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Abstract 

Over the past 25 years, performance measurement has gained salience in higher  
education, and with the explosion of structured data and the impact of business analytics and 
intelligence systems, there are new angles by which big volumes of data can be analyzed. Using 
traditional analytical approaches, pairs of reciprocal cohorts are considered as two separate 
discrete entities; therefore, basis of analysis are individual pairs of values, using statistical  
measures such as average, mean or median, of the total population. Missing in traditional  
approaches is a holistic performance measure in which the shape of the comparable cohorts is 
being compared to the overall cohort population (vector-based analysis). The purpose of this 
research is to examine shape analysis, using a Cosine similarity measure to distil new perspectives 
on performance measures in higher education. Cosine similarity measures the angle between the 
two vectors, regardless of the impact of their magnitude. Therefore, the more similar behavior 
of the two comparing entities can be interpreted as more similar orientation or smaller angle 
between the two vectors. The efficacy of the proposed method is experimented on the three 
Colleges of RMIT University from 2011 to 2016, and analyze the shape of different cohorts. The 
current research also compared the performance of Cosine similarity with two other distance 
measures: Euclidean and Manhattan distance. The experimental results, using vector-based 
techniques, provide new insights to analyzing patterns of student load distribution and provide 
additional angles by orientation instead of magnitude / volume comparison.

Keywords:	 student load pattern distribution, vector-based analysis, shape analysis, cosine  
	 similarity
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Introduction

Australia’s higher education system has undertaken many successive market-driven 
reforms since the late 1980s. These reforms together with the increased democratization of  
education both in terms of student participation and increased provision through institutional 
diversification has provided an impetus for greater utilization of the statistical information  
that institutions collect, and to better inform institutional decision making. Australia has had a 
robust and comprehensive data collection for many decades and that has enabled institutional 
researchers and planners undertake analysis of the vast amounts of data that is collected (Calderon, 
2015; Borden et al., 2013).

With respect to the growth of stored structured data in educational organizations,  
specifically in higher education, the use of modern analytical tools that provide a holistic  
analysis of student load or headcount data is in increased demand due to competitive forces 
influencing higher education. For this analysis we make use of the term student load, and is a 
measure that counts students in terms of full-time equivalence units (EFTSL). In the view of the 
Australian Department of Education an “EFTSL is an equivalent full-time student load for a 
year. It is a measure, in respect of a course of study, of the study load for a year of a student 
undertaking that course of study on a full-time basis’ (Department of Education and Training nd). 

Conventional student load analysis is basically comparing pairs of reciprocal cohorts 
which are summarized in the form of “Average” or “Sum” of series of data. The essence of  
such approaches is based on scalar interpretation which focuses on magnitude of results  
(Cinches, Russel, Chaves, and Ortiz, 2017). However scalar-interpretation analysis suffers from 
lack of vector information which represents the holistic similarity in distribution (shape) of 
compared data. As an example, trend analysis of educational load in consecutive years is useful 
to investigate the overall performance but does not represent the organizational load pattern. Or 
how to investigate the impact of policy changes in the performance of Colleges and schools, 
regardless of comparing their performance magnitude only.

This research employed a mathematical concept for proposing a vector-based analysis, 
and looks at the series of data. Vectors have magnitude and directions and can help us to utilize 
a vector interpretation of data rather than conventional scalar interpretation which is based on 
magnitude only. However both are similar in format of data: a List (1-dimensional) or Tables 
(2-dimensional) of values. Vector-based approach is utilized in image analysis to investigate the 
content-based similarity (distance) among the images. Images are 2-dimensional data in form of 
integer matrices. We applied a similar approach on 1- and 2-dimensional data to investigate the 
similarity of performance in consecutive years or semesters. Shape analysis is a term which is 
applied to this approach in the current research. 
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Two models are proposed in this research: Cosine similarity and Minkowsky 

distances (Euclidean and Manhattan). These two distance metrics are utilized in image

analysis to investigate the similarity between content of images.

The data utilized in this research is provided by RMIT University from 2010 to 

2016. The total performance and shape analysis of a sample College of RMIT

University is investigated in this research.

In the next section, we introduce background and related works of the proposed 

method in detail. Methodology of shape analysis of load data is introduced in the third 

section. The fourth section is dedicated to the scalar versus vector analysis. The fifth 

Section is dedicated to analyzing the results and discussions for the two shape analysis 

models and finally the sixth section represents the conclusion of the current research.

This analysis provides an alternative lens by which institutional planners can further 

explain to decision makers changes in the student distribution as well as considering 

its effect on various cohorts. The other critical outcome of this research is that it 

challenges traditional approaches for examining student load distribution over time, 

and it suggests new possibilities that can be considered, e.g. where opportunities for 

growth in certain market segments have been inadvertently missed.

Background and related works

To measure the similarity between two vectors, measuring the cosine of the 

angles between the two vectors is a method known as cosine similarity (Huang 2008, 

Ye 2011). The range of result is between -1 and 1. If the angle is zero, it shows the

ultimate similarity between the two compared vectors, regardless of their magnitude,

which the cosine similarity would be 1. Conversely when the two vectors are totally in 

opposite directions, the cosine angle would be -1. Two vertical vectors represent 0

similarities in this approach. Figure 1-a illustrates the cosine similarity between two

vectors and Formula 1 shows how to calculate this similarity measure.

Figure 1: Cosine similarity between two vectors: H1 and H2 by measuring 
the cosine of the Φ  angle. The Euclidean and Manhattan distances 
between two points are shown in (b) & (c) respectively.
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Two models are proposed in this research: Cosine similarity and Minkowsky distances 
(Euclidean and Manhattan). These two distance metrics are utilized in image analysis to  
investigate the similarity between content of images. 

The data utilized in this research is provided by RMIT University from 2010 to 2016. 
The total performance and shape analysis of a sample College of RMIT University is  
investigated in this research.

	In the next section, we introduce background and related works of the proposed method 
in detail. Methodology of shape analysis of load data is introduced in the third section. The fourth 
section is dedicated to the scalar versus vector analysis. The fifth Section is dedicated to  
analyzing the results and discussions for the two shape analysis models and finally the sixth 
section represents the conclusion of the current research. This analysis provides an alternative 
lens by which institutional planners can further explain to decision makers changes in the student 
distribution as well as considering its effect on various cohorts. The other critical outcome of 
this research is that it challenges traditional approaches for examining student load distribution 
over time, and it suggests new possibilities that can be considered, e.g. where opportunities for 
growth in certain market segments have been inadvertently missed.

Background and related works

To measure the similarity between two vectors, measuring the cosine of the angles  
between the two vectors is a method known as cosine similarity (Huang, 2008; Ye, 2011). The 
range of result is between -1 and 1. If the angle is zero, it shows the ultimate similarity between 
the two compared vectors, regardless of their magnitude, which the cosine similarity would  
be 1. Conversely when the two vectors are totally in opposite directions, the cosine angle would 

Figure 1: Cosine similarity between two vectors: H1 and H2 by measuring the cosine 
of the Φ angle. The Euclidean and Manhattan distances between two points are shown 

in (b) & (c) respectively.
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(1)

𝑆𝑆𝑆𝑆(𝐻𝐻𝐻𝐻1,𝐻𝐻𝐻𝐻2) =
∑ (𝐻𝐻𝐻𝐻1𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻2𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

�∑ 𝐻𝐻𝐻𝐻1𝑖𝑖𝑖𝑖2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 �∑ 𝐻𝐻𝐻𝐻2𝑖𝑖𝑖𝑖2𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

Formula 1 shows the cosine of the angle between two vectors H1 and H2 is equal

to the dot product of the two vectors divided by the magnitude of them. The formula 

is expanded in S(H1, H2) where S represents the similarity of vectors H1 and H2.

The components of the vectors are shown as H1i   and H2i.

There are other distance measures to investigate the similarity among two vectors

(Rouhi 2015). Minkowski distance measures the distance between the two 

points or vectors. Two of the most popular Minkowski distances are Euclidean and

Manhattan distance metrics (Huang 2008). To simplify the concept we can focus on 

the distance between two points in a 2-dimensional plane. Euclidean or L2 Norm,

measures the straight line between the two points. Calculation of this distance is 

shown in Formula 2.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻1,𝐻𝐻𝐻𝐻2) = �� (𝐻𝐻𝐻𝐻1𝑖𝑖𝑖𝑖 − 𝐻𝐻𝐻𝐻2𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

(2)

If H1 and H2 represent two vectors, the Ed (Euclidean distance) between the 

two vectors would be equal with the sum of squares of the differences of the 

corresponding components. The resulting value shows the straight distance between 

the two vectors or points. Figure 1-b shows Euclidean distance between two points: 1 

and 2.
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be -1. Two vertical vectors represent 0 similarities in this approach. Figure 1-a illustrates the cosine 
similarity between two vectors and Formula 1 shows how to calculate this similarity measure.

(1)

(2)

Formula 1 shows the cosine of the angle between two vectors H1 and H2 is equal to the 
dot product of the two vectors divided by the magnitude of them. The formula is expanded  
in S (H1, H2) where S represents the similarity of vectors H1 and H2. The components of the 
vectors are shown as H1i and H2i.

There are other distance measures to investigate the similarity among two vectors  
(Rouhi, 2015). Minkowski distance measures the distance between the two points or vectors.  
Two of the most popular Minkowski distances are Euclidean and Manhattan distance metrics 
(Huang, 2008). To simplify the concept we can focus on the distance between two points in a 
2-dimensional plane. Euclidean or L2 Norm, measures the straight line between the two points. 
Calculation of this distance is shown in Formula 2.

If H1 and H2 represent two vectors, the Ed (Euclidean distance) between the two vectors 
would be equal with the sum of squares of the differences of the corresponding components. The 
resulting value shows the straight distance between the two vectors or points. Figure 1-b shows 
Euclidean distance between two points: 1 and 2.
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Figure 2: Content of an image in two modes; top in a colored image 
and bottom in a grey-level image.

For the same situation, the Manhattan distance represents the distance between the two 
vectors or points but strictly on horizontal and vertical paths, unlike Euclidean which utilizes 
the diagonal path. Figure 1-c and Formula 3 represent this distance.

(3)

For the same situation, the Manhattan distance represents the distance between 

the two vectors or points but strictly on horizontal and vertical paths, unlike Euclidean

which utilizes the diagonal path. Figure 1-c and Formula 3 represent this distance.

𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻1,𝐻𝐻𝐻𝐻2) = � |(𝐻𝐻𝐻𝐻1𝑖𝑖𝑖𝑖 − 𝐻𝐻𝐻𝐻2𝑖𝑖𝑖𝑖) |
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

(3)

For H1 and H2 as two vectors, the Manhattan distance is defined as the sum of 

the absolute differences of the corresponding components of the two vectors. As can 

be seen in Figure 1-c, the Manhattan distance is the simple sum of horizontal and 

vertical distances between two points in a 2-dimensional plane. 

One of the applications of cosine similarity and Minkowski distances are in

content-based image processing (Russ 2016). Colored images are composed of three 

tables or matrices that contain integer values, representing the intensity of light for three

basic color components: Red, Green and Blue. The same concept is used for grey-

level images. The only difference is that grey level images utilize only a single matrix

to store the intensity of light; 0 for black and 255 for white components which are

known as pixels, unlike the colored images which are composed of three matrices.

The integer values between 0 and 255 represent the different shades of grey (Chen 

2015, Russ 2016). Figure 2 demonstrates the concept of colored (top) and grey-level 

(bottom) image.

As depicted in Figure 2, an image is nothing more than matrices of integer 

values. Hence, the techniques that compare two images by calculating the similarity 

Figure 2:  Content of an image in two modes; top in a colored image and 
bottom in a grey-level   image.
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(Chen, 2015; Russ, 2016). Figure 2 demonstrates the concept of colored (top) and grey-level 
(bottom) image.

As depicted in Figure 2, an image is nothing more than matrices of integer values. Hence, 
the techniques that compare two images by calculating the similarity or distances between the 
two images can be used for any data which is represented as 2-dimensional vectors (tables). The 
authors of the current research utilized the idea from the content-based image similarity detection 
and implemented the models on educational student load data. The results show the cosine  
similarity can be utilized as a holistic performance measure or shape analysis tool in analysis of 
educational data. The details will be presented and discussed in the fifth section.

Sample applications

As described in the previous section, a grey-level image is just an integer matrix. If 
similarity between the images can be implemented by help of mathematical distance measures, 
utilizing the same methods can therefore be implemented on any numeric matrices i.e. Actual 
student load, Target student load and Enrolment headcount of different cohorts in educational 
data warehouses.

1- Student load analysis of a college/University:

To provide a platform for evaluating the proposed models for shape analysis, the  
performance of a college at RMIT University was selected as the pilot platform. A common 
approach is measuring the performance of the selected college by comparing scalar values  
representing studen load (or headcount). However this approach is incapable of evaluating the 
similarity on load pattern distribution of the specified college which represents the college shape. 

To achieve this, the college student load data should be composed in the form of a matrix 
(table) for each year. The X-axis of the matrix can represent the Broad-levels of education 
(BLEVEL) or program codes and the Y-axis can represent the broad or narrow Fields of  
Education (FoEs). In such a composition, each element of the matrix represents the total student 
load of each Blevel or program by FoEs (narrow or broad).

Providing the same matrix for each year of the college performance finally generate 
several matrices with similar number of rows and columns. It should be noted that if a FoE or 
Blevel or program does not exist in some years, it should appear in those matrices with zero 
values to make all matrices equal in size, similar number of rows and columns. Figure 3 illustrates 
student load distribution for a sample college in the two compositions; FoEs (narrow or broad) 
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Table 1: Total sum of student load for the sample college breakdown by Blevel and 

year.

Year RSCH PGRD UGRD Total(Year)

2010 181 1542 4112 5835

2011 215 1444 4699 6358

2012 247 1361 4860 6468

2013 290 1398 5425 7113

2014 271 1347 5262 6880

2015 315 1347 5048 6710

2016 253 1407 5649 7309

Total (Blevel) 1772 9846 35055

Table 2: Detailed load table of the sample college breakdown by narrow FoE, Blevel and 
year.
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Figure 3: Illustrating the performance of a sample college “A”, in two different 
years in matrix format. Two compositions are illustrated: narrow or broad FoEs 
by program codes and by broad-levels of education (BLEVEL).
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by programs (left) and FoEs (narrow or broad) by Blevels (right). The experiments conducted 
in the current research are based on narrow FoEs by Blevels.

Figure 3: Illustrating the performance of a sample college “A”, in two different years in 
matrix format. Two compositions are illustrated: narrow or broad FoEs by program codes and 

by broad-levels of education (BLEVEL).

Table 1: Total sum of student load for the sample college breakdown by Blevel and year.
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Figure 4: Student load pattern distribution (shape) in two different models:  a) 1-dimensional 
shape analysis by cosine similarity and, b) 2-dimensional shape analysis by Minkowski 
distances. Vectors are shown as H1 and H2.

1-1 Scalar- versus vector-based student load analysis

The student load (EFTSL) of a sample college at RMIT University has been selected
to evaluate the proposed methods for shape analysis in different years. The three
Blevels for each year are as follows:

Figure 5: Conventional performance analysis of a sample college based on sum of 
load difference.

• Higher degree by research programs (RSCH)

• Postgraduate by Coursework programs (PGRD) and

• Undergraduate programs (UGRD).

The original data is in the format of load by year and Blevel, presented in Table 1.

Student load of each year is presented in format of a list (1-dimensional) of values in 
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Table 2: Detailed load table of the sample college breakdown by narrow FoE, Blevel and year.

Table 1: Total sum of student load for the sample college breakdown by Blevel and 

year.

Year RSCH PGRD UGRD Total(Year)

2010 181 1542 4112 5835

2011 215 1444 4699 6358

2012 247 1361 4860 6468

2013 290 1398 5425 7113

2014 271 1347 5262 6880

2015 315 1347 5048 6710

2016 253 1407 5649 7309

Total (Blevel) 1772 9846 35055

Table 2: Detailed load table of the sample college breakdown by narrow FoE, Blevel and 
year.
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Figure 5: Conventional performance analysis of a sample college based on sum 
of load difference.

•	 Higher degree by research programs (RSCH)

•	 Postgraduate by Coursework programs (PGRD) and

•	 Undergraduate programs (UGRD).

The original data is in the format of load by year and Blevel, presented in Table 1. Student 
load of each year is presented in format of a list (1-dimensional) of values in rows and columns. 
This format is normally used in conventional analysis models (Tinto, 2006; Kuh, 2008). 

The simple data structure in Table 1 is broken down by narrow FoEs and each year is 
represented as a matrix (2-dimensional) showing the load of FoEs by Blevels as shown in Table 
2 partially. 

To investigate the performance of the specified college in each Blevel, the conventional 
model is comparing the sum of Blevels in each year. The graph shown in Figure 5 illustrates the 
difference of the overall load, presented in Table 1, broken down by Blevels, by years. This 
approach can help us to analyze the trend and investigate about the performance growth rate.

However conventional models are incapable of analyzing the student load based on the 
load pattern distribution. Such load distribution is demonstrated in Table 2 in the form of a list 
(colored columns) or sub-tables (tripled-line matrices) as well as in Figure 4. This characteristic 
is called Shape Analysis in this research and investigates the similarity of load pattern distribution 
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rows and columns. This format is normally used in conventional analysis models (Tinto 

2006, Kuh 2008).

The simple data structure in Table 1 is broken down by narrow FoEs and each year is

represented as a matrix (2-dimensional) showing the load of FoEs by Blevels as shown 

in Table 2 partially.

To investigate the performance of the specified college in each Blevel, the conventional

model is comparing the sum of Blevels in each year. The graph shown in Figure 5

illustrates the difference of the overall load, presented in Table 1,broken down byBlevels, by

years. This approach can help us to analyze the trend and investigate about the 

performance growth rate.

However conventional models are incapable of analyzing the student load based on the load 

pattern distribution. Such load distribution is demonstrated in Table 2 in the form of a list 

(colored columns) or sub-tables (tripled-line matrices) as well as in Figure 4. This 

characteristic is called Shape Analysis in this research and investigates the similarity of load 

pattern distribution in the columns or sub-tables of Table 2. Figure 4 depicts the student 

load distribution used for shape analysis in 1-dimensional (4-a) and 2-dimensional (4-b) 

models. To compute shape analysis for Blevels, the cosine similarity, introduced in Formula 

1, is used. In this approach each two comparable Blevels, i.e. 2010-RSCH and 2011-RSCH, 

are considered as two vectors: H1 and H2 which are highlighted in the same color in Table 

2. Applying the cosine similarity provides the angle between the two vectors, regardless of 

their overall magnitude. 

Figure 6: Shape analysis of a sample college based on cosine similarity. The similarity 
values are between -1 and 1, for minimum and maximum similarity in performance of 
the college.

The similarity in s t u d e n t l o a d  pattern is represented by similar increase or decrease

of load in the corresponding pairs of FoEs, which finally represents similarity in the
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in the columns or sub-tables of Table 2. Figure 4 depicts the student load distribution used  
for shape analysis in 1-dimensional (4-a) and 2-dimensional (4-b) models. To compute shape 
analysis for Blevels, the cosine similarity, introduced in Formula 1, is used. In this approach each 
two comparable Blevels, i.e. 2010-RSCH and 2011-RSCH, are considered as two vectors: H1 
and H2 which are highlighted in the same color in Table 2. Applying the cosine similarity  
provides the angle between the two vectors, regardless of their overall magnitude. 

Figure 6: Shape analysis of a sample college based on cosine similarity. 
The similarity values  are between -1 and 1, for minimum and maximum similarity 

in performance of the  college.

The similarity in student load pattern is represented by similar increase or decrease of 
load in the corresponding pairs of FoEs, which finally represents similarity in the behavior of 
the specified college. The core competency of shape analysis is in vector interpretation of data 
which is independent of the overall magnitude of load in each category (scalar interpretation). 

1-2 Results and discussion

In this section a detailed comparison between the conventional and the proposed models 
is provided and discussed in two sub-sections. The first model provides a 1-imensional load 
analysis of the sample college on each Blevel. However the second model provides a 2-dimen-
sional load analyses of the college in a holistic approach including all the Blevels.
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Figure 7: Comparing pairwise student load of a sample college by Euclidean (solid-bars) 
versus conventional sum of load (crossed-bars) from 2010 to 2016.

Figure 8: Comparing pairwise load of a sample college by Manhattan (solid-bars) versus 
conventional sum of load (crossed-bars) from 2010 to 2016.

Another example is the RSCH programs in 2013-14. The overall magnitude in 

RSCH programs, between RSCH-2013 and RSCH-2014 is -19 which is the lowest.

Conversely the college shows the maximum change in its shape due to minimum value 

of cosine similarity: 0.64, compared to the previous and following years. This can be 

the result of offering new FoEs or significant load change in some of the research 

programs in the FoEs of these two years.

As can be seen in Figure 4-a this model analyzes the distribution of student load 

by Blevels individually and consequently the magnitude of load among Blevels does 

not skew the analysis results. 

The significant aspect of the proposed model is its independency of overall sum 
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1-2-1 Cosine-similarity model for 1-dimensional student load analysis

The conventional student load analysis on Blevels is based on the difference of overall 
magnitude of Blevels on pairs of years. The results of this method are demonstrated in Figure 5 
which is derived from the sum of loads provided in Table 1. As an example, for UGRD load 
analysis based on the conventional model, Figure 5 reveals that the maximum load reduction 
can be seen in the 2014-15 years with negative growth of -214 EFTSL.

Conversely for the same UGRD programs, the maximum increase of load can be seen 
in 2015-16 with positive growth of +614 EFTSL. Based on the conventional model, the most 
significant fluctuation of UGRD programs can be seen in these two pairs of years. 

The proposed model based on cosine similarity shown in Figure 6 reveals another aspect 
which does not conform to conventional load analysis shown in Figure 5. The graph in Fig (5) 
shows the UGRD programs in the same paired years (2014-15 and 2015-16), have a cosine 
similarity near to 1, which reveals the shape of the college has been almost identical in those 
pairs of years. The cosine similarity value for UGRD programs in 2014-15 and 2015-16, is 0.99 
and 0.98 respectively which shows the angle between the two vectors is almost zero, similarly 
for 2015-UGRD and 2016-UGRD. From an analytical point of view, the higher values in cosine 
similarity represent the lower changes in distribution of load among compared pairs of cohorts. 
It shows that the college has similar pattern in increasing or decreasing of load among UGRD 
FoEs. In other words, the college behaves in similar shape for UGRD programs.

Figure 7: Comparing pairwise student load of a sample college by Euclidean (solid-bars)  
versus conventional sum of load (crossed-bars) from 2010 to 2016.
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Figure 7: Comparing pairwise student load of a sample college by Euclidean (solid-bars) 
versus conventional sum of load (crossed-bars) from 2010 to 2016.

Figure 8: Comparing pairwise load of a sample college by Manhattan (solid-bars) versus 
conventional sum of load (crossed-bars) from 2010 to 2016.

Another example is the RSCH programs in 2013-14. The overall magnitude in 

RSCH programs, between RSCH-2013 and RSCH-2014 is -19 which is the lowest.

Conversely the college shows the maximum change in its shape due to minimum value 

of cosine similarity: 0.64, compared to the previous and following years. This can be 

the result of offering new FoEs or significant load change in some of the research 

programs in the FoEs of these two years.

As can be seen in Figure 4-a this model analyzes the distribution of student load 

by Blevels individually and consequently the magnitude of load among Blevels does 

not skew the analysis results. 

The significant aspect of the proposed model is its independency of overall sum 
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Figure 8: Comparing pairwise load of a sample college by Manhattan (solid-bars) versus  
conventional sum of load (crossed-bars) from 2010 to 2016.

Another example is the RSCH programs in 2013-14. The overall magnitude in RSCH 
programs, between RSCH-2013 and RSCH-2014 is -19 which is the lowest. Conversely the 
college shows the maximum change in its shape due to minimum value of cosine similarity: 
0.64, compared to the previous and following years. This can be the result of offering new FoEs 
or significant load change in some of the research programs in the FoEs of these two years.

As can be seen in Figure 4-a this model analyzes the distribution of student load by 
Blevels individually and consequently the magnitude of load among Blevels does not skew the 
analysis results. 

The significant aspect of the proposed model is its independency of overall sum of load. 
Such tolerance against the load magnitude is the core competency of the proposed shape  
analysis based on cosine similarity. This model is general and can be applied on any cohorts such 
as analyzing the shape of load distribution of:

•	 Low-SES versus other domestic students,

•	 International versus domestic,

•	 ATSI versus domestic and

•	 Gender student load distributions.
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1-2-2 Minkowski-distances models for 2-dimensional student load analysis

The experiments of this section are conducted on the same college used for cosine  
similarity. However instead of comparing the individual Blevels comparisons, we compared the 
holistic college performance on all the three Blevels for pairs of consecutive years. The results 
are shown in Figure 7 and 8. In both figures the overall load difference is compared with the 
Minkowski distances.

Two Minkowski distance measures will be introduced in this section: Euclidean and 
Manhattan. Both distances have similar behavior and naturally show the same distribution of 
load but with different scales. The results of these distance measures are positive values and 
represent the distance among student load pattern distribution of the two compared entities. These 
measures are incapable of detecting which compared cohorts are higher or lower, but they can 
show how their shapes are following a similar load pattern distribution on FoEs.

The conventional model shows the maximum student load difference of the college  
can be seen in 2012-13 (645), 2015-16 (599) and 2010-11 (523). However the proposed  
2-dimensional models focus on distribution of load within the matrices of each year as  
shown in Figure 4-b. These models show the largest distance between the shape (load pattern 
distribution on all narrow FoEs) of the college can be seen in 2013-14 while its magnitude in 
the conventional model is insignificant (-233). The reasons for such shape difference can be due 
to introducing new programs or fluctuation in FoEs load which can justify the larger Minkowski 
distances of 2013-14. 

This contrast between the conventional approach and the Minkowski distances helps 
decision makers better interpret and analyze holistic college performance. Similarly, these  
models can be applied on any cohorts as mentioned in the previous section.

2- Analyzing the process of student load targeting

Student load targeting for future years of a program is a routine procedure for those 
engaged in institutional planning in higher education. The procedure generally utilizes regression 
techniques over past several years of student load data and then generates targets for student load 
in each program for the following years. In this research two approaches were experimented as 
follows:

•	 Pairwise analysis of actual versus actual loads of consecutive years plus the target  
	 load in 2018, and

•	 Pairwise analysis of actual versus target load of the same years.
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Both approaches utilized cosine similarity method on student load (actual and target) to 
evaluate the two different aspects of load targeting process. 

2-1 Pairwise analysis of actual versus actual load of consecutive years 

To analyze the trend of student load in this approach, a dataset including 4 years of load 
data were provided. The dataset includes three years of actual student loads as well as target load 
of future year (2018). The loads are grouped by three cohorts (Blevels: UGRD, PGRD and RSCH) 
and are compared for two colleges (A, B). Figures 9, 10 and 11 illustrate magnitude difference 
on actual load on pairs of years for the two sample college. 

To analyze the student load a pairwise comparison of subsequent years was implemented.  
This is done by comparing the pattern distribution of student loads, by each program in each 
cohort, to the same programs in the paired year, using cosine similarity. The similarity measures 
are shown in % with the orange line in the graphs. The higher similarity measure represents the 
more similar distribution of loads among pairs of identical programs on the two compared years. 

Since the charts represent the trend of the actual loads and target of the future year, they 
can potentially provide more insight for decision makers. The analytical finding for each cohort 
is provided as follows:

2-1-1 Pairwise analysis of actual student loads for research programs (Figure 9)

College_A shows a significant increase in research load in 2018 with a similar load 
pattern distribution to 2017. The load pattern distribution in research programs of college_A is 
identical from 2015 to 2018 (similarity measure %100). Conversely college_B shows an  
insignificant change in load of research programs in 2018 (magnitude difference almost 0) with 
an even decrease in load distribution on 2017 programs (similarity measure %100). In 2017 this 
college showed an even increase in the research program, exactly opposite in 2018.
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Figure 9: Cosine similarity on magnitude of student load in research cohort of college_A 
and _B. The bars represent the actual load differences on pairs of years: 2015-16, 2016-17 
and 2017-18 (2018 targets).

2-1-2 Pairwise analysis of actual student loads for postgraduate programs 

(Figure 10)

College_A shows a steady increase in load of postgraduate programs from 2015 

onward. The increase of load in 2018 is not identical with 2017. 96% of the programs

loads show similar increases in 2018 compared to 2017. College_B shows a steady 

increase in postgraduate programs from 2015 onward. The increase of load in 2018 is 

almost identical with 2017 (99%). However the load distribution did not evenly 

increase in 2015-16 and 2016-17. It can be interpreted as satisfaction of college_B

with the student load distribution in postgraduate programs in 2017 and just increasing

their load magnitude identically for 2018 targets.

2-1-3 Pairwise analysis of actual student loads for undergraduate programs 

(Figure 11)

College_A shows a steady increase in undergraduate programs in 2018 with 99% 

similarity in the load pattern of the programs in 2017. This value indicates that 

college_A is satisfied with the load distribution in undergraduate programs in 2017 

and follows the same pattern with an increase in each program for 2018 load targeting. 

Figure 10: Cosine similarity on magnitude of student load in postgrad cohort of 
college A and B. The bars represent the actual load differences on pairs of years: 
2015-16, 2016-17 and 2017-18 (2018 targets).
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Figure 9: Cosine similarity on magnitude of student load in research cohort of college_A 
and _B. The bars represent the actual load differences on pairs of years: 2015-16, 2016-17 
and 2017-18 (2018 targets).

2-1-2 Pairwise analysis of actual student loads for postgraduate programs 

(Figure 10)

College_A shows a steady increase in load of postgraduate programs from 2015 

onward. The increase of load in 2018 is not identical with 2017. 96% of the programs

loads show similar increases in 2018 compared to 2017. College_B shows a steady 

increase in postgraduate programs from 2015 onward. The increase of load in 2018 is 

almost identical with 2017 (99%). However the load distribution did not evenly 

increase in 2015-16 and 2016-17. It can be interpreted as satisfaction of college_B

with the student load distribution in postgraduate programs in 2017 and just increasing

their load magnitude identically for 2018 targets.

2-1-3 Pairwise analysis of actual student loads for undergraduate programs 

(Figure 11)

College_A shows a steady increase in undergraduate programs in 2018 with 99% 

similarity in the load pattern of the programs in 2017. This value indicates that 

college_A is satisfied with the load distribution in undergraduate programs in 2017 

and follows the same pattern with an increase in each program for 2018 load targeting. 

Figure 10: Cosine similarity on magnitude of student load in postgrad cohort of 
college A and B. The bars represent the actual load differences on pairs of years: 
2015-16, 2016-17 and 2017-18 (2018 targets).
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Figure 9: Cosine similarity on magnitude of student load in research cohort of college_A  
and _B. The bars represent the actual load differences on pairs of years: 2015-16, 2016-17  

and 2017-18 (2018 targets).

2-1-2 Pairwise analysis of actual student loads for postgraduate programs 
(Figure 10)

College_A shows a steady increase in load of postgraduate programs from 2015 onward. 
The increase of load in 2018 is not identical with 2017. 96% of the programs loads show similar 
increases in 2018 compared to 2017. College_B shows a steady increase in postgraduate programs 
from 2015 onward. The increase of load in 2018 is almost identical with 2017 (99%). However 
the load distribution did not evenly increase in 2015-16 and 2016-17. It can be interpreted as 
satisfaction of college_B with the student load distribution in postgraduate programs in 2017 
and just increasing their load magnitude identically for 2018 targets.

Figure 10: Cosine similarity on magnitude of student load in postgrad cohort of college A and 
B. The bars represent the actual load differences on pairs of years: 2015-16, 2016-17 and 

2017-18 (2018 targets).
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College B shows an increase in undergraduate programs with identical load pattern in 

2017. The college increased the program load evenly across the undergraduate 

programs from 2015 to 2017 and targets in 2018. The magnitude of load values also 

represent the increase in student loads in 2016-2017 which is less than the other two 

pairs of years but follows the similar pattern.

2-2 Pairwise analysis of actual versus target student load of the same years

The proposed similarity measure can be used as a tool to analyze the process of 

program load targeting. A set of historical data including pairs of actual and target load 

are provided for this analysis. The results are shown in the following graphs. Unlike the 

previous graphs which show single values representing the magnitude of the student 

load differences, these figures show a pair of values for each year: actual and target 

load. The cosine similarity measured the distance between the actual and target load for 

each year separately and are depicted by line charts.

The dataset covers the actual and target load by programs from 2012 to 2017. 

The detailed student load data is summed into three major cohorts (Blevels: UGRD, 

PGRD and RSCH) and are compared for two colleges (A, B), similar to the previous 

analysis in 2-1. The results are shown in Figures: 12, 13 and 14. The analysis of the 

data for each cohort is as follows: 

2-2-1 Analysis of actual versus target student load in research programs (Figure 

12)

College_A shows a steady increase in target and actual load in research programs 

from 2012 to 2015. The distribution of student loads between actual and target program 

lists are not identical and show a similarity range from 93% to 96% which represents 

the improvement in load targeting of research program in college_A. The scenario 

changed in 2016 and 2017. In spite of a steady increase in target loads, the actual load 

decreased. However the load targeting process absolutely improved and shows 100% 

Figure 11: Cosine similarity on magnitude of student load in undergrad cohort of 
college_A and _B. The bars represent the actual load differences on pairs of years: 
2015-16, 2016-17 and 2017-18 (2018 targets).
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2-1-3 Pairwise analysis of actual student loads for undergraduate programs 
(Figure 11)

College_A shows a steady increase in undergraduate programs in 2018 with 99%  
similarity in the load pattern of the programs in 2017. This value indicates that college_A is 
satisfied with the load distribution in undergraduate programs in 2017 and follows the same 
pattern with an increase in each program for 2018 load targeting. College B shows an increase 
in undergraduate programs with identical load pattern in 2017. The college increased the program 
load evenly across the undergraduate programs from 2015 to 2017 and targets in 2018. The 
magnitude of load values also represent the increase in student loads in 2016-2017 which is less 
than the other two pairs of years but follows the similar pattern.

Figure 11: Cosine similarity on magnitude of student load in undergrad cohort of college_A 
and _B. The bars represent the actual load differences on pairs of years: 2015-16, 2016-17  

and 2017-18 (2018 targets).

2-2 Pairwise analysis of actual versus target student load of the same years

The proposed similarity measure can be used as a tool to analyze the process of program 
load targeting. A set of historical data including pairs of actual and target load are provided for 
this analysis. The results are shown in the following graphs. Unlike the previous graphs which 
show single values representing the magnitude of the student load differences, these figures show 
a pair of values for each year: actual and target load. The cosine similarity measured the distance 
between the actual and target load for each year separately and are depicted by line charts. 

The dataset covers the actual and target load by programs from 2012 to 2017. The detailed 
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similarity between distribution of target and actual load. An interpretation for such 

behavior in college A is improving the load targeting process in a way that actual and 

target load steadily improved from 93% to 100% from 2012 to 2017, although with 

lower in actual student loads in the last two years. 

Figure 12: Cosine similarity on magnitude of actual and target student load of each year of 
research programs in two colleges: A and B. The solid bars represent actual and the grid 
bars represent target load on pairs of years: 2012 to 2017. The similarity of student loads 
by programs in actual and target is shown by line chart.  

The analysis of research program in college_B shows a steady increase in both 

actual and target loads throughout the 6 years. The significant phenomenon is the 

similarity in the distribution of student load between actual and target loads in 2014 

which is almost 0%. Further investigation revealed that this phenomenon occurred due 

to massive research program code changes in 2014 in college_B. Consequently the new 

program codes in actual loads could not be matched with the student loads in the target

list which was designed based on old program codes. The improvement in the targeting 

load process of research program can be seen in this college as well.

2-2-2 Analysis of actual versus target student load in postgraduate programs 

(Figure 13)

In college_A and _B a similar pattern can be seen in postgraduate programs, but 

in two different scale and time slices. College_A had an increase in actual loads from 

2012 to 2014, although the target loads for these years had not precisely predicted. The 

worst targeting process was in 2014. However such significant dissimilarity forced the 

college_A team to optimize their student load targeting process and the results can be 

seen in the consequent years. The similarity between target load and actual load shows 

a steady increase from 2015 with 94% to almost 100% in 2017. However the actual 

load in 2017 show more than that targeted but definitely in a similar pattern of student 

load. The same scenario can be seen on postgraduate programs of college_B. The only 

difference is in the time that the load targeting issue occurred.
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student load data is summed into three major cohorts (Blevels: UGRD, PGRD and RSCH) and 
are compared for two colleges (A, B), similar to the previous analysis in 2-1. The results are 
shown in Figures: 12, 13 and 14. The analysis of the data for each cohort is as follows: 

2-2-1 Analysis of actual versus target student load in research programs 
(Figure 12)

College_A shows a steady increase in target and actual load in research programs from 
2012 to 2015. The distribution of student loads between actual and target program lists are not 
identical and show a similarity range from 93% to 96% which represents the improvement in 
load targeting of research program in college_A. The scenario changed in 2016 and 2017. In 
spite of a steady increase in target loads, the actual load decreased. However the load targeting 
process absolutely improved and shows 100% similarity between distribution of target and  
actual load. An interpretation for such behavior in college A is improving the load targeting 
process in a way that actual and target load steadily improved from 93% to 100% from 2012 to 
2017, although with lower in actual student loads in the last two years. 

Figure 12:  Cosine similarity on magnitude of actual and target student load of each year of 
research programs in two colleges: A and B. The solid bars represent actual and the grid bars 

represent target load on pairs of years: 2012 to 2017. The similarity of student loads by 
programs in actual and target is shown by line chart. 

The analysis of research program in college_B shows a steady increase in both actual 
and target loads throughout the 6 years. The significant phenomenon is the similarity in the 
distribution of student load between actual and target loads in 2014 which is almost 0%. Further 
investigation revealed that this phenomenon occurred due to massive research program code 
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Figure 13: Cosine similarity on magnitude of actual and target student load of each year of 
postgraduate programs in two colleges: A and B. The solid bars represent actual and the 
grid bars represent target load on pairs of years: 2012 to 2017. The similarity of student 
loads by programs in actual and target is shown by line chart. 

2-2-3 Analysis of actual versus target student load in undergraduate programs 

(Figure 14) 

College_A and _B show steady increases in target and actual student load in 

undergraduate programs from 2012 to 2017. The load targeting process for 

undergraduate programs shows almost 100% similarities with actual loads. The only 

significant drop in similarity of actual and target student loads can be seen in college_A 

in 2014. Possible reason for such a drop can be because of minor program code changes 

or because of a deficiency in load targeting process in 2014.  

Figure 14: Cosine similarity on magnitude of actual and target student load of each year 
of undergraduate programs in two colleges: A and B. The solid bars represent actual and 

the grid bars represent target load on pairs of years: 2012 to 2017. The similarity of 
student loads by programs in actual and target is shown by line chart. 

Conclusion

The objective of this research is to introduce new models to analyze quantitative 

data in education systems. The proposed approach utilizes vector- instead of the scalar-

based interpretation used in the conventional analysis models (Tinto 2006, Kuh 2008, 

Ye 2011, Ma. Florecilla C. Cinches 2017).

The utilized distance measures have been used in image processing to measure 

the content-based similarity among the images.  Since an image is a matrix of integer 

values (intensity of pixels), the idea inspired us to utilize the same techniques for 

analyzing the educational load data which is configured in the form of a matrix.
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changes in 2014 in college_B. Consequently the new program codes in actual loads could not 
be matched with the student loads in the target list which was designed based on old program 
codes. The improvement in the targeting load process of research program can be seen in this 
college as well.

2-2-2 Analysis of actual versus target student load in postgraduate programs 
(Figure 13)

In college_A and _B a similar pattern can be seen in postgraduate programs, but in two 
different scale and time slices. College_A had an increase in actual loads from 2012 to 2014, 
although the target loads for these years had not precisely predicted. The worst targeting process 
was in 2014. However such significant dissimilarity forced the college_A team to optimize  
their student load targeting process and the results can be seen in the consequent years. The 
similarity between target load and actual load shows a steady increase from 2015 with 94% to 
almost 100% in 2017. However the actual load in 2017 show more than that targeted but  
definitely in a similar pattern of student load. The same scenario can be seen on postgraduate 
programs of college_B. The only difference is in the time that the load targeting issue occurred.

Figure 13: Cosine similarity on magnitude of actual and target student load of each year of 
postgraduate programs in two colleges: A and B. The solid bars represent actual and the grid 
bars represent target load on pairs of years: 2012 to 2017. The similarity of student loads by 

programs in actual and target is shown by line chart. 
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Figure 13: Cosine similarity on magnitude of actual and target student load of each year of 
postgraduate programs in two colleges: A and B. The solid bars represent actual and the 
grid bars represent target load on pairs of years: 2012 to 2017. The similarity of student 
loads by programs in actual and target is shown by line chart. 

2-2-3 Analysis of actual versus target student load in undergraduate programs 

(Figure 14) 

College_A and _B show steady increases in target and actual student load in 

undergraduate programs from 2012 to 2017. The load targeting process for 

undergraduate programs shows almost 100% similarities with actual loads. The only 

significant drop in similarity of actual and target student loads can be seen in college_A 

in 2014. Possible reason for such a drop can be because of minor program code changes 

or because of a deficiency in load targeting process in 2014.  

Figure 14: Cosine similarity on magnitude of actual and target student load of each year 
of undergraduate programs in two colleges: A and B. The solid bars represent actual and 

the grid bars represent target load on pairs of years: 2012 to 2017. The similarity of 
student loads by programs in actual and target is shown by line chart. 

Conclusion

The objective of this research is to introduce new models to analyze quantitative 

data in education systems. The proposed approach utilizes vector- instead of the scalar-

based interpretation used in the conventional analysis models (Tinto 2006, Kuh 2008, 

Ye 2011, Ma. Florecilla C. Cinches 2017).

The utilized distance measures have been used in image processing to measure 

the content-based similarity among the images.  Since an image is a matrix of integer 

values (intensity of pixels), the idea inspired us to utilize the same techniques for 

analyzing the educational load data which is configured in the form of a matrix.
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2-2-3 Analysis of actual versus target student load in undergraduate  
programs (Figure 14) 

College_A and _B show steady increases in target and actual student load in undergraduate 
programs from 2012 to 2017. The load targeting process for undergraduate programs shows 
almost 100% similarities with actual loads. The only significant drop in similarity of actual and 
target student loads can be seen in college_A in 2014. Possible reason for such a drop can be 
because of minor program code changes or because of a deficiency in load targeting process in 
2014. 

Figure 14: Cosine similarity on magnitude of actual and target student load of each year of 
undergraduate programs in two colleges: A and B. The solid bars represent actual and the grid 

bars represent target load on pairs of years: 2012 to 2017. The similarity of student loads by 
programs in actual and target is shown by line chart.

Conclusion

The objective of this research is to introduce new models to analyze quantitative data  
in education systems. The proposed approach utilizes vector- instead of the scalar-based  
interpretation used in the conventional analysis models (Tinto 2006, Kuh 2008, Ye 2011, Ma. 
Florecilla C. Cinches 2017). 

The utilized distance measures have been used in image processing to measure the  
content-based similarity among the images. Since an image is a matrix of integer values 
 (intensity of pixels), the idea inspired us to utilize the same techniques for analyzing the  
educational load data which is configured in the form of a matrix.
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Two models are introduced: Cosine similarity and Minkowski distances (Euclidean and 
Manhattan) for partial and holistic shape analysis. The efficacy of the methods was investigated 
on two applications: 

	 •	 Analysis of the student load data of a sample college in RMIT University from 2010 
to 2016. The results show the capability of the proposed techniques in analyzing load 
pattern (shape) of the college by comparing the distribution of loads by Field of  
Educations (FoEs) and Broad-levels or Education (Blevels).

	 •	  Analysis of target load data in two approaches. The actual and target student load data 
of two sample colleges in RMIT University was utilized for this section. The focus of 
the first approach was based on comparing the actual student loads on pairs of  
consecutive years including the target load of future year and comparing the  
similarities and magnitudes on pairs of years. The second approach compared the 
actual and target loads in each year and investigated the similarities between the load 
distributions on the two lists of each year.

The proposed shape analysis models can help decision makers to answer some questions 
such as; how similar is the load pattern of an educational cohort to the other cohorts or compared 
to itself during the previous years, or how similar is the shape of actual student load data with 
target student load in educational organizations. Another application which is not investigated 
in this paper would be to investigate the similarity of a college or a University with other  
colleges or Universities.

Analyzing the distribution of student load and measuring it with the proposed models, 
can help educational organizations to investigate their performance from a new angle and  
provide more insights to decision makers to develop more effective strategies. For example, the 
utilization of this approach could lead to a shift in student recruitment away from historical 
patterns to one where new possibilities are considered. For decision-makers this new approach 
could provide a new validation angle by which student load distribution data can be put to  
hypothesis-testing or forecasting.
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