

Effect of light intensity and light pattern on hydrogen production by unicellular green alga *Chlorella* sp. LSD-W2

Amornrat Puangplub¹, Saranya Phunpruch^{1, 2, *}

¹ Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand

² Bioenergy Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand

*Correspondent author: saranya.ph@kmitl.ac.th

Received 6 March 2018

Revised 28 January 2019

Accepted 26 April 2019

Abstract

Green microalgae can use solar energy and water to produce H₂ via hydrogenase enzyme activity. The unicellular green alga *Chlorella* sp. LSD-W2 has been previously shown to produce high H₂ under nitrogen deprivation. This research aimed to examine the effects of light intensity and light pattern on H₂ production by *Chlorella* sp. LSD-W2 under nitrogen deprivation. The result showed that H₂ production rate was significantly enhanced when light intensities were increased. The cells could hardly produce H₂ in the dark. The highest H₂ production rate with $0.956 \pm 0.015 \text{ mL L}^{-1} \text{ h}^{-1}$ was obtained in cells incubated in TAP-N medium in a 120-mL glass bottle under light intensity of $60 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$. H₂ production by cells incubated under light/dark or dark/light cycles was lower than that under continuous light illumination. In order to reduce O₂ which is an inhibitor of hydrogenase enzyme, the PSII inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was added to the *Chlorella* sp. LSD-W2 cell cultures. It was found that O₂ was obviously decreased in cells treated with 10 μM DCMU. Unexpectedly, DCMU caused the reduction of H₂ production by *Chlorella* sp. LSD-W2.

Keywords: Hydrogen production, *Chlorella* sp. LSD-W2, Light intensity, Light pattern, DCMU

1. Introduction

The world has been confronted with an energy crisis due to the depletion of finite fossil fuels [1]. Another problem with using fossil fuels is their emission of a main greenhouse gas CO₂ and other pollutants during combustion [1]. Molecular hydrogen (H₂) is an ideal alternative fuel for the future because the combustion of H₂ provides the highest energy value of 141.6 MJ kg⁻¹ [2] and generates clean products without an emission of CO₂. Many microorganisms are capable of utilizing energy resources and some chemical compounds obtained from various metabolic pathways to produce biological H₂. Several green algae are able to produce H₂ via photosynthetic pathway in the light by using water as an electron source and sunlight as an energy source or via starch catabolism in the dark [3 & 4]. H₂ evolution by green algae is catalyzed by [FeFe]-hydrogenase enzyme located in the chloroplast stroma [5 & 6]. However, this enzyme is extremely sensitive to O₂, which is evolved during the light-dependent reactions of photosynthesis [7 & 8].

The unicellular green alga *Chlorella* sp. LSD-W2 isolated from seawater in Laemsadet beach, Chanthaburi province, Thailand, has been reported to produce high H₂ under nitrogen deprivation [9]. Its H₂ production rate under nitrogen deprivation was 2-4 folds higher than that under normal condition [9 & 10]. It also showed high H₂ production under phosphorus deprivation [10]. Besides nutrient deprivation, light intensity and light pattern play an important role in growth, photosynthesis and H₂ evolution in green microalgae [11-16]. Normally, green algae require light as energy source via photosynthesis for H₂ production. However, under high light intensity H₂ production is inhibited resulting from the simultaneous O₂ evolution during photosynthesis [11 & 15].

Therefore, the optimal light intensity and pattern is necessary for H₂ production by green microalgae. In the previous studies, the enhancement of H₂ production is found in green algae *Chlorella vulgaris* and *Parachlorella kessleri* when the cultures were exposed to the light/dark cycles [14 & 16]. In this study, the effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of electron transport from photosystem II (PSII) to plastoquinone (PQ), on H₂ production by *Chlorella* sp. LSD-W2 is also investigated. DCMU has been reported to inhibit O₂ evolution in green algae [17-19]. An addition of DCMU to the *Chlorella pyrenoidosa* culture improved H₂ production in *Chlorella pyrenoidosa* [20]; however, a decrease of H₂ production after addition of DCMU was found in *Chlorella protothecoides* [21] and *Chlorella sorokiniana* [22]. Whether DCMU stimulates or inhibits H₂ production by *Chlorella* sp. LSD-W2, it needs to clarify.

This present study describes the effects of light intensity and light pattern on H₂ production by *Chlorella* sp. LSD-W2 under nitrogen-deprived condition. In addition, effect of DCMU, an inhibitor of PSII activity, on H₂ and O₂ production was also examined.

2. Materials and methods

2.1 Green algal strain and growth condition

Chlorella sp. LSD-W2 isolated from seawater in Laemsadet beach, Chanthaburi province, Thailand [9] as grown in a 120-mL glass bottle containing 90 mL of Tris-acetate-phosphate (TAP) medium (pH 7.2) containing 20 mM Tris, 17 mM acetic acid, 1.65 mM K₂HPO₄, 1.05 mM KH₂PO₄, 7 mM NH₄Cl, 0.83 mM MgSO₄·7H₂O, 0.45 mM CaCl₂·2H₂O and very low concentrations of various trace elements [23]. The initial cell concentration was adjusted to OD₇₅₀ value of approximately 0.100. Cells were mixed with a magnetic stirrer and cultivated under a continuous light intensity of 30 μ mol photons m⁻² s⁻¹ at 30 °C for 36 h.

2.2 Effect of light intensity and light pattern on H₂ production

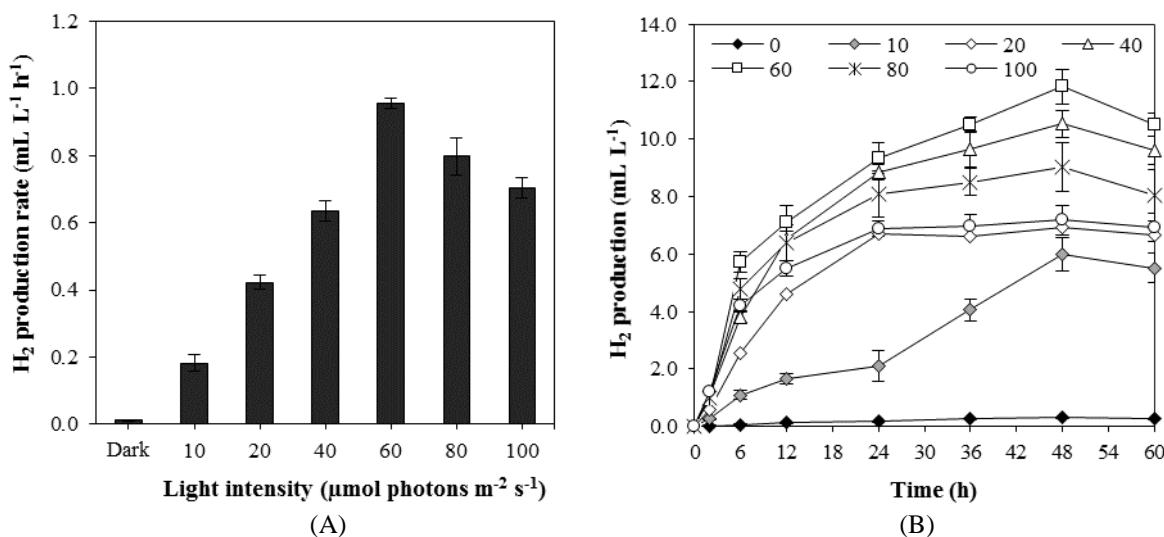
Chlorella sp. LSD-W2 grown for 36 h was harvested by centrifugation at 7,000×g at 4 °C for 10 min, washed twice and resuspended in 90 mL of nitrogen-deprived TAP (TAP-N) medium. The 90-mL cell suspension with OD₇₅₀ of approximately 0.8 was transferred into a 120-mL glass bottle. The headspace gas volume in the bottle was set at 30 mL. The cells were further incubated under light intensity of 30 μ mol photons m⁻² s⁻¹ for 24 h to adapt cells under nitrogen deprivation before purging with argon gas for 20 min to remove O₂. After that, cells were illuminated by fluorescent lamps at different light intensities from 0, 10, 20, 40, 60, 80 to 100 μ mol photons m⁻² s⁻¹ for 60 h. For studying on light pattern, light/dark or dark/light cycles with a time period of light 3 h and dark 3 h were provided to the cell suspension. H₂ was quantitatively determined from 500 μ L of headspace gas using gas chromatograph.

2.3 Effect of DCMU on H₂ and O₂ production

Chlorella sp. LSD-W2 grown for 36 h was harvested by centrifugation at 7,000×g at 4 °C for 10 min, washed twice and resuspended in 90 mL of TAP-N medium. The 90-mL cell suspension with OD₇₅₀ of approximately 0.8 was transferred into a 120-mL glass bottle. The headspace gas volume in the bottle was set at 30 mL. The cells were subsequently incubated under light intensity of 30 μ mol photons m⁻² s⁻¹ for 24 h. DCMU was added to the cultures with a final concentration of 10 μ M. The cell culture was purged with argon gas for 20 min, and then it was placed under the optimal light intensity for H₂ production (obtained from the optimal light intensity result). Measurement of H₂ and O₂ in headspace gas was performed using gas chromatograph.

2.4 H₂ and O₂ measurement

During H₂ production of cells under anaerobic condition, 500 μ L of gas samples were withdrawn from the headspace of a 120-mL glass bottle using a gas-tight syringe. H₂ and O₂ evolution was determined using gas chromatograph (Hewlett-Packard HP5890A, Japan) with a molecular sieve 5 Å 60/80 mesh packed column and a thermal conductivity detector. Argon gas was used as a carrier gas. The GC condition was performed according to Taikhao and coworkers [24]. Three replicates were used for each treatment. H₂ production rate were calculated as the maximum H₂ concentration produced by 1 liter of the algal cultures per a period of incubation time and expressed in a unit of mL H₂ L⁻¹ h⁻¹.


2.5 Statistical analysis

The results in this study were analyzed by one-way analysis of variance (ANOVA) using IBM SPSS statistics software (version 24.0) with a 95% significant confidence level. Data are presented as mean \pm standard deviation (SD) of three replicates.

3. Results

3.1 Effect of light intensity on H_2 production rate

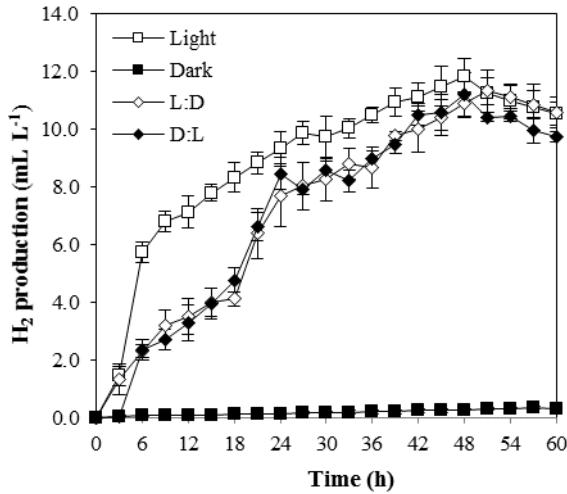

To investigate the effect of light intensity on H_2 production of *Chlorella* sp. LSD-W2 under nitrogen-deprived condition, cells were incubated in TAP-N medium under continuous illumination with different light intensities from 0, 10, 20, 40, 60, 80 to 100 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. It was found that H_2 production rate of *Chlorella* sp. LSD-W2 was significantly enhanced with an increase of light intensities until cells gave the maximum H_2 production rate of $0.956 \pm 0.015 \text{ mL L}^{-1} \text{ h}^{-1}$ when incubated in TAP-N medium under light intensity of $60 \mu\text{mol photons m}^{-2} \text{s}^{-1}$ (Figure 1A). A decrease of H_2 production was found when light intensity was higher than $60 \mu\text{mol photons m}^{-2} \text{s}^{-1}$ (Figure 1A). In contrast, cells could hardly produce H_2 under dark condition (Figure 1A). Figure 1B shows the time course of cumulative H_2 production by this green alga. The results showed that cells enhanced H_2 production related to the incubation time under anaerobic condition. The maximum H_2 production of $11.828 \pm 0.610 \text{ mL L}^{-1}$ was found after incubating cells under anaerobic condition with light intensity of $60 \mu\text{mol photons m}^{-2} \text{s}^{-1}$ for 48 h. Therefore, the light intensity of $60 \mu\text{mol photons m}^{-2} \text{s}^{-1}$ is optimal for H_2 production by *Chlorella* sp. LSD-W2 and was used in the further experiments.

Figure 1 H_2 production rate (A) and time course of H_2 production (B) by *Chlorella* sp. LSD-W2 under continuous illumination with different light intensities

3.2 Effect of light pattern on H_2 production rate

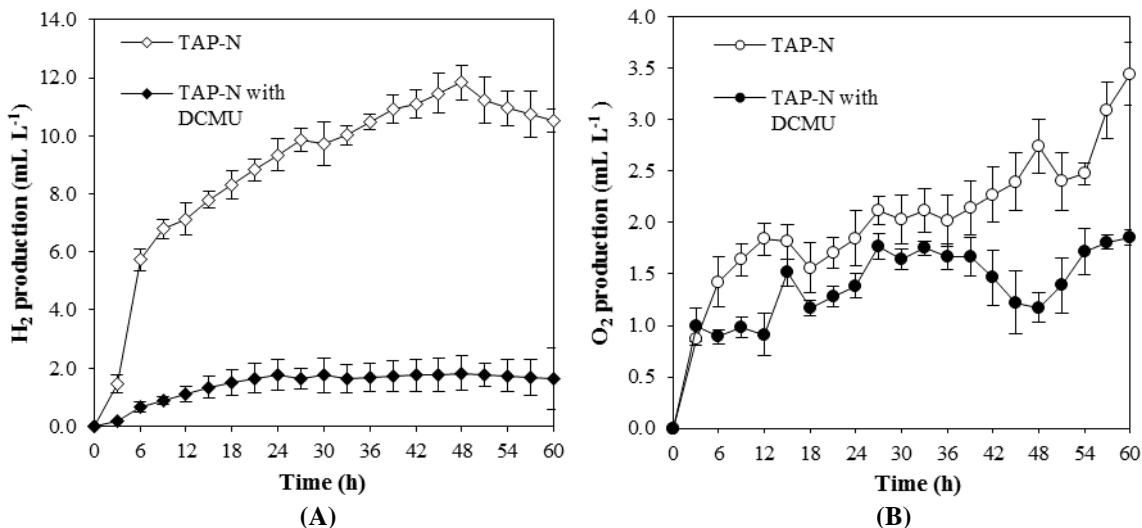

The cell cultures of *Chlorella* sp. LSD-W2 were incubated under four different light patterns; (1) continuous light, (2) continuous dark, (3) 3 h light : 3 h dark cycle and (4) 3 h dark : 3 h light cycle. In the light period, light intensity of $60 \mu\text{mol photons m}^{-2} \text{s}^{-1}$ was provided to the cells. The result showed that *Chlorella* sp. LSD-W2 gave the highest H_2 production with $11.828 \pm 0.610 \text{ mL L}^{-1}$ when cells were incubated under continuous light illumination for 48 h (Figure 2). On the other hand, cells were not able to produce H_2 in the dark during 60 h of incubation (Figure 2). At the beginning of incubation, H_2 production by cells incubated under light/dark or dark/light illumination cycles was lower than that under continuous light illumination. However, at the end of incubation, cells incubated under illumination cycles reached the maximum H_2 production as found under continuous light condition (Figure 2). Interestingly, cells produced high H_2 during light period but produced less H_2 in the dark until H_2 production reached the saturation level (Figure 2).

Figure 2 Time course of H_2 production by *Chlorella* sp. LSD-W2 under continuous light (□), continuous dark (■), 3 h light : 3 h dark cycle (◇) and 3 h dark : 3 h light cycle (◆) (The light intensity was provided at 60 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$)

3.3 Effect of DCMU on H_2 and O_2 production

Under a continuous light illumination, *Chlorella* sp. LSD-W2 produced the highest H_2 ; however, O_2 is also evolved during photosynthesis. DCMU, an inhibitor of PSII activity, was used in this experiment to get rid of O_2 in the cells. It was shown that significant H_2 production of cells untreated with 10 μM DCMU was observed after incubation in the light for 3 h, while cells hardly produced H_2 when treated with 10 μM DCMU (Figure 3A). The maximum H_2 production with $11.828 \pm 0.610 \text{ mL L}^{-1}$ was found in DCMU-untreated cells incubated in nitrogen-deprived TAP under continuous light illumination for 48 h, whereas the maximum H_2 production of DCMU-treated cells was only $1.829 \pm 0.585 \text{ mL L}^{-1}$. To investigate the effect of DCMU on O_2 evolution in the presence of DCMU, O_2 production was measured during light incubation. It was found that cells treated with DCMU produced significantly less O_2 than cells untreated with DCMU (Figure 3B). After 48 h of incubation, O_2 concentrations at 1.172 ± 0.145 and $2.740 \pm 0.260 \text{ mL L}^{-1}$ were found in DCMU-treated cells and -untreated cells, respectively.

Figure 3 H_2 (A) and O_2 (B) production by *Chlorella* sp. LSD-W2 under a continuous light intensity of 60 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$

4. Discussion

The unicellular green microalga *Chlorella* sp. LSD-W2 isolated from seawater in Thailand has been found to produce high potential H₂ under nitrogen deprivation [9]. In this study, we separated the H₂ production phase from the growth phase. In the growth phase, *Chlorella* sp. LSD-W2 was cultivated in normal TAP medium which is an enriched medium to accumulate biomass. After that cells were harvested and suspended in nitrogen-deprived TAP medium to enter the H₂ production phase. Under this condition, algal cells were not able to produce biomass due to the lack of nitrogen sources, essential for their cellular growth and metabolism [25]. Therefore, algal cells turn to use the excess electrons and protons to produce H₂ instead. In this study, the effect of light intensity and light pattern on H₂ production by *Chlorella* sp. LSD-W2 was investigated under nitrogen deprivation. It was suggested that under nitrogen deprivation, light was not used for the algal biomass production but it provided a light energy for photosynthesis and transferred electrons from the photosynthetic electron transport chain to hydrogenase enzyme for H₂ production. H₂ production rate of *Chlorella* sp. LSD-W2 was enhanced when light intensities were increased until reaching its highest H₂ production rate at the light intensity of 60 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ (Figure 1). Under low light intensity, low light absorption by antenna chlorophylls is occurred in the photosynthetic membranes. It causes a decrease in photosynthetic electron transfer and finally resulting in the reduction of H₂ production [12]. When light intensities are increased, more electrons are transferred via the photosynthetic electron transport chain to a final electron acceptor ferredoxin (Fd). Then, Fd transfers electrons to [FeFe]-hydrogenase which catalyzes the reduction reaction of electrons and protons to generate H₂. This promoted the highest level of H₂ production. However, too high light intensities lead to an acceleration of the rate of O₂ evolution, obtained from the water-splitting reaction via PSII activity. The higher O₂ level inhibits [FeFe]-hydrogenase activity [11 & 15]. Therefore, the optimal light intensity causes the highest electron transfer in the photosynthetic process but the evolved O₂ concentration is at level that does not negatively affect the hydrogenase activity. This result was consistency with the result in a previous report in *C. pyrenoidosa* showing that the highest H₂ production of *C. pyrenoidosa* was shown when incubated cells under the light intensity of 30 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ because this light intensity is favored to establish anaerobiosis in this strain [15].

To investigate the response of light pattern on H₂ production, cells were incubated under four different light patterns; (1) continuous light, (2) continuous dark, (3) 3 h light : 3 h dark cycle and (4) 3 h dark : 3 h light cycle. *Chlorella* sp. LSD-W2 gave the maximum H₂ production under nitrogen deprivation when incubated cells under continuous light condition. The highest H₂ production rate was observed during 3-9 h of continuous light incubation (Figure 2). In contrast, cells could not produce H₂ under continuous dark condition, confirming the requirement of light as an electron source for H₂ evolution by this organism. In general, H₂ can be produced by green algae via two different electron transport pathways; PSII-dependent and -independent pathways [4 & 26]. The former, PSII-dependent pathway, is involved in the water photolysis which gives rise to a numerous number of electrons used as a substrate for hydrogenase activity [7 & 27]. This pathway usually takes place in the light. The latter PSII-independent pathway is involved in the utilization of electrons obtained from the catabolism of carbohydrate reserve and the transfer of electrons into the photosynthetic electron transport chain via non-photochemical PQ-reduction [28]. The catabolism of accumulated starch in the dark is catalyzed by the key enzyme pyruvate: ferredoxin oxidoreductase [29]. Moreover, the rate of photosynthesis and respiration of cells indicates level of O₂ evolution and O₂ elimination in the cells, respectively. In this study, we found that an anaerobic incubation under continuous light intensity of 60 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ resulted in the maximum H₂ production of $11.828 \pm 0.610 \text{ mL L}^{-1}$ by providing the number of electrons optimal for H₂ production and balancing the O₂ level between photosynthesis and respiration. The similar result with the final H₂ production of 12.0 mL L^{-1} was also demonstrated in *C. sorokiniana* incubated in nitrogen-free TAP medium under the continuous light intensity of 40 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ [22].

In this study, cells were therefore exposed under light/dark or dark/light cycles with a time period of light 3 h and dark 3 h. The result showed that H₂ production by *Chlorella* sp. LSD-W2 was slightly increased or constant (in some cycle) during 3 h of dark period but it was increased during light period (Figure 2), suggesting that PSII activity in light period mainly provides electrons for H₂ production. However, cells gave less H₂ production under illumination cycles than those under continuous light (Figure 2). This is because cells need the time to adapt themselves for response the light cycle regimes by changing their cellular metabolisms; therefore, it requires a longer lag time for starting H₂ metabolism under illumination cycles. This result agreed with the previous study in *Chlamydomonas reinhardtii* reported that cells produced H₂ under the light but did not produce H₂ in the dark [7] and extended the lag time of H₂ production for the cycle regimes [13]. By comparison under light/dark and dark/light cycles with a time period of light 3 h and dark 3 h, H₂ production by *Chlorella* sp. LSD-W2 were not significantly different (Figure 2). It can be explained that the duration time of 3 h of both light and dark period was too short to push a large number of electrons forward to hydrogenase. This led to the slow H₂ production rate. However, cells under light/dark or dark/light cycles could produce the maximum H₂ production of 11.311 ± 0.456 and $11.177 \pm 0.765 \text{ mL L}^{-1}$, respectively, after incubation cells for 48 h. These H₂

production yields did not much difference with the maximum H₂ production of 11.828 ± 0.610 mL L⁻¹ of cells incubated under continuous light. In addition, no H₂ production was observed under continuous dark period whereas an obvious H₂ production was found under dark period of light/dark and dark/light cycles. It could be explained that the main electron sources for hydrogenase activity are obtained from PSII-dependent pathway; therefore, light is important for H₂ production by this algal strain. In economic aspects, incubation under light cycles helps to save energy but wastes longer time for collect the H₂ yield. In order to counterbalance production costs, the optimization of time period of dark and light cycles is necessary. This needs further investigation.

In order to reduce O₂ from PSII activity, DCMU was added to the *Chlorella* sp. LSD-W2 cell cultures. DCMU concentration mostly used to inhibit PSII activity for H₂ metabolism by many strains of *Chlorella* was 10 μ M [20 & 22]. In *C. pyrenoidosa*, H₂ production was enhanced by 10 μ M DCMU addition because this DCMU concentration provided absolutely O₂ evolution inhibition [20]. On the contrary, an addition of 10 μ M DCMU in *Chlorella* sp. LSD-W2 cells in the present study caused the significant inhibition of H₂ production under continuous illumination (Figure 3). Even though O₂ production of cells treated with 10 μ M DCMU was less than that of untreated cells (Figure 3), suggesting that a decrease of O₂ concentration by DCMU does not obviously affect H₂ production by this strain. It is possible that a decrease of H₂ production by DCMU comes from the less photosynthetic electron transfer. H₂ production of *Chlorella* sp. LSD-W2 might be light-dependent which receives electrons from residual PSII activity to hydrogenase activity. A block of electron transport from PSII to PQ by DCMU results in a decrease in H₂ production. This study agreed with the previous studies found in *C. protothecoides* [21], *C. sorokiniana* [22] and *C. reinhardtii* [26 & 30] that DCMU significantly reduced H₂ production. It was suggested that DCMU below 10 μ M might increase H₂ production by *Chlorella* sp. LSD-W2. In addition, due to the function of DCMU as a PSII inhibitor, DCMU might also affect the biomass and pigment concentrations of *Chlorella* sp. LSD-W2. In *C. sorokiniana*, DCMU showed little effect on the maximum dry weight and lipid content in the heterotrophic culture, but caused the obvious decrease in the mixotrophic culture [31]. Whether DCMU causes the decline in the concentration of biomass and other biochemical products, further investigations are needed.

5. Conclusions

In summary, light intensity, light pattern and the presence of DCMU influence H₂ production in nitrogen-deprived *Chlorella* sp. LSD-W2 cultures. The highest H₂ production rate of 0.956 ± 0.015 mL L⁻¹ h⁻¹ and the maximum H₂ production yield of 11.828 ± 0.610 mL L⁻¹ were obtained in cells incubated in nitrogen-deprived TAP medium under the continuous light intensity of 60 μ mol photons m⁻² s⁻¹. The presence of DCMU causes a decrease of H₂ production and O₂ evolution by this green algal strain, resulting from the inhibition of electron transport from PSII to PQ.

6. Acknowledgements

This research was financially supported by the grant from Faculty of Science, King Mongkut's Institute of Technology Ladkrabang (Contract number A118-0260-040).

7. References

- [1] Capellán-Pérez I, Mediavilla M, de Castro C, Carpintero Ó, Miguel LJ. Fossil fuel depletion and socio-economic scenarios: An integrated approach. *Energy*. 2014;77: 641-666.
- [2] Perry JH. *Chemical engineers' handbook*. McGraw-Hill: New York; 1963.
- [3] Gfeller RP, Gibbs M. Fermentative metabolism of *Chlamydomonas reinhardtii* I. Analysis of fermentative products from starch in dark and light. *Plant Physiol*. 1984;75:212-218.
- [4] Melis A, Happe T. Hydrogen production. Green algae as a source of energy. *Plant Physiol*. 2001;127:740-748.
- [5] Happe T, Kaminski A. Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga *Chlamydomonas reinhardtii*. *Eur J Biochem*. 2002;269:1022-1032.
- [6] Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M. Expression of two [Fe]-hydrogenases in *Chlamydomonas reinhardtii* under anaerobic conditions. *Eur J Biochem*. 2003;270:2750-2758.
- [7] Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga *Chlamydomonas reinhardtii*. *Plant Physiol*. 2000;122:127-136.
- [8] Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. *Proc Natl Acad Sci USA*. 2009;106:17331-17336.

[9] Tinpranee N, Incharoensakdi A, Phunpruch S. Hydrogen production by unicellular green alga *Chlorella* sp. LSD-W2 isolated from seawater in Thailand. *Asia Pac J Sci Technol.* 2016;22(1):256-266.

[10] Puangplub A, Incharoensakdi A, Phunpruch S. Screening of green algae isolated from natural water sources in Thailand for H₂ production. The Proceeding of 55th Kasetsart University Annual Conference; 2017 Jan 31-Feb 3; Bangkok, Thailand; 2017.p.199-206.

[11] Laurinavichene T, Tolstygina I, Tsygankov A. The effect of light intensity on hydrogen production by sulfur-deprived *Chlamydomonas reinhardtii*. *J Biotechnol.* 2004;114: 143-151.

[12] Kim JP, Kang CD, Park TY, Kim MS, Sim SJ. Enhanced hydrogen production by controlling light intensity in sulfur deprived *Chlamydomonas reinhardtii* culture. *Int J Hydrogen Energy.* 2006;31:1585-1590.

[13] Oncel S, Vardar Sukan F. Effect of light intensity and the light: dark cycles on the long term hydrogen production of *Chlamydomonas reinhardtii* by batch cultures. *Biomass Bioenerg.* 2011;35:1066-1074.

[14] Rashid N, Lee K, Mahmood Q. Bio-hydrogen production by *Chlorella vulgaris* under diverse photoperiods. *Bioresour Technol.* 2011;102:2101-2104.

[15] Wang H, Fan X, Zhang Y, Yang D, Guo R. Sustained photo-hydrogen production by *Chlorella pyrenoidosa* without sulfur depletion. *Biotechnol Lett.* 2011;33:1345-1350.

[16] Gabrielyan, L, Hakobyan, L, Trchounian, A. Characterization of light-dependent hydrogen production by new green microalga *Parachlorella kessleri* in various conditions. *J Photochem Photobiol B.* 2017;175: 207-210.

[17] Antal TK, Krendelova TE, Rubin AB. Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production. *Appl Microbiol Biot.* 2011;89:3-15.

[18] Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T. Hydrogen production by *Chlamydomonas reinhardtii*: an elaborate interplay of electron sources and sink. *Planta.* 2008;227:397-407.

[19] Fouchard S, Hemschemeier A, Caruana A, Pruvost J, Legrand J, Happe T, Peltier G, Cournac L. Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived *Chlamydomonas* cells. *Appl Environ Microb.* 2005;71:6199-6205.

[20] Liu JZ, Ge YM, Xia SY, Sun JY, Mu J. Photoautotrophic by *Chlorella pyrenoidosa* without sulfur-deprivation. *Int J Hydrogen Energy.* 2016;41:8427-8432.

[21] Zhang L, He M, Liu J. The enhancement mechanism of hydrogen photoproduction in *Chlorella protothecoides* under nitrogen limitation and sulfur deprivation. *Int J Hydrogen Energy.* 2014;39:8969-8976.

[22] Pongpadung P, Zhang L, Sathasivam R, Yokthongwattana K, Juntawong N, Liu J. Stimulation of Hydrogen Photoproduction in *Chlorella sorokiniana* Subjected to Simultaneous Nitrogen Limitation and Sulfur-and/or Phosphorus-Deprivation. *J Pure Appl Microbiol.* 2018;12(4):1719-1727.

[23] Harris EH, The *Chlamydomonas* sourcebook: a comprehensive guide to biology and laboratory use. San Diego: Academic Press; 1989.

[24] Taikha S, Junyapoon S, Incharoensakdi A, Phunpruch S. Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium *Aphanothecace halophytica*. *J Appl Phycol.* 2013;25:575-585.

[25] Ji CF, Yu XJ, Chen ZA, Xue S, Legrand J, Zhang W. Effects of nutrient deprivation on biochemical compositions and photo-hydrogen production of *Tetraselmis subcordiformis*. *Int J Hydrogen Energy.* 2011;36(10):5817-5821.

[26] Chochois V, Dauvillee D, Beyly A, Tolleter D, Cuine S, Timpano H, Ball S, Cournac L, Peltier G. Hydrogen production in *Chlamydomonas*: photosystem II-dependent and -independent pathways differ in their requirement for starch metabolism. *Plant Physiol.* 2009;151:631-640.

[27] Kosourov S, Tsygankov A, Seibert M, Ghirardi ML. Sustained hydrogen photoproduction by *Chlamydomonas reinhardtii*: effects of culture parameters. *Biotechnol Bioeng.* 2002;78:731-740.

[28] Mus F, Cournac L, Cardettini V, Caruana A, Peltier G. Inhibitor studies on non-photochemical plastoquinone reduction and H₂ photoproduction in *Chlamydomonas reinhardtii*. *Biochim Biophys Acta.* 2005;1708(3):322-332.

[29] Noth J, Krawietz D, Hemschemeier A, Happe T. Pyruvate : ferredoxin oxidoreductase is coupled to light-independent hydrogen production in *Chlamydomonas reinhardtii*. *J Biol Chem.* 2013;288:4368-4377.

[30] Antal TK, Volgusheva AA, Kukarskikh GP, Krendelova TE, Rubin AB. Relationships between H₂ production and different electron transport pathways in sulfur-deprived *Chlamydomonas reinhardtii*. *Int J Hydrogen Energy.* 2009;34:9087-9094.

[31] Li T, Zheng Y, Yu L, Chen S. Mixotrophic cultivation of a *Chlorella sorokiniana* strain for enhanced biomass and lipid production. *Biomass Bioenerg.* 2014;66:204-213.