate the coefficient w for the kth pollutant for firm i, which is calculated as the ratio of the 
standardized emission intensity of the kth pollutant to its mean standardized emission intensity across firms. 
The formula is: 

𝑤𝑛𝑖𝑡 =
𝑟𝑝𝑜𝑙𝑖𝑛𝑖𝑡

𝑟𝑝𝑜𝑙𝑖𝑛𝑖𝑡
,                                                                                                          (9)                                                                                              

 

Finally, PEI for firm i is determined by summing these coefficients for all pollutants: 

𝑃𝐸𝐼𝑖𝑡 =
1

5
∑ (𝑟𝑝𝑜𝑙𝑖𝑛𝑖𝑡 × 𝑤𝑛𝑖𝑡)𝑛                                                                                 (10) 

 

Figure 2 demonstrates that the impact of digital transformation on pollution emissions varies across 
firms, which highlights the heterogeneous effects of digital adoption in the context of environmental 
performance. The varying impact of digital transformation on pollution emissions suggests that not all firms 
benefit equally from digital technologies. Some firms, particularly those in high-polluting industries or with older 
infrastructures, may face challenges in implementing digital solutions that significantly reduce emissions. 
Conversely, firms with greater technological maturity or those in less polluting sectors might experience more 
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pronounced benefits from digitalization. 
 

 
Figure 2: Robustness checks: replacing the measurement of dependent variable 
Source: Authors’ calculation 

4.2.2 Replacing the measurement of digital transformation  
Intangible assets, particularly those related to digital technologies—such as proprietary software, 

digital tools, and patents—are increasingly central to a firm’s digital transformation. Incorporating this measure 
allows us to capture the depth of a firm’s commitment to digitalization. Firms with higher proportions of intangible 
assets related to digital technology are likely to be further along in their digital transformation journey. In this 
section, we use the ratio of digital technology intangible assets to total assets at the end of the year for listed 
manufacturing firms as an indicator of digital transformation extent. Specifically, when the detailed items of 
intangible assets contain keywords related to digital economy technologies, such as “software,” “network,” 
“client,” “management system,” “intelligent platform,” or related patents, these items are classified as digital 
technology intangible assets. The total value of digital technology intangible assets for a given firm in a given 
year is then aggregated and expressed as a proportion of the firm’s total intangible assets for that year. This 
measure serves as a proxy variable for the degree of digitalization within the enterprise. The descriptive 
statistics, presented in Appendix Table 1, align with existing studies (Qi et al., 2020). 

As illustrated in Figure 3, the impact of digital transformation on pollution emissions remains 
heterogeneous, with no observations indicating a negative impact. 
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Figure 3: Robustness checks: replacing the measurement of independent variable 
Source: Authors’ calculation 

4.2.3 Alternative samples 
In the baseline regression analysis, the sample was trimmed at the 1% level. To further eliminate the 

influence of extreme values, this section applies a 1% level two-sided truncation to the firm pollution emission 
indicators. This approach serves as a robustness check to validate the baseline regression results. Figure 4 
presents the results, demonstrating that even after applying the two-sided truncation, the baseline regression 
findings remain consistent and valid. 

 

 
Figure 4: Robustness checks: 1% level two-sided truncation 
Source: Authors’ calculation 
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4.2.4 Alternative control variables 
The proportion of corporate environmental protection expenditure to operating revenue reflects a firm’s 

investment in environmental protection. If this variable is not controlled, it may lead to endogeneity issues. For 
example, firms with strong environmental awareness may simultaneously increase their investment in digital 
transformation and environmental protection expenditure. This would confuse the causal relationship between 
digital transformation and pollution emissions. The level of environmental regulation directly affects a firm’s 
pollution emission behavior. A higher intensity of environmental regulation may prompt companies to increase 
their environmental protection investment and reduce pollution emissions, which is unrelated to digital 
transformation. If the level of environmental regulation is not controlled, it may overestimate or underestimate 
the impact of digital transformation on pollution emissions. Therefore, we also control the proportion of firm 
environmental protection expenditure to operating revenue and the level of environmental regulation. Figure 5 
shows that the baseline regression results remain valid. 

 

 
Figure 5: Robustness checks: new control variables 
Source: Authors’ calculation 
 

5. Mechanism tests 
5.1 Green innovation increasement effect 
Based on Dangelico & Pujari (2010), Porter & Van der Linde (1995), this study reflects the green 

innovation increasement effects of enterprise digital transformation from three aspects: innovation investment, 
green innovation output, and green innovation spillover. 

 In terms of innovative investment, the measurement is conducted using the ratio of R&D expenditure, 
that is, the proportion of enterprise R&D expenditure to the total business revenue. Figure 6 shows that certain 
firms experience a significantly negative effect of digital transformation on pollution emissions suggest that 
digital tools and technologies are enabling these firms to optimize their operations in ways that substantially 
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reduce their environmental footprint. Digital transformation likely helps these firms enhance operational 
efficiency, adopt cleaner production processes, and integrate sustainable technologies, which collectively 
contribute to pollution reduction. 

 

 
Figure 6: Green innovation increasement effect: technological innovation investment 
Source: Authors’ calculation 
 

Green innovation output is represented by the number of green patents granted to the firm. The results 
in Figure 7 provide compelling evidence that green innovation output—as reflected in green patents—is a key 
driver of pollution emission reduction. Firms that engage in green innovation are more likely to introduce 
sustainable technologies and processes that directly reduce environmental harm. This supports the notion that 
innovation in sustainability is not only beneficial for the environment but also contributes to the firm’s long-term 
success in a world increasingly focused on sustainability. 
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Figure 7: Green innovation increasement effect: green innovation output 
Source: Authors’ calculation 
 

Green innovation spillover refers to the unintended dissemination or transfer of environmentally friendly 
innovations across firms, industries, or even regions. These innovations, once developed by a firm, may benefit 
other firms through knowledge sharing, collaboration, or competition, thus amplifying the environmental benefits 
across a broader set of players. Referring to Han et al. (2024), the green innovation spillover effect is measured 
using micro-geographic information data of listed companies, green patent data, and potential model. This 
index is then used to examine the mechanism by which digitalization reduces pollution emissions through green 
innovation spillover effects. The green innovation spillover index (gs) can be expressed as gsi = ∑(j=1, 

j≠i)(Rj/dij), where Rj represents the R&D investment of firm  j in the green industry while dij represents the 
geographical distance between firm i and firm j. So, the green innovation spillover index measures the spillover 

effect of green innovation from other firms (j ≠ i) on firm i, weighted by the inverse of the distance between 
them(dij). The assumption is that the spillover effect is stronger for firms that are geographically closer or more 
similar in terms of technology or industry. Figure 8 likely shows that firms experiencing positive green innovation 
spillovers—whether through partnerships, industry collaboration, or competitive pressures—tend to exhibit 
stronger reductions in pollution emissions. This suggests that when firms innovate in green technologies, these 
innovations do not remain isolated. Instead, they spread across other firms or industries, thereby multiplying 
the environmental benefits. 

 
 
 



 
142 Xu, X. and Chen, X. 

5.2 Factor allocation optimization effect 
Building on the framework of Solow (1956), this study examines the factor allocation optimization effect 

by analyzing the impact of digital resource investment and its potential influence on factor misallocation. 
 

 
Figure 8: Green innovation increasement effect: green innovation spillover 
Source: Authors’ calculation 
 

(1) Firm-level digital resource investment structure  
Due to the lack of firm-level data on digital resource investment, we follow the approach of Han et al. 

(2024) and estimate this investment using provincial input-output tables. Specifically, we calculate the 
proportion of digital industry investment relative to the total intermediate input for each industry within a given 
province. This proportion is then allocated to the firm level, based on the firm’s share of main business revenue 
within its industry, which serves as an approximation of its digital resource investment structure (DS). The 
estimation is formalized as follows: 

𝐷𝑆𝑖ℎ𝑝𝑡 =
𝑚𝑏𝑖ℎ𝑝𝑡

𝑚𝑏ℎ𝑝𝑡
×

∑ 𝛿ℎ𝑑𝑝𝑑

∑ 𝛿
ℎℎ′𝑝ℎ′

                                                                                                    (11) 

 

where i, h, p, and t represent firm, industry, province, and year respectively; 𝛿ℎ𝑑𝑝 is the complete consumption 

coefficient of industry h to the digital industry d in province p; ∑ 𝛿ℎℎ′𝑝ℎ′ represents the complete 

consumption coefficient of industry h to all other industries ℎ′ in province p. 
∑ 𝛿ℎ𝑑𝑝𝑑

∑ 𝛿ℎℎ′𝑝ℎ′
 represents the 

proportion of total intermediate input allocated to the digital industry within a specific industry in a province. It 
can be interpreted as a digital intensity of the industry in the province. A higher value of this proportion implies 
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that the industry in that province is more reliant on digital inputs, signaling a more digitalized industry. A lower 
value would indicate that digital resources make up a smaller share of the industry’s total inputs.The complete 
consumption coefficients for the years 2003 and 2004 are derived using the 2002 input-output table; for 2005-
2009, the 2007 input-output table is used; for 2010-2013, the 2012 input-output table is used; for 2014-2016, 

the 2015 input-output table is applied; and for 2017-2019, the 2017 input-output table is used. 𝑚𝑏𝑖ℎ𝑝𝑡  

denotes the main business revenue of the enterprise, and 𝑚𝑏ℎ𝑝𝑡  is the average main business revenue for 

the industry. The coefficient (
𝑚𝑏𝑖ℎ𝑝𝑡

𝑚𝑏ℎ𝑝𝑡
) represents the firm’s share of revenue within its industry, which is used 

to allocate the provincial-level digital resource investment proportion to the firm level. A higher share of business 
revenue suggests that the firm has a larger role within its industry, and thus a larger proportion of the industry-
level digital investment is allocated to that firm. This ensures that the digital resource investment is distributed 
in proportion to the firm's relative size and importance in its sector. Figure 9 supports the conclusion that 
improvements in the digital resource investment structure contribute to the reduction of pollution emissions. 
 

 
Figure 9: Factor allocation optimization effect: digital resource investment structure 
Source: Authors’ calculation 
 

(2) Factor allocation status 
In this study, the efficiency of factor allocation in enterprises is assessed by examining labor 

misallocation (dist_l) and capital misallocation (dist_k). Assuming that enterprises operate under a Cobb-
Douglas (C-D) production function with constant returns to scale, labor allocation distortion is expressed as 

𝑑𝑖𝑠𝑡_𝑙𝑖𝑡 = (
𝛼̂𝑄𝑖𝑡

𝜔𝑖𝑡𝑙𝑖𝑡
) − 1, while capital allocation distortion is represented as 𝑑𝑖𝑠𝑡_𝑘𝑖𝑡 =
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[
(1−𝛼̂)𝑄𝑖𝑡

𝑟𝑖𝑡𝑘𝑖𝑡
] − 1, where 𝛼̂ represents the output elasticity of labor; 𝑄𝑖𝑡  is the industrial value added at the 

enterprise level, measured by the total operating revenue of listed companies; 𝑤𝑖𝑡 denotes the employee 

wage, calculated as the ratio of the total staff remuneration payable to the number of employees; 𝑙𝑖𝑡  is the 

number of employees; 𝑘𝑖𝑡  represents the total fixed assets of listed companies; and 𝑟𝑖𝑡  denotes the capital 
price or interest rate faced by the companies, measured by the annual average of the benchmark interest rate 
for enterprise loans with a term of 6 months to 1 year. 

In this study, labor (dist_l) and capital (dist_k) misallocation indices are derived using their absolute 
values, which quantify the extent to which labor and capital are either under-allocated or over-allocated in listed 
companies. The absolute value approach is chosen to capture the overall misallocation magnitude, regardless 
of whether the misallocation results from under- or over-allocation. A higher value for dist_l or dist_k indicates 
greater misallocation, signifying that labor or capital resources are not being efficiently allocated across 
production activities. This inefficiency results in suboptimal resource utilization, leading to lower overall 
productivity and negatively affecting environmental performance, including higher pollution emissions.  

Figure 10-a illustrates the relationship between labor misallocation and pollution emissions. As the 
labor misallocation index increases (i.e., higher values of dist_l), pollution emissions tend to rise, suggesting 
that inefficient labor allocation contributes to a greater environmental footprint. This indicates that when firms 
fail to optimize labor resources, their capacity to engage in sustainable practices is hindered, ultimately leading 
to higher emissions. 

Similarly, Figure 10-b likely depicts the relationship between capital misallocation and pollution 
emissions. As capital misallocation increases (i.e., higher values of dist_k), pollution emissions also rise, 
demonstrating that inefficient capital allocation limits firms' ability to invest in cleaner technologies and energy-
efficient processes, both of which are essential for reducing pollution. 

The results presented in Figures 10-a and 10-b highlight the critical role of optimizing factor 
allocation—both labor and capital—in reducing pollution emissions. When firms efficiently allocate labor and 
capital to the appropriate activities, including investments in green technologies and energy-efficient production 
processes, they can significantly enhance environmental performance and mitigate their pollution footprint. 
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Figure 10-a: Factor allocation optimization effect: labor misallocation 

 
Figure 10-b: Factor allocation optimization effect: capital misallocation 
Source: Authors’ calculation 
 

5.3 Social network position improvement effect 
Following Han et al. (2024), the firm social network position (Net) is defined through the firm’s social 

relationship network (SNet). This study measures the level of social network position based on the following 
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steps: 
First, information from the CSMAR database on whether directors of listed firms also serve on the 

boards of other companies is collected.  
Second, a firm-firm network position relationship matrix is constructed annually. If listed firms i and j 

share at least one common director each year, the matrix element is assigned a value of 1; otherwise, it is 
assigned a value of 0. 

Third, calculating network centrality 𝐺𝑖and structural hole 𝑆𝑖 index to measure the position of a firm 
within the social network Network centrality reflects the extent of direct connections a firm has with other firms 
in the network, which is calculated as follows: 

𝐺𝑖 =
∑ 𝜒𝑖𝑗𝑗≠𝑖

𝑁−1
                                                                                                              (12) 

 
Where 𝜒𝑖𝑗   indicates whether there is a network relationship between firm i and firm j (𝜒𝑖𝑗 = 1 if yes, 𝜒𝑖𝑗 =

0 if no); ∑ 𝜒𝑖𝑗𝑗≠𝑖  is the sum of firm i’s direct network connections with other firms; and N is the total number 
of firms. 

A structural hole refers to a gap in the information flow that is formed when two non-directly connected 
firms are both linked to the same firm. Firms located in structural holes act as “bridges” or “intermediaries” by 
connecting firms that have no direct contact with each other. Compared with firms not in structural holes, these 
firms can not only access more innovative resources and information from the entire network but also facilitate 
the flow of information and knowledge. Moreover, they can leverage the control of information flow to serve their 
own technological innovation.  

Therefore, the network position of a firm (Net) is determined by a combination of network centrality 
and structural hole index, which can be expressed as: 

𝑁𝑒𝑡𝑖𝑡 = 𝐺𝑖 × 𝑆𝑖                                                                                                     (13) 
 

The structural hole index (Si) can be reflected by the level of constraint a firm faces within its relational 
network. The lower the level of constraint a firm faces, the greater the likelihood that it can act as a “bridge” or 
“intermediary,” and the higher its structural hole index (Si) will be. If we denote the level of constraint faced by 
a firm in its relational network as Ri, then the structural hole index can be expressed as Si=1/Ri. 

The constraint level 𝑅𝑖 faced by firm i due to firm j in the network can be expressed as: 

𝑅𝑖 = ∑ (𝑟𝑖𝑗 + ∑ 𝑟𝑖𝑣𝑟𝑣𝑗𝑖≠𝑣,𝑗 )𝑖≠𝑗
2                                                                                        (14) 

 
where 𝑟𝑖𝑗 is the direct connection strength between firm i and firm j, and ∑ 𝑟𝑖𝑣𝑟𝑣𝑗𝑖≠𝑣,𝑗 is the total strength of 

all indirect connections through firm v between firm i and firm j. The overall constraint level (𝑟𝑖𝑗 +

∑ 𝑟𝑖𝑣𝑟𝑣𝑗𝑖≠𝑣,𝑗 )2faced by firm i in the network is the sum of the constraints 𝑅𝑖 imposed by all other firms. 
Using the network centrality and structural hole metrics, the social network position relationship matrix 
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constructed from interlocking directorates is imported into social network analysis software (Ucinet). This 
enables the calculation of each firm’s network centrality and structural hole index within both the social 
relationship network. The calculated values are then used to determine the firm’s position within these networks. 
The findings underscore the importance of social network position in driving environmental outcomes. Firms 
that are more centrally located or occupy structural holes within their networks can leverage these positions to 
access and diffuse green technologies, which ultimately leads to pollution emission reductions. Figure 11 
visually supports this conclusion by illustrating how firms with better social network positions are more 
successful in reducing emissions. This highlights the broader importance of network strategies for firms seeking 
to enhance their environmental sustainability and drive industry-wide changes. 

 

 
Figure 11: Social network position improvement 
Source: Authors’ calculation 
 
6. Conclusion 

This study examines the impact of enterprise digital transformation on pollution emissions, utilizing 
micro-level data from Chinese A-share listed manufacturing firms between 2007 and 2022. The findings reveal 
that the effects of digital transformation on pollution emissions are not uniform, highlighting significant 
heterogeneity across firms. Specifically, the analysis identifies three key mechanisms through which digital 
transformation contributes to pollution reduction: 

1. Enhancement of green innovation, 
2. Optimization of factor allocation, and 
3. Improvements in social network positions. 

These findings have important policy implications. First, to maximize the benefits of digital 
transformation, policymakers should accelerate the introduction and development of digital technologies, with 
a particular emphasis on enhancing connectivity and digitalizing production equipment. This approach will 
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facilitate the comprehensive integration of digital technologies across all aspects of enterprise production, 
management, and organizational design, fostering new competitive advantages in the digital economy while 
promoting sustainable green growth. 

Second, strengthening the utilization of data elements will further enhance resource allocation 
efficiency within enterprises, leading to greater pollution reduction. By leveraging data-driven decision-making, 
firms can optimize production processes, minimize waste, and improve environmental performance. 

Finally, reinforcing social connections between enterprises will enable firms to capitalize on network 
externalities and social proximity, amplifying the positive impact of digital transformation on pollution reduction. 
Encouraging inter-firm collaboration, knowledge sharing, and digital ecosystem development will be essential 
in realizing the full environmental benefits of digital transformation. 
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Appendix 
Appendix A: Calculation of Digital Transformation Index 

For the digital transformation index, the construction process is as follows: 
Firstly, the annual reports of all A-share listed enterprises in the Shanghai Stock Exchange and 

Shenzhen Stock Exchange were summarized using a Python crawler function. Secondly, the text contents were 
extracted using the Java PDFbox library, serving as a data pool for the subsequent identification of key terms. 
To identify the key elements of enterprise digital transformation, this study examines a range of seminal literature 
on the subject and extracts specific keywords associated with digital transformation. Additionally, this research 
utilizes significant policy documents and research reports, such as the SMEs Digital Empowerment Special 
Action Program and On Promoting the Action of “Going to the Cloud, Using Digital Empowerment, and Fostering 
the Development of the New Economy”, as the foundation for the subsequent data screening process. 

Based on the extracted keywords, we categorize them into distinct groups that reflect different aspects 
of digital transformation, specifically focusing on “underlying technology application” and “practical application 
of technology.” To ensure relevance, expressions containing negative words such as “no,” “none,” or “not” 
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preceding the keywords are disregarded. Additionally, expressions unrelated to the company, such as 
references to shareholders, customers, and suppliers, are excluded. 

Finally, utilizing Python to extract the text from annual reports of publicly traded companies, we conduct 
a search, match, and count of word frequencies based on the identified key technology terms. The categorized 
word frequencies are then aggregated to form the final cumulative word frequencies. This process enables us 
to construct an index system for measuring the digital transformation of enterprises. 

Given the inherent “right-biased” nature of this type of data, the present study applies logarithmic 
transformation to obtain comprehensive indices that accurately depict the level of digital transformation among 
enterprises. 
 
Appendix B 
Appendix Table 1: Descriptive Analysis 

VarName Mean SD Min Median Max 
PEI 7.019 2.055 2.356 7.210 11.978 
Szh 0.005 0.014 0 0.001 0.604 
Ecr 0.222 0.170 -0.206 0.190 0.971 
dist_k 12.446 36.850 1.000 3.540 1344.776 
SNet 0.116 0.047 0.000 0.130 0.187 
lnGZ -4.322 1.990 -14.526 -4.033 3.558 
lnRDsr 18.875 1.717 9.718 18.747 26.772 
lnGPA 21.003 1.845 12.570 20.828 31.217 
lngs 21.306 1.392 12.223 21.184 28.888 
DS -1.202 1.252 -8.112 -1.022 3.911 
dist_l 3.747 1.045 -5.728 3.639 12.949 

Notes: 
PEI represents the firm's composite pollution emission intensity. 
Szh measures firm-level digital transformation, estimated as the ratio of digital technology intangible assets to total assets. 
Ecr and lnGZ indicate corporate environmental protection expenditure and the level of environmental regulation in the city where 
the firm is located, respectively. 
lnRDsr, lnGPA, and lngs respectively represent technological innovation input, green technological innovation output, and green 
technology spillover. 
DS denotes the structure of digital resource input. 
dist_l and dist_k measure the degree of labor and capital misallocation within firms. 
SNet represents the firm's social network position. 
 


