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Abstract

A novel adaptive differential evolution algorithm called Multi-Mutation Scheme Adaptive Differential Evolution
( MMADE) is developed in this article. Several truss sizing optimization problems have been posed for
performance test. The proposed adaptive algorithm is integrated with adaptive scaling factor, crossover ratio and
mutation schemes selection. Results obtained from the proposed algorithm are compared to recent adaptive
algorithms from literature. The MMADE show very competitive performance compared to those state-of-the-art
adaptive algorithms.
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1. Introduction

Currently, optimization techniques are some of the most important tools in engineering structural design. A
variety of optimization techniques are employed to solve engineering optimization problems [1-5]. By performing
optimum design, a structural designer can achieve lighter but stiffer structures which can lead to lower production
or construction cost.

A truss structure is one of the most widely used structure types due to its capability of handling high load with
light weight structural elements. Design variables in truss optimization problems can be categorized into several
types, topology, shape, and sizing. Truss design problems may consisted of one type of the design variables or a
combination of those variables simultaneously. There are many recent researchers attempting to improved
optimization techniques for solving single-objective [6-16] and multiple-objective [17-18] truss optimization
problems.

Differential Evolution (DE) is one of the simplest and most powerful stochastic optimizers. DE is first
introduced by Storn and Price [19] and proved to be one of the best optimizers at that time in 1996 IEEE
International Conference on Evolutionary Computation (CEC1996) [20]. However, like other general meta-
heuristic optimizers, performance of DE can be fluctuated due to optimization problems encountered and some
control parameters. So, after DE was first introduced, there have been many researchers contributing to
development of adaptive DE to increase the search performance of DE and overcome its shortcomings.

Many variants of DE were developed in the past few decades. The main control parameters that affect the
performance of DE in the literature are population size, mutation scheme, scaling factor (F), and crossover ratio
(CR). In 2005, Liu and Lampinen invented a Fuzzy Adaptive Differential Evolution (FADE) [21] by employing
fuzzy logic controllers to adapt F and CR in mutation and crossover operation of DE. In the same year, Qin and
Suganthan presented Self- Adaptive Differential Evolution (SaDE) [22] in CEC2005. Similarly to FADE, the
control parameters, F and CR are also adaptive control parameters, but SaDE is embedded with different adaptive
strategy and both parameters are not required to be pre-specified. Then, in 2006, Teo presented Differential
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evolution with self-adapting populations (DESAP) [23]. This is the first attempt to included adaptive population
size along with adaptive F and CR. In 2006, Brest et al introduced new DE variance with self-adaptive control
parameters [24], F and CR are randomly selected with a new adaptive strategy. In 2009, Zhang et al introduced
JADE [25], adaptive DE with an optional external archive. Parent vectors that generated better offspring are stored
in the archive and have a chance to be selected for mutating target vectors in a subsequent iteration. Later, Tanabe
and Fukunaga demonstrated the improving version of JADE, Success-History based Adaptive DE (SHADE) [26]
in 2013. SHADE is integrated with adaptive parameter memory that stored multiple values of F and CR. With
this improvement, SHADE is proved to be one of the best state-of-the-art optimization algorithms in CEC 2013.
The continually improved version of SHADE with linear population size reduction called L-SHADE [27] was
also presented by the same author in 2014, the winner of CEC 2014 algorithm competition.

In this article, Multi-Mutation Scheme Adaptive Differential Evolution (MMADE) is developed. The proposed
algorithm is integrated with three adaptive mutation schemes to balance exploitation and exploration search
abilities. The adaptive strategies for mutation schemes: selection, F, CR are introduced. Details of proposed
algorithm and test problems are described in section 2. Then, results, discussion and conclusion demonstrated in
Sections 3, 4 and 5 respectively.

2. Materials and methods
2.1 Test problems

There are 6 test cases of truss sizing optimization problems evaluated with MMADE, 2 test cases of a 10-bar
truss, 1 test case of a 25-bar truss, 2 test cases of a 72-bar truss and 1 test case of a 200-bar truss. The 10-bar and
200-bar trusses are planar trusses while the 25-bar and 72-bar trusses are space trusses. All test cases are single-
objective truss sizing optimization problems. The goal of the optimizer is to minimize mass of the structures under
specific constraints i.e. allowable stress and displacement. All details of test cases including their configurations
and finite element models are presented in [9]. Notice that only stress and displacement constraints are specified
while buckling constraints are excluded in this study. The details of material properties, loadings, constraints and
design variable groupings are provided in the following sub-sections.

2.1.1 CASE I: 10-bar truss with the first loading condition

The truss is subjected to Py (Fy = -100 kips) at node 2 and 4. The design variables are cross-section areas of
all truss members, so there are 10 design variables equal to the number of truss members in this test case. The
allowable stress (both compressive and tension) and displacement are 25 ksi and 2 in respectively. Minimum and
maximum cross-section areas are 0.1 and 70 in? respectively. Material density and modulus of elasticity are 0.1
Ib/in® and 10* ksi respectively.
2.1.2 CASE Il: 10-bar truss with the second loading condition

All details of this test case are similar to CASE | except the loadings. In this case, the truss is subjected to P
(Fy =-150 kips) at node 2 and 4 and P, (Fy = -50 kips) at node 1 and 3.

Table 1 Details of design variables grouping and allowable stress of CASE I

Group index Element index Allowable compressive stress Allowable tension stress
1 1 35.092 40
2 2-5 11.590 40
3 6-9 17.305 40
4 10-11 35.092 40
5 12-13 35.092 40
6 14-17 6.7590 40
7 18-21 6.9590 40
8 22-25 11.082 40

2.1.3 CASE I11: 25-bar truss

The structure is subject to 2 load conditions detailed as follows:
- First load condition: P1 (Fy = 20 kips and Fz = -5 kips) applied on node 1 and P, (Fy = -20 kips and
Fz = -5 kips) applied on node 1.
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- Second load condition: P; (Fx = 1 kips, Fy = 10 kips and Fz = -5 kips) applied on node 1, P, (Fy = 10 kips
and Fz = -5 kips) applied on node 2 and P3 (Fx = 0.5 kips) applied on node 3 and 6.

There are 8 groups of design variables where the element members of each group share the same size of cross-
section area and allowable stress. The details of design variables grouping and allowable stress are provided in
table 1. Minimum and maximum cross-section areas are 0.01 and 10 in? respectively. An allowable displacement
is 0.35 in. Material density and modulus of elasticity are 0.1 Ib/in® and 10* ksi respectively.

Table 2 Details of design variables grouping of CASE IV-VI

CASE IV and V CASE VI
Group  Element Group Element index
index index index
1 14 1 1,2,3,4
2 5-12 2 5, 8,11, 14, 17
3 13-16 3 19, 20, 21, 22, 23, 24
4 17-18 4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177
5 19-22 5 26, 29, 32, 35, 38
6 23-30 6 6,7,9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 34, 36, 37
7 31-34 7 39,40, 41, 42
8 35-36 8 43, 46, 49, 52, 55
9 37-40 9 57, 58, 59, 60, 61, 62
10 41-48 10 64, 67,70, 73, 76
11 49-52 11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68, 69, 71, 72, 74, 75
12 53-54 12 77,78, 79,80
13 55-58 13 81, 84, 87,90, 93
14 59-66 14 95, 96, 97, 98, 99, 100
15 67-70 15 102, 105, 108, 111, 114
16 71-72 16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107, 109, 110, 112, 113
17 115, 116, 117, 118
18 119, 122, 125, 128, 131
19 133, 134, 135, 136, 137, 138
20 140, 143, 146, 149, 152
21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142, 144, 145, 147,
148, 150, 151
22 153, 154, 155, 156
23 157, 160, 163, 166, 169
24 171,172, 173,174, 175, 176
25 178,181, 184, 187, 190
26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182, 183,
185, 186, 188,189
27 191, 192, 193, 194
28 195, 197, 198, 200
29 196, 199

2.1.4 CASE IV: 72-bar truss with the first loading condition

The structure is subject to 2 load conditions detailed as follows:
- First load case: P1 (Fx =5 kips, Fy =5 kips and Fz = -5 kips) applied on node 17.
- Second load case: P1 (Fz = -5 kips) applied on node 17,18,19 and 20.
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There are 16 groups of design variables in this case. The details of design variables grouping are provided in
table 2. Minimum and maximum cross-section areas are 0.1 and 35 in? respectively. Allowable stress (both
compressive and tension) and displacement are 25 ksi and 0.25 in respectively. Material density and modulus of
elasticity are 0.1 Ib/in® and 10* ksi respectively.

2.2 Multi-Mutation schemes Adaptive Differential Evolution (MMADE)

DE variants commonly reproduce population in each iteration with 3 DE operators, mutation, crossover, and
selection. From the literature, there are several factors, mutation schemes, mutation ratio, crossover ratio, and
population size that mostly affect the performance of DE. In the proposed algorithm, MMADE, the adaptive
strategies for mutation schemes, mutation ratio, and crossover ratio are integrated to improve search performance
of the algorithm. First, NP population or solution vectors (size of a solution vector is NV x 1 while NV is number
of design variables or problem dimensions) are randomly generated. Then, all population are updated with
mutation, crossover, and selection sequentially in each iteration. All adaptive control parameters are updated at
the end of each iteration.

2.2.1 Mutation
In the proposed algorithm, there are 3 mutation schemes employed as details in equation (10-12).

Scheme-1: “DE/current/1”

Vig =Xig t Fi(xrl,g - xrz,g) (10)
Scheme-2: “DE/current-to-pbest/1”

Vig =Xig + Fi(prest,g - xi,g) + Fi(xrl,g - xrz,g) (11)
Scheme-3: “DE/pbest/1

17i,g = prest,g + Fi(xrl,g - xrz,g) (12)

where, x is current population, v is mutation vectors, i is an individual index of the current population, r1, r2,
and r3 are random indices of sampled from members of the current population, g is a generation number, pbest
is a random index of the top p percent best population of the current generation and F; € [0,1] is a scaling factor
of individual i.

In each iteration, the mutation schemes applied to each individual is selected based on selection probabilities
while the scaling factor is randomly generated by normal distribution with mean (u;) and standard deviation (oz).
The sum of probabilities for mutation schemes (a;, @5, a3) to be selected are always equal to unity. Four adaptive
parameters used in the mutation scheme, ur, a4, a,, and a; will be updated with adaptive strategies at the end of
each iteration. The purpose of this multi-mutation scheme is to balance exploitation and exploration search ability
of the algorithm. The first one (Equation (10)) is the least greedy scheme while the second scheme (Equation
(11)) provides more exploitation ability and the third mutation in Equation (12) is the greediest.

2.2.2 Crossover

Crossover will be operated on a mutant vectors (v) and its parent (x) with the so-called binomial crossover as
described in equation (13) to create a trial vector (u).
v;;, ifrand(0,1) < CR;orj=j
Yiie = {xj-ll-lg otherw(ise) LT rand (13)
b9

where, j is a design variable indeX, j,4nq IS @ random design variable index, rand(0,1) € [0,1] is a uniformly
distributed pseudo random number and CR; € [0,1] is a crossover ratio of individual i. CR; of each individual is
also randomly generated based on normal distribution with mean (u.g) and standard deviation (ag) in the same
way as F;. ucg is the only one adaptive parameter in crossover process that will be updated at the end of each
iteration.

After each trial vector being generated, each design variable is truncated to specific lower and upper boundary
as demonstrated in JADE [25]. The truncated rule is describe in equation (14).

(u]"i’g + XL])/Z if uj_i‘g < ij
uj,i,g = (u]"i’g + xU])/Z if uj‘i‘g < xU]. (14)
Ujig otherwise



where, Xy and Xy; are lower and upper bound of j-th design variable respectively.

2.2.3 Selection

In selection process, the better individual between a trial vector u; , and its parent x; ;, will survive to next
iteration as described in equation (15).

_ ui,g iff(ui,g) < f(xi,g)
Yigt1 = {xi,g otherwise (15

Where, fp(u;4) and fp(x;4) are fitness values of the trial vector and its parent respectively.
2.2.4 Adaptation strategies

All adaptive parameters are adjusted at the end of each iteration. There are 5 adaptive parameters, ug, Ucg,
ay, @y, and a; employed in the proposed algorithm. The adaptive parameters are updated with learning strategies
related to parameters that produce better offspring in each iteration. Lehmer mean of successful updated uy and
Ucg are calculated with equation (16-17). Then, the new values of ur and u-, are updated with a learning rate
(LR) if there is at least one successful updated individual and reset to initial values otherwise as described in
equation (18-19).

Ns 2
Lmean,,, = —ZZkgill(:tFFka)) (16)
Ns 2
Lmean, ., = Zz—k,gill(g;z"k; (17)
Upg+ LR LmeanﬂF ifNs>0
Hrg+1 = {Mp,o otherwise (18)
Ucrg + LR - Lmean, . ifNs>0
Herg+1 = {,umo otherwise (19)

where, Lmean,,, and Lmean,, . are the Lehmer means of ur and ucg respectively, Ns is the number of
successful updated individuals in the current iteration, ur_, and pcg, are the scaling factor and crossover ratio

of each successful updated individual respectively.

If there is any successful updated individual, a4, a,, and a5 are updated related to the number of successful
updated individuals that are generated by their corresponding mutation schemes, otherwise, they are reset to the
initial values. For the updating procedure, the probabilities are described in equation (20-21). It should be noted
that the sum of the probabilities are always normalized to unity in equation (21).

' mge1 = Umg + LR - (Nsg, /Ns),m =123 (20)
(' mger/ (@ g1t @5 g tA'5941) NS>0 _
Fmg+1 = {am,o otherwise " 123 @1

where, Ns, is number of success updated individuals by mutation scheme-m.
2.3 Experimental setup

For ease of comparison, the maximum number of function evaluations for CASE 1-V and CASE VI are specified
as 10,000 and 20,000 which are equal to the literature [9]. The population size of CASE I-V and CASE VI are 50
and 100 respectively. The initial values of ur and ucg are 0.5 and 0.8 respectively while o, and o5 are both set
to be 0.1. The initial values of a4, a,, and a5 are all equal to 1/3. The learning rate (LR) for all adaptive strategies
is equal to 0.1. The control parameters of the penalty function technique, ¢, c,, and k are equal to 1le-5, le-9,
and 10 respectively.

3. Results

In this numerical tests, 30 independent runs of the proposed algorithm are performed. The results obtained
from using MMADE are evaluated and compared to the results of state- of-the-art algorithms from the literature
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[9]. The mean and standard deviation of weight found by MMADE and best algorithms from the literature are
compared in table 3.

Table 3 Comparison of mean weights and standard deviation found by MMADE and best algorithms from the
literature.

Problem MMADE (meanzstd) Literature (meanxstd)(name of the best algorithm)
CASE | 5061.443+2.8768 5060.961 + 0.061 (SHADE)

CASE Il 4677.152+0.1124 4677.412 + 0.3657 (SHADE)

CASE 111 545.163+0.0003 545.163 + 0.0006 (L-SHADE)

CASE IV 379.989+0.1985 379.985 + 0.2285 (SHADE)

CASE V 364.210+0.1710 364.261 + 0.2280 (SHADE)

CASE VI 25919.11+227.18 26109.67 + 187.34 (SHADE)

The details of best results of CASE I-VI found by MMADE are provided in table 4. Details of optimum
design variables (cross-section areas), weight and constrained violations are all included in the table.

Table 4 Details of the best trusses found by MMADE
Problem CASE | CASE Il CASE Il CASE VI CASE V CASE IV

30.566 23.55759 0.01000375 1.901606 1.874741 0.1146819
0.1000598  0.1000414  1.986214 0.5166726  0.5234692 0.9473768
23.2117 25.21872 2.994766 0.1000834  0.01035941 0.1623782
15.19771 14.32949 0.01000039 0.10035 0.01016275  0.1080223
0.100006 0.1000034  0.01000239 1.243426 1.313161 1.953826
0.5526223  1.969816 0.683598 0.512497 0.5101077 0.2413752
7.459013 12.41554 1.677024 0.1000511 0.01022529 0.2683819
21.04136 12.86294 2.662229 0.1007234  0.01049506  3.108701
21.49924 20.32941 0.5216062  0.5299416 0.1205973
0.1000016  0.1000485 0.5187426  0.5172217 4.133854
0.1000433  0.01014704  0.356142

0.1005843  0.1059103 0.1265806

0.1564847  0.1673201 5.440595

0.5462572  0.534087 0.220856

Set of optimum 0.4041166  0.4509461 6.421065
Design variables (in?) 0.5637517  0.5744491 0.5311663
0.3697953

8.020133

0.2341736

9.102079

0.843345

0.6041449

11.45215

0.1458555

12.58396

1.174508

5.288524

10.20159

14.7895

Weight 5060.867 4676.992 545.162 379.704 363.931 25607.53

Max stress
constraint

Max displacement
constraint

0 0 0 0 0 0

1.8553e-7 O 1.0784e-6 0 0 -




4. Discussion

After 30 independent runs of each test case being evaluated, MMADE shows very competitive results in table
3. For fair comparisons, it should be noted that all optimization runs are evaluated with equal maximum number
of function evaluations being limited as demonstrated in the literature [9]. Instead of using the best weights for
algorithm performance comparison which cannot measure consistency of each optimizer, mean weights from 30
independent runs of each test which indicates both performance and search consistency of the optimizers are
preferred in this study. Compared to best adaptive optimizers from the literature, MMADE can provided better
mean weights in CASE II, V, and V1. Mean weight found by MMADE in CASE Il is equal to L-SHADE from the
literature, but MMADE provided lower standard deviation. SHADE from the literature still perform better in
CASE I and IV. Information of the best results found by MMADE for all test cases are provided in table 4. The
constraint violations of the results are less than 10-° in all cases.

5. Conclusions

While most of the optimizers in the literature focus on development of adaptive strategies for a scaling factor,
a crossover ratio and a population size to increase search performance of DE. Although there are several
optimizers, JADE, SHADE, and L-SHADE presented external archive to improve mutation operator, but there is
only one mutation scheme employed in those algorithms. In the proposed optimizer, MMADE, the authors present
an alternative way to improve the performance and search consistency of DE. The adaptive multi-mutation scheme
is integrated together with the adaptive scaling factor and crossover ratio. MMADE is provided very competitive
results compared to state-of-the-art adaptive optimizers by achieving better mean weights in 3 out of 6 test
problems. To expand the capabilities of MMADE to handle more complex problems like simultaneous topology,
shape and size optimization problems or large scale problems, additional test problems should be evaluated and
some improvements may be required in the future work. The evaluated results should be compared to more state-
of-the-art optimizers to further assure the performance of the proposed algorithm.
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