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Abstract 

 

A novel adaptive differential evolution algorithm called Multi-Mutation Scheme Adaptive Differential Evolution 

( MMADE)  is developed in this article.  Several truss sizing optimization problems have been posed for 

performance test. The proposed adaptive algorithm is integrated with adaptive scaling factor, crossover ratio and 

mutation schemes selection.  Results obtained from the proposed algorithm are compared to recent adaptive 

algorithms from literature. The MMADE show very competitive performance compared to those state-of-the-art 

adaptive algorithms. 

 

Keywords: Meta-heuristics, Adaptive algorithms, Truss sizing optimization, Differential evolution, Multi-

mutation schemes. 

 

1. Introduction 

 

Currently, optimization techniques are some of the most important tools in engineering structural design.  A 

variety of optimization techniques are employed to solve engineering optimization problems [1-5]. By performing 

optimum design, a structural designer can achieve lighter but stiffer structures which can lead to lower production 

or construction cost. 

A truss structure is one of the most widely used structure types due to its capability of handling high load with 

light weight structural elements.  Design variables in truss optimization problems can be categorized into several 

types, topology, shape, and sizing.  Truss design problems may consisted of one type of the design variables or a 

combination of those variables simultaneously.  There are many recent researchers attempting to improved 

optimization techniques for solving single-objective [6-16]  and multiple-objective [17-18]  truss optimization 

problems. 

Differential Evolution ( DE)  is one of the simplest and most powerful stochastic optimizers.  DE is first 

introduced by Storn and Price [ 19]  and proved to be one of the best optimizers at that time in 1996 IEEE 

International Conference on Evolutionary Computation (CEC1996)  [20] .  However, like other general meta-

heuristic optimizers, performance of DE can be fluctuated due to optimization problems encountered and some 

control parameters.  So, after DE was first introduced, there have been many researchers contributing to 

development of adaptive DE to increase the search performance of DE and overcome its shortcomings. 

Many variants of DE were developed in the past few decades.  The main control parameters that affect the 

performance of DE in the literature are population size, mutation scheme, scaling factor (F) , and crossover ratio 

(CR). In 2005, Liu and Lampinen invented a Fuzzy Adaptive Differential Evolution (FADE) [21] by employing 

fuzzy logic controllers to adapt F and CR in mutation and crossover operation of DE.  In the same year, Qin and 

Suganthan presented Self-Adaptive Differential Evolution (SaDE)  [22]  in CEC2005.  Similarly to FADE, the 

control parameters, F and CR are also adaptive control parameters, but SaDE is embedded with different adaptive 

strategy and both parameters are not required to be pre- specified.  Then, in 2006, Teo presented Differential 
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evolution with self-adapting populations (DESAP) [23]. This is the first attempt to included adaptive population 

size along with adaptive F and CR.  In 2006, Brest et al introduced new DE variance with self-adaptive control 

parameters [ 24] , F and CR are randomly selected with a new adaptive strategy.  In 2009, Zhang et al introduced 

JADE [25], adaptive DE with an optional external archive. Parent vectors that generated better offspring are stored 

in the archive and have a chance to be selected for mutating target vectors in a subsequent iteration. Later, Tanabe 

and Fukunaga demonstrated the improving version of JADE, Success-History based Adaptive DE (SHADE) [26] 

in 2013.  SHADE is integrated with adaptive parameter memory that stored multiple values of F and CR.  With 

this improvement, SHADE is proved to be one of the best state-of-the-art optimization algorithms in CEC 2013. 

The continually improved version of SHADE with linear population size reduction called L-SHADE [27]  was 

also presented by the same author in 2014, the winner of CEC 2014 algorithm competition. 

In this article, Multi-Mutation Scheme Adaptive Differential Evolution (MMADE) is developed. The proposed 

algorithm is integrated with three adaptive mutation schemes to balance exploitation and exploration search 

abilities.  The adaptive strategies for mutation schemes:  selection, F, CR are introduced.  Details of proposed 

algorithm and test problems are described in section 2.  Then, results, discussion and conclusion demonstrated in 

Sections 3, 4 and 5 respectively. 

 

2. Materials and methods 

 

2.1 Test problems 

 

There are 6 test cases of truss sizing optimization problems evaluated with MMADE, 2 test cases of a 10-bar 

truss, 1 test case of a 25-bar truss, 2 test cases of a 72-bar truss and 1 test case of a 200-bar truss. The 10-bar and 

200-bar trusses are planar trusses while the 25-bar and 72-bar trusses are space trusses.  All test cases are single-

objective truss sizing optimization problems. The goal of the optimizer is to minimize mass of the structures under 

specific constraints i.e. allowable stress and displacement. All details of test cases including their configurations 

and finite element models are presented in [9]. Notice that only stress and displacement constraints are specified 

while buckling constraints are excluded in this study. The details of material properties, loadings, constraints and 

design variable groupings are provided in the following sub-sections.  

 

2.1.1 CASE I: 10-bar truss with the first loading condition 

 

The truss is subjected to P1 (Fy = -100 kips)  at node 2 and 4. The design variables are cross-section areas of 

all truss members, so there are 10 design variables equal to the number of truss members in this test case.  The 

allowable stress (both compressive and tension) and displacement are 25 ksi and 2 in respectively. Minimum and 

maximum cross-section areas are 0.1 and 70 in2 respectively.  Material density and modulus of elasticity are 0.1 

lb/in3 and 104 ksi respectively.  

 

2.1.2 CASE II: 10-bar truss with the second loading condition 

 

All details of this test case are similar to CASE I except the loadings.  In this case, the truss is subjected to P1 

(Fy = -150 kips) at node 2 and 4 and P2 (Fy = -50 kips) at node 1 and 3. 

 

Table 1 Details of design variables grouping and allowable stress of CASE III 

Group index Element index Allowable compressive stress Allowable tension stress 

1 1 35.092 40 

2 2-5 11.590 40 

3 6-9 17.305 40 

4 10-11 35.092 40 

5 12-13 35.092 40 

6 14-17 6.7590 40 

7 18-21 6.9590 40 

8 22-25 11.082 40 

 

2.1.3 CASE III: 25-bar truss 

 

The structure is subject to 2 load conditions detailed as follows: 

- First load condition: P1 (Fy = 20 kips and Fz = -5 kips) applied on node 1 and P2 (Fy = -20 kips and  

Fz = -5 kips) applied on node 1. 
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- Second load condition: P1 (Fx = 1 kips, Fy = 10 kips and Fz = -5 kips) applied on node 1, P2 (Fy = 10 kips 

and Fz = -5 kips) applied on node 2 and P3 (Fx = 0.5 kips) applied on node 3 and 6. 

There are 8 groups of design variables where the element members of each group share the same size of cross-

section area and allowable stress.  The details of design variables grouping and allowable stress are provided in 

table 1. Minimum and maximum cross-section areas are 0.01 and 10 in2 respectively. An allowable displacement 

is 0.35 in. Material density and modulus of elasticity are 0.1 lb/in3 and 104 ksi respectively.  

 

Table 2 Details of design variables grouping of CASE IV-VI 

CASE IV and V CASE VI 

Group 

index 

Element 

index 

Group 

index 

Element index 

1 1-4 1 1, 2, 3, 4 

2 5-12 2 5, 8, 11, 14, 17 

3 13-16 3 19, 20, 21, 22, 23, 24 

4 17-18 4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177 

5 19-22 5 26, 29, 32, 35, 38 

6 23-30 6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 34, 36, 37 

7 31-34 7 39, 40, 41, 42 

8 35-36 8 43, 46, 49, 52, 55 

9 37-40 9 57, 58, 59, 60, 61, 62 

10 41-48 10 64, 67, 70, 73, 76 

11 49-52 11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68, 69, 71, 72, 74, 75 

12 53-54 12 77, 78, 79, 80 

13 55-58 13 81, 84, 87, 90, 93 

14 59-66 14 95, 96, 97, 98, 99, 100 

15 67-70 15 102, 105, 108, 111, 114 

16 71-72 16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107, 109, 110, 112, 113 

  17 115, 116, 117, 118 

  18 119, 122, 125, 128, 131 

  19 133, 134, 135, 136, 137, 138 

  20 140, 143, 146, 149, 152 

  21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142, 144, 145, 147, 

148, 150, 151 

  22 153, 154, 155, 156 

  23 157, 160, 163, 166, 169 

  24 171, 172, 173,174, 175, 176 

  25 178, 181, 184, 187, 190 

  26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182, 183, 

185, 186, 188,189 

  27 191, 192, 193, 194 

  28 195, 197, 198, 200 

  29 196, 199 

 

2.1.4 CASE IV: 72-bar truss with the first loading condition 

 

The structure is subject to 2 load conditions detailed as follows: 

- First load case: P1 (Fx = 5 kips, Fy = 5 kips and Fz = -5 kips) applied on node 17. 

- Second load case: P1 (Fz = -5 kips) applied on node 17,18,19 and 20.  
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There are 16 groups of design variables in this case.  The details of design variables grouping are provided in 

table 2.  Minimum and maximum cross-section areas are 0.1 and 35 in2 respectively.  Allowable stress ( both 

compressive and tension) and displacement are 25 ksi and 0.25 in respectively. Material density and modulus of 

elasticity are 0.1 lb/in3 and 104 ksi respectively.  

 

2.2 Multi-Mutation schemes Adaptive Differential Evolution (MMADE) 

 

DE variants commonly reproduce population in each iteration with 3 DE operators, mutation, crossover, and 

selection.  From the literature, there are several factors, mutation schemes, mutation ratio, crossover ratio, and 

population size that mostly affect the performance of DE.  In the proposed algorithm, MMADE, the adaptive 

strategies for mutation schemes, mutation ratio, and crossover ratio are integrated to improve search performance 

of the algorithm. First, 𝑁𝑃 population or solution vectors (size of a solution vector is 𝑁𝑉 × 1 while 𝑁𝑉 is number 

of design variables or problem dimensions)  are randomly generated.  Then, all population are updated with 

mutation, crossover, and selection sequentially in each iteration.  All adaptive control parameters are updated at 

the end of each iteration. 

 

2.2.1 Mutation 

 

In the proposed algorithm, there are 3 mutation schemes employed as details in equation (10-12). 

 

Scheme-1: “DE/current/1” 

𝒗𝑖,𝑔 = 𝒙𝑖,𝑔 + 𝐹𝑖(𝒙𝑟1,𝑔 − 𝒙𝑟2,𝑔)                   (10) 

Scheme-2: “DE/current-to-pbest/1” 

𝒗𝑖,𝑔 = 𝒙𝑖,𝑔 + 𝐹𝑖(𝒙𝑝𝑏𝑒𝑠𝑡,𝑔 − 𝒙𝑖,𝑔) + 𝐹𝑖(𝒙𝑟1,𝑔 − 𝒙𝑟2,𝑔)                (11) 

Scheme-3: “DE/pbest/1 

𝒗𝑖,𝑔 = 𝒙𝑝𝑏𝑒𝑠𝑡,𝑔 + 𝐹𝑖(𝒙𝑟1,𝑔 − 𝒙𝑟2,𝑔)                  (12) 

 

where, 𝒙 is current population, 𝒗 is mutation vectors, 𝑖 is an individual index of the current population, 𝑟1, 𝑟2, 

and 𝑟3 are random indices of sampled from members of the current population, 𝑔 is a generation number, 𝑝𝑏𝑒𝑠𝑡 

is a random index of the top 𝑝 percent best population of the current generation and 𝐹𝑖 ∈ [0,1] is a scaling factor 

of individual i. 

In each iteration, the mutation schemes applied to each individual is selected based on selection probabilities 

while the scaling factor is randomly generated by normal distribution with mean (𝜇𝐹) and standard deviation (𝜎𝐹). 

The sum of probabilities for mutation schemes (𝛼1, 𝛼2, 𝛼3) to be selected are always equal to unity. Four adaptive 

parameters used in the mutation scheme, 𝜇𝐹, 𝛼1, 𝛼2, and 𝛼3 will be updated with adaptive strategies at the end of 

each iteration. The purpose of this multi-mutation scheme is to balance exploitation and exploration search ability 

of the algorithm.  The first one ( Equation (10) )  is the least greedy scheme while the second scheme (Equation 

(11)) provides more exploitation ability and the third mutation in Equation (12) is the greediest. 

 

2.2.2 Crossover 

 

Crossover will be operated on a mutant vectors (𝒗) and its parent (𝒙) with the so-called binomial crossover as 

described in equation (13) to create a trial vector (𝒖). 

 

𝑢𝑗,𝑖,𝑔 = {
𝑣𝑗,𝑖,𝑔    if rand(0,1) ≤ 𝐶𝑅𝑖 or 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑗,𝑖,𝑔    otherwise                                       
                 (13) 

 

where,  𝑗 is a design variable index, 𝑗𝑟𝑎𝑛𝑑 is a random design variable index, rand(0,1) ∈ [0,1] is a uniformly 

distributed pseudo random number and 𝐶𝑅𝑖 ∈ [0,1] is a crossover ratio of individual i.  𝐶𝑅𝑖 of each individual is 

also randomly generated based on normal distribution with mean (𝜇𝐶𝑅) and standard deviation (𝜎𝐶𝑅) in the same 

way as 𝐹𝑖.  𝜇𝐶𝑅 is the only one adaptive parameter in crossover process that will be updated at the end of each 

iteration. 

After each trial vector being generated, each design variable is truncated to specific lower and upper boundary 

as demonstrated in JADE [25]. The truncated rule is describe in equation (14). 

 

𝑢𝑗,𝑖,𝑔 = {

(𝑢𝑗,𝑖,𝑔 + 𝑥𝐿𝑗
)/2    if  𝑢𝑗,𝑖,𝑔 < 𝑥𝐿𝑗

(𝑢𝑗,𝑖,𝑔 + 𝑥𝑈𝑗
)/2    if  𝑢𝑗,𝑖,𝑔 < 𝑥𝑈𝑗

      𝑢𝑗,𝑖,𝑔             otherwise 

                 (14) 
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where, 𝑥𝐿𝑗
 and 𝑥𝑈𝑗

 are lower and upper bound of 𝑗-th design variable respectively. 

 

2.2.3 Selection 

 

In selection process, the better individual between a trial vector 𝒖𝑖,𝑔 and its parent 𝒙𝑖,𝑔 will survive to next 

iteration as described in equation (15). 

 

𝒙𝑖,𝑔+1 = {
𝒖𝑖,𝑔    if 𝑓(𝒖𝑖,𝑔) < 𝑓(𝒙𝑖,𝑔)

𝒙𝑖,𝑔    otherwise                 
                  (15) 

 

Where, 𝑓𝑝(𝒖𝑖,𝑔) and 𝑓𝑝(𝒙𝑖,𝑔) are fitness values of the trial vector and its parent respectively.  

 

2.2.4 Adaptation strategies 

 

All adaptive parameters are adjusted at the end of each iteration.  There are 5 adaptive parameters, 𝜇𝐹, 𝜇𝐶𝑅, 

𝛼1, 𝛼2, and 𝛼3 employed in the proposed algorithm. The adaptive parameters are updated with learning strategies 

related to parameters that produce better offspring in each iteration.  Lehmer mean of successful updated 𝜇𝐹 and 

𝜇𝐶𝑅 are calculated with equation (16-17) .  Then, the new values of 𝜇𝐹 and 𝜇𝐶𝑅  are updated with a learning rate 

( 𝐿𝑅)  if there is at least one successful updated individual and reset to initial values otherwise as described in 

equation (18-19). 

 

𝐿𝑚𝑒𝑎𝑛𝜇𝐹
=

∑ (𝜇𝐹𝑠,𝑘
2)𝑁𝑠

𝑘=1

∑ (𝜇𝐹𝑠,𝑘)𝑁𝑠
𝑘=1

                    (16) 

𝐿𝑚𝑒𝑎𝑛𝜇𝐶𝑅
=

∑ (𝜇𝐶𝑅𝑠,𝑘
2)𝑁𝑠

𝑘=1

∑ (𝜇𝐶𝑅𝑠,𝑘)𝑁𝑠
𝑘=1

                    (17) 

𝜇𝐹,𝑔+1 = {
𝜇𝐹,𝑔 + 𝐿𝑅 ∙ 𝐿𝑚𝑒𝑎𝑛𝜇𝐹

    if 𝑁𝑠 > 0  

𝜇𝐹,0                                    otherwise
                 (18) 

𝜇𝐶𝑅,𝑔+1 = {
𝜇𝐶𝑅,𝑔 + 𝐿𝑅 ∙ 𝐿𝑚𝑒𝑎𝑛𝜇𝐶𝑅

    if 𝑁𝑠 > 0  

𝜇𝐶𝑅,0                                     otherwise
                 (19) 

 

where, 𝐿𝑚𝑒𝑎𝑛𝜇𝐹
 and 𝐿𝑚𝑒𝑎𝑛𝜇𝐶𝑅

 are the Lehmer means of 𝜇𝐹  and 𝜇𝐶𝑅  respectively, 𝑁𝑠  is the number of 

successful updated individuals in the current iteration, 𝜇𝐹𝑠,𝑘
 and 𝜇𝐶𝑅𝑠,𝑘

 are the scaling factor and crossover ratio 

of each successful updated individual respectively. 

If there is any successful updated individual, 𝛼1, 𝛼2, and 𝛼3 are updated related to the number of successful 

updated individuals that are generated by their corresponding mutation schemes, otherwise, they are reset to the 

initial values. For the updating procedure, the probabilities are described in equation (20-21). It should be noted 

that the sum of the probabilities are always normalized to unity in equation (21). 

 

𝛼′𝑚,𝑔+1 = 𝛼𝑚,𝑔 + 𝐿𝑅 ∙ (𝑁𝑠𝛼𝑚
/𝑁𝑠) , 𝑚 = 1,2,3                            (20) 

𝛼𝑚,𝑔+1 = {
𝛼′

𝑚,𝑔+1/(𝛼′
1,𝑔+1 + 𝛼′

2,𝑔+1 + 𝛼′3,𝑔+1)   if 𝑁𝑠 > 0  

𝛼𝑚,0                                                                 otherwise
 , 𝑚 = 1,2,3             (21) 

 

where, 𝑁𝑠𝛼𝑚
 is number of success updated individuals by mutation scheme-𝑚.  

 

2.3 Experimental setup 

 

For ease of comparison, the maximum number of function evaluations for CASE I-V and CASE VI are specified 

as 10,000 and 20,000 which are equal to the literature [9]. The population size of CASE I-V and CASE VI are 50 

and 100 respectively. The initial values of 𝜇𝐹 and 𝜇𝐶𝑅 are 0.5 and 0.8 respectively while 𝜎𝐹 and 𝜎𝐶𝑅 are both set 

to be 0.1. The initial values of 𝛼1, 𝛼2, and  𝛼3 are all equal to 1/3. The learning rate (𝐿𝑅) for all adaptive strategies 

is equal to 0.1.  The control parameters of the penalty function technique, 𝑐1, 𝑐2, and 𝑘 are equal to 1e-5,  1e-9, 

and 10 respectively. 

 

3. Results  

 

In this numerical tests, 30 independent runs of the proposed algorithm are performed.  The results obtained 

from using MMADE are evaluated and compared to the results of state-of- the-art algorithms from the literature 
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[9] .  The mean and standard deviation of weight found by MMADE and best algorithms from the literature are 

compared in table 3.  

 

Table 3 Comparison of mean weights and standard deviation found by MMADE and best algorithms from the 

literature. 

Problem MMADE (mean±std) Literature (mean±std)(name of the best algorithm) 

CASE I 5061.443±2.8768 5060.961 ± 0.061 (SHADE) 

CASE II 4677.152±0.1124 4677.412 ± 0.3657 (SHADE) 

CASE III 545.163±0.0003 545.163 ± 0.0006 (L-SHADE) 

CASE IV 379.989±0.1985 379.985 ± 0.2285 (SHADE) 

CASE V 364.210±0.1710 364.261 ± 0.2280 (SHADE) 

CASE VI 25919.11±227.18 26109.67 ± 187.34 (SHADE) 

 

The details of best results of CASE I–VI found by MMADE are provided in table 4. Details of optimum 

design variables (cross-section areas), weight and constrained violations are all included in the table.  

 

Table 4 Details of the best trusses found by MMADE 

Problem CASE I CASE II CASE III CASE VI CASE V CASE IV 

Set of optimum 

Design variables (in2) 

30.566 

0.1000598 

23.2117 

15.19771 

0.100006 

0.5526223 

7.459013 

21.04136 

21.49924 

0.1000016 

23.55759 

0.1000414 

25.21872 

14.32949 

0.1000034 

1.969816 

12.41554 

12.86294 

20.32941 

0.1000485 

0.01000375 

1.986214 

2.994766 

0.01000039 

0.01000239 

0.683598 

1.677024 

2.662229 

1.901606 

0.5166726 

0.1000834 

0.10035 

1.243426 

0.512497 

0.1000511 

0.1007234 

0.5216062 

0.5187426 

0.1000433 

0.1005843 

0.1564847 

0.5462572 

0.4041166 

0.5637517 

1.874741 

0.5234692 

0.01035941 

0.01016275 

1.313161 

0.5101077 

0.01022529 

0.01049506 

0.5299416 

0.5172217 

0.01014704 

0.1059103 

0.1673201 

0.534087 

0.4509461 

0.5744491 

0.1146819 

0.9473768 

0.1623782 

0.1080223 

1.953826 

0.2413752 

0.2683819 

3.108701 

0.1205973 

4.133854 

0.356142 

0.1265806 

5.440595 

0.220856 

6.421065 

0.5311663 

0.3697953 

8.020133 

0.2341736 

9.102079 

0.843345 

0.6041449 

11.45215 

0.1458555 

12.58396 

1.174508 

5.288524 

10.20159 

14.7895 

Weight 5060.867 4676.992 545.162 379.704 363.931 25607.53 

Max stress 

constraint 
0 0 0 0 0 0 

Max displacement 

constraint 
1.8553e-7 0 1.0784e-6 0 0 - 
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4. Discussion 

 

After 30 independent runs of each test case being evaluated, MMADE shows very competitive results in table 

3.  For fair comparisons, it should be noted that all optimization runs are evaluated with equal maximum number 

of function evaluations being limited as demonstrated in the literature [ 9] .  Instead of using the best weights for 

algorithm performance comparison which cannot measure consistency of each optimizer, mean weights from 30 

independent runs of each test which indicates both performance and search consistency of the optimizers are 

preferred in this study.  Compared to best adaptive optimizers from the literature, MMADE can provided better 

mean weights in CASE II, V, and VI. Mean weight found by MMADE in CASE III is equal to L-SHADE from the 

literature, but MMADE provided lower standard deviation.  SHADE from the literature still perform better in 

CASE I and IV.  Information of the best results found by MMADE for all test cases are provided in table 4.  The 

constraint violations of the results are less than 10-5 in all cases.  

 

5. Conclusions 

 

While most of the optimizers in the literature focus on development of adaptive strategies for a scaling factor, 

a crossover ratio and a population size to increase search performance of DE.  Although there are several 

optimizers, JADE, SHADE, and L-SHADE presented external archive to improve mutation operator, but there is 

only one mutation scheme employed in those algorithms. In the proposed optimizer, MMADE, the authors present 

an alternative way to improve the performance and search consistency of DE. The adaptive multi-mutation scheme 

is integrated together with the adaptive scaling factor and crossover ratio. MMADE is provided very competitive 

results compared to state-of- the- art adaptive optimizers by achieving better mean weights in 3 out of 6 test 

problems. To expand the capabilities of MMADE to handle more complex problems like simultaneous topology, 

shape and size optimization problems or large scale problems, additional test problems should be evaluated and 

some improvements may be required in the future work. The evaluated results should be compared to more state-

of-the-art optimizers to further assure the performance of the proposed algorithm. 
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