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Abstract 

 

Supply chain planning consists of designing an optimal and feasible production and distribution plan for the whole 

supply chain.  Traditionally, two common methods of optimization are analytical and simulation- based 

optimization, and each of them has pros and cons.  In this paper, both methods are combined to consolidate the 

strengths of each, also known as the hybrid analytical and simulation approach.  A case study of a multi-period, 

multi-echelon, and multi-product production and distribution problem that maximizes the whole supply chain’ s 

profit is introduced, to demonstrate the proposed hybrid approach.  The analytical model is solved to find the 

optimal production-distribution plan, and then the plan is inputted into a simulation model, where uncertainties 

are incorporated. The proposed algorithm is then applied to identify a feasible plan that meets makespan limitation 

and service level requirements. Safety stock is incorporated to satisfy the service level requirements and maximize 

the supply chain’s profit.  This procedure continues iteratively until the production-distribution plan is feasible 

and optimized.  The results show that the proposed approach can solve for a near or possibly optimal as well as 

feasible solution with relatively fast computational time. 

 

Keywords: Production-distribution planning, Hybrid analytical-simulation optimization, Makespan, Safety 

stock 

 

1. Introduction 

 

A supply chain consists of activities involved in the production and distribution of products.  A supply chain 

can generally be divided into two parts: production and distribution. Production consists of planning and control 

of the entire manufacturing process, such as production itself, material handling, scheduling, and inventory 

control.  Distribution consists of processes that determine how products are retrieved and transported from the 

suppliers, manufacturer, or warehouse to customers, including the management of inventory retrieval, 

transportation, and final product delivery [1]. 

Supply chain optimization aims to plan and design the best production, storage locations, flow of materials 

among facilities, and transportation in the chain to either maximize the profit or minimize the costs.  Two 

traditional optimization approaches are the analytical and simulation-based optimization methods.  Analytical or 

mathematical model optimization can solve problems efficiently and quickly, but provides static information.  In 

contrast, simulation-based optimization can solve problems under uncertainties and is capable of solving complex 

models.  It is popular for solving most realistic problems but requires a long computational time and does not 

guarantee an optimal solution.  Therefore, the hybrid analytical- simulation approach is proposed in this study, to 

be a useful way to reduce the computational time and provide realistic results.  However, after the optimal 

production-distribution plan is achieved, the plan could be infeasible. For example, the optimal plan might suggest 

to produce all products in the first period for its low production cost.  This creates too much workload in the first 

period and allowing the subsequent periods to be idle, which is unlikely to happen in real life because of the 
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working time limit.  The service level is one of the main requirements from customers that a company must 

consider. The optimal plan may suggest to ignore a customer completely as the shortage cost incurring from that 

customer is the least among all customers.  Therefore, service level constraints must be introduced to ensure that 

all customers receive products no less than the minimum service level.  It is imperative for the production-

distribution plan to satisfy the service level requirement and complete before the working time limit imposed by 

the law or availability of labor.  These two crucial requirements are addressed in this paper.  First different types 

of optimization methods various methods of optimization have been introduced to solve problems in the supply 

chain, ranging from solving the optimal production plan to solving the optimal supply chain network. Beamon [1] 

provided a focused review of the literature in multi- stage and multi- shop supply chain modeling and suggested 

four categories of models:  deterministic analytic, stochastic analytic, economic, and simulation.  Deterministic 

analytic can be modeled simply and solved efficiently with mathematical formulation, however does not include 

uncertainty, while the stochastic analytic can consider uncertainty.  Economic model is used as a framework for 

modeling the buyer- supplier relationship in a supply chain.  Simulation is the use of software to imitate the 

behavior of a system that would otherwise be difficult to analyze in reality.  In this study, we will focus on the 

deterministic analytic and simulation modelling. 

Deterministic analytical optimization is one of the classic methods of optimization.  Its ability to achieve a 

globally optimal solution makes it an ideal choice for optimization.  However, its inability to incorporate 

uncertainties makes it difficult to represent real- life scenarios under various uncertainties.  An example of 

analytical optimization is presented by Susarla & Karimi [2]  where they solved for the optimal production and 

distribution plan that maximizes the profit of a pharmaceutical supply chain. 

The simulation- based optimization model has been popular during the last decade with increasing 

computational power.  Fu [ 3]  indicated that current commercial software mainly combines heuristics and 

simulation in which a satisfactory solution can be obtained from working with the families of solutions.  The 

biggest problem found, when applying simulation-based optimization, is that the stochastic nature of the systems 

is unaware. Thus, the efficiency of computation resources is not fully utilized. Variance reduction techniques are 

suggested in order to improve the convergence rate. Glover et al. [4] presented a simulation-based optimization 

model using a practical software system called OptQuest, which combines three metaheuristics to optimize 

decisions.  Layeb [5]  also used OptQuest to solve a scheduling problem in freight transportation.  However, its 

long computational solving time has led to various modifications to lower the computational time. Chiadamrong 

& Kawtummachai [ 6]  used a Genetic Algorithm (GA)  to solve for the best transportation route and inventory 

position in the Thai sugar industry distribution system.  The model solves for the minimal cost of sugar transport 

from the origin (mills) to the destination (seaports). The approach incorporates the uncertainties in the distribution 

network such as clients’ demands, travel time, and order-picking time by using GA-based heuristics. 

Second is the hybrid analytical-simulation methods to further increase the computational speed and get a better 

solution, many researchers started integrating the simulation model with the analytical model for achieving a 

reasonable computational time and solution.  Acar et al.  [ 7]  proposed a hybrid method that uses mathematical 

optimization to solve for the optimal solution. Then, a simulation model of the analytical solution determines the 

impact of uncertainty on the objective function.  The difference between the analytical and simulated objective 

function is included in the mathematical formulation.  The process continues iteratively until a solution (with 

uncertainty impact from the simulation model)  is found to be optimal in the current mathematical formulation. 

Thammatadatrakul & Chiadamrong [8]  further modified Acar et al. ’ s [ 7]  solving procedure.  They used the 

modified hybrid method to find the optimal inventory control policy of a hybrid manufacturing–remanufacturing 

system.  Chiadamrong & Piyathanavong [ 9]  combined analytical and discrete event simulation models for 

optimizing an agricultural product supply chain network design.  The proposed method solves the problem 

iteratively until the difference between the succeeding solutions satisfies the pre-determined termination criteria. 

The analytical model is used to solve for the best storage locations, and then the simulation-based optimization 

model improves the solution further under a stochastic environment with uncertainty arising from customer 

demand, plant production levels, and delivery lead time. The procedure ends when the solution cannot be further 

improved.  

After the hybrid analytical and simulation method have sparked interest in the research area of optimization, 

many researchers started to apply this concept into various ways of optimization. Some studies have incorporated 

the utilization and capacities of the system as one of the criteria in determining the optimal solution. Ko et al. [10] 

proposed a hybrid optimization/simulation modeling approach for the design of a distribution network. GA-based 

heuristics was used to determine the dynamic distribution network.  Then, the simulation model determines the 

best capacities of warehouses based on the level of service time. Suyabatmaz et al. [11] used Ko et al. [10] and 

Acar et al. ’ s [ 7]  approach for solving the problem where the performance measures are related to the capacity 

utilization.  Byrne & Bakir [ 12]  proposed a hybrid analytical- simulation method to optimize the production 

planning in a multiperiod and multiproduct problem.  Linear Programming (LP)  was used to find the production 

level and inventory with inventory balance and capacity constraints.  The LP solution is then inputted into a 

simulation model and checked for the capacity. The solving process stops when the capacity is feasible. Otherwise, 
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the capacity in LP is adjusted and the solving process is repeated until the optimal and feasible solution is found. 

Lee & Kim [13]  extended Byrne & Bakir’ s [ 12]  study by increasing the complexity of the supply chain and 

modifying the capacity adjustment method.  Lee & Kim [13]  combined the analytic and simulation method to 

solve production-distribution problems in a supply chain.  They optimized the problem analytically to obtain 

outputs that will be then be used as inputs in the next simulation procedure.  Then, the output of the simulation, 

which is the makespan, was obtained and checked as to whether it met a certain criterion or not. If not, the capacity 

in the mathematical model was adjusted and recomputed, which is the beginning of a new iteration. This approach 

continues iteratively until the result from the simulation model meets the criterion and the procedure ends with 

the optimal production-distribution plan. 

Many studies have also implemented the hybrid analytical-simulation optimization approach in real case 

studies with disparate constraints. Martins et al. [14] proposed a hybrid optimization and simulation approach for 

solving the wholesaler network redesign problem in the pharmaceutical business. The tradeoffs in the problem 

are the operational costs versus customer service levels. The tactical-strategic level problem is first solved by a 

mixed-integer linear programming (MILP) model. The capacity, number, and location of the warehouses are 

defined at this step. At the operational level, the solution from the MILP model is evaluated by the simulation 

model to evaluate the impact of the wholesaler’s daily activities, and eventually the customer service level. de 

Keizer et al. [15] presented a hybrid optimization and simulation approach for finding the optimal network design 

for flowers under product quality requirement constraints. The mixed-integer linear programming (MILP) model 

is solved. Then, a discrete event simulation is used to check the feasibility of the plan given by the MILP, 

considering uncertainties in processing, supply, and transport. The initial MILP always suggests a plan with the 

lowest cost. However, the products will arrive at the retailer with too low a quality. A constraint on the 

approximated product quality is therefore added to the MILP model. The whole process is iteratively solved until 

a minimal cost solution is found that is feasible according to the simulation model. Table 1 summarizes different 

methods of optimization and various approaches of hybrid analytical-simulation optimization. 

 

Table 1 Literature review of different methods of optimization. 
Analytical optimization Heuristic and simulation-based 

optimization 

Hybrid optimization 

Authors Area of interest Authors Area of interest Authors Area of interest 

Susarla & 

Karimi 

(2012) [2] 

Optimal production 

and distribution 

plan of 

pharmaceutical 

supply chain. 

Fu (2002) [3] Overview of 

simulation-based 

optimization. 

Acar et al. (2009) 
[7] 

Hybrid analytical-

simulation method 

by determining the 

impact of 

uncertainty on the 

objective function. 

  Glover  

et al. (1999) [4] 

Introduction of 

simulation based- 

optimization tool 

called OptQuest. 

Thammatadatrakul 

& Chiadamrong 

(2017) [8] 

Optimal inventory 

control policy of a 

hybrid 

manufacturing-

remanufacturing 

system. 

  Layeb  

et al. (2018) [5] 

Simulation-based 

optimization for 

scheduling freight 

transportation. 

Chiadamrong & 

Piyathanavong 

(2017) [9] 

Combination of 

analytical and 

simulation models 

for optimizing an 

agricultural product 

supply chain. 

  Chiadamrong & 

Kawtummachai 

(2008) [6] 

Optimal inventory 

position and 

transportation 

route in Thai 

sugar distribution 

system by Genetic 

Algorithm. 

Ko et al. (2006) [10] Hybrid analytical-

simulation 

approach for the 

design of a 

distribution 

network. 

    Suyabatmaz et al. 

(2014) [11] 

Hybrid analytical-

simulation 

approach for 

reverse logistic 

network design. 
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Analytical optimization Heuristic and simulation-based 

optimization 

Hybrid optimization 

Authors Area of interest Authors Area of interest Authors Area of interest 

    Byrne & Bakir 

(1999) [12] 

Hybrid analytical-

simulation 

approach by 

modifying the 

capacity adjustment 

method. 

    Lee & Kim (2002) 
[13] 

Hybrid analytical-

simulation 

approach in 

production-

distribution 

planning 

considering 

capacity 

constraints. 

    Martins et al. (2017) 
[14] 

Hybrid analytical-

simulation 

approach in 

pharmaceutical 

business balancing 

the tradeoffs 

between cost and 

service level. 

        de Keizer et al. 

(2015) [15] 

Hybrid analytical-

simulation 

approach in 

logistics network 

for perishable 

products under 

product quality 

constraints. 

 

Most of the papers reviewed have shown that combining the analytical and simulation models can improve 

both the computational time and the solution.  This has led us to pursue further approaches that can be 

implemented. The feasibility of a plan, including the working time limit in terms of limited makespan and possible 

required service level, has not been adequately considered in most studies. Therefore, the feasibility is considered 

in this study. As can be seen in most papers, the computational time is important, and potential methods to improve 

the computing speed are identified in this study.  

 

2. Materials and methods 

 

2.1 Case study 

 

Supply chain models contain various structures, but generally, there are two distinguishing models, production 

and distribution models, which are the most vital parts.  These two models can be linked together into one 

integrated model for a supply chain, which is called the production-distribution model.  The production model 

consists of production plants where the manufacturing and transformation processes of materials occur.  The 

distribution model consists of all locations that the products are stored and transported to, which commonly are 

upstream suppliers, distribution centers, warehouses, and downstream retailers. 

This hypothetical problem is a multi-period, multi-echelon, and multi-product production and distribution 

problem.  It is modified from Lee & Kim [13]  to illustrate our hybrid analytical and simulation optimization 

approach.  The flow in the supply chain in this study is illustrated in Figure 1.  The production system consists of 

two shops, where Shop 1 produces N parts to be used for the production of M products in Shop 2.  Each shop 

consists of 3 machine (MC) , arranging in a flow line.  Raw materials are inputted into the first machine of each 

shop, which are machine 1.1 and 2.1 (Figure 1) .  The arrows in Figure 1 shows the flow of production, starting 

from machine 1.1 and ending at machine 2.3.  The quantity of products produced is determined by the demand 

from the retailers, where the products are sold, and revenue earned. It is assumed that products are sold at the end 

of each period, and the remaining unsold products are transferred to the next period, resulting in a holding cost. 

 



5 

 
 

Figure 1 Production-distribution supply chain system in this study.  

 

The distribution system consists of a stack point, warehouses, and retailers. The stack point is a location where 

the finished goods from production are initially stored before being sent to warehouses or retailers.  Warehouses 

store the products before they are sent to retailers.  Raw materials and parts are assumed to be stored in the 

production plant.  It is assumed that backlogging is not permitted, so unsatisfied demand in the current period 

cannot be transferred to the next period and a shortage cost is incurred as lost sales.  Products are directly 

transferred in a unit size from the stack point to warehouses or retailers. The initial inventory at every location is 

assumed to be zero.  The goal is to maximize the supply chain profit, subject to various resource constraints.  For 

demonstrative purpose, there are 3 periods in this study. Each period represents one working month. Each month 

is assumed to have 21,600 minutes of working time (30 days/month × 12 hours/day × 60 minutes/hour). Therefore, 

the makespan limit or the time until all products are produced and distributed must not exceed 21,600 minutes in 

each period.  For other cases, this makespan limit may be the working hour limit imposed by law or the machine 

working capacity. The service level (SL), defined by Equation (1) is set to be at least 90% in this study for every 

product, retailer, and period. 

 

   𝑆𝐿 =   
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑠𝑜𝑙𝑑

𝑑𝑒𝑚𝑎𝑛𝑑
                      (1) 

 

Demand for each product at each retailer in each period is assumed to follow a normal distribution with a mean 

and a standard deviation (about 20% of the mean) as shown in Table 2. The number of units of raw materials or 

parts required to produce a unit of product or part is shown in Table 3.  The Bill of Materials of both products is 

shown in Figure 2. The monetary unit in this study is the dollar ($). 

 

Table 2 Mean and standard deviation of demand for product j at retailer q in period t (units). 

Retailer (q) 1 2 3 

Product (j) 1 2 1 2 1 2 

Mean Demand  

(Djqt) 

Period (t) 1 14 12 14 16 14 12 

2 16 10 16 16 12 14 

3 14 14 14 14 12 14 

Standard 

Deviation (sdjqt) 

Period (t) 1 3 2 3 3 3 2 

2 3 2 3 3 2 3 

3 2 3 3 3 2 3 

 

Table 3 Number of units of raw materials or parts required to produce one unit of product or part (units). 

Part (i) 1 2 Product (j) 1 2 Product (j) 1 2 

Material (k) 1 2 4 Material (r) 1 2 3 Part (i) 1 2 3 

2 3 2 2 2 2 2 3 4 
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Figure 2 Bill of Materials for Products 1 and 2. 

 

The production, holding, shortage, and distribution costs are shown in Tables 4 –  8.  The transportation time 

from each origin to the destination is shown in Table 7.  For example, transportation time from stack point to 

retailer 2 is 40 min and the cost is $25.  The production time of each part and product is shown in Table 9.  The 

holding capacity for each location in the supply chain is shown in Table 10. 

 

Table 4 Production cost ($) of part i, product j, and raw materials k and r in each period t. 

Part (i) 1 2 Product (j) 1 2 Raw Material (k) 1 2 Raw Material (r) 1 2 

Period (t) 1 15 10  30 30  4 3  4 5 

2 15 10  30 30  5 4  6 6 

3 15 10  30 30  7 5  7 8 

 

Table 5 Holding cost ($) of part i and raw materials k and r in each period t in the production plant.  

Part (i) 1 2 Raw Material (k) 1 2 Raw Material (r) 1 2 

Period (t) 1 12 10  5 5  5 5 

2 12 10  5 5  5 5 

3 12 10  5 5  5 5 

 

Table 6 Holding cost ($) of product j at the stack point, warehouse p, and retailer q.  

Product (j)  Stack Point Warehouse (p) Retailer (q) 

  1 2 1 2 3 

1 Period (t) 1 10 20 15 30 20 30 

2 10 20 15 30 20 30 

3 10 20 15 30 20 30 

2 Period (t) 1 10 15 20 40 50 40 

2 10 15 20 40 50 40 

3 10 15 20 40 50 40 

 

Table 7 Transportation cost ($) and time (min) for all products.  

Warehouse (p) 1 2 Retailer (q) 1 2 3 Retailer (q) 1 2 3 

Transportation 

cost ($) 

Stack 10 15 Stack 20 25 20 Warehouse (p) 1 20 20 15 

2 10 15 10 

Transportation 

time (min) 

Stack 80 90 Stack 50 40 50 Warehouse (p) 1 90 60 80 

2 80 70 90 

 

Table 8 Shortage cost ($) of each product j at retailer q in period t.  

Retailer (q) 1 2 3 

Product (j) 1 2 1 2 1 2 

Period (t) 1 550 700 600 750 600 700 

2 550 700 600 750 600 700 

3 550 700 600 750 600 700 
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Table 9 Production time (min). 

Shop 1 Shop 2 

  Machine (u)   Machine (v) 

  1 2 3   1 2 3 

Part (i) 1 15 10 10 Product (j) 1 30 20 30 

 2 15 15 5  2 30 30 20 

 

Table 10 Holding capacity of each location in the distribution system (units). 

 Stack Point Warehouse (p) Retailer (q) 

  1 2 1 2 3 

Period (t) 1 10 1,000 1,000 20 20 20 

2 10 1,000 1,000 20 20 20 

3 10 1,000 1,000 20 20 20 

 

2.2 Components in the hybrid analytical-simulation approach 

 

The hybrid analytical-simulation approach starts with formulating and solving the analytical model by CPLEX 

optimization software. This model contains no uncertainty; therefore, it does not accurately reflect the reality 

where there might be some uncertainties involved. The decision variables or outputs from the solution are used as 

values of the inputs in the simulation model. The outputs from the simulation model are checked to see if a certain 

criterion is met. Otherwise, the mathematical model adjusts itself and continues the process iteratively until all 

criteria are met. 

 

2.2.1 Analytical model 

 

A Mixed-Integer Linear Programming (MILP)  is used to solve the problem.  The objective of the problem is 

to maximize the profit of the supply chain. The mathematical formulation and notation are presented as follows: 

Indices: 

 

t  period (t = 1, 2, …, T) 

i  part in Shop 1 (i = 1, 2, …, I) 

j  product in Shop 2 (j = 1, 2, …, J) 

u  machine in Shop 1 (u = 1, 2, …, U) 

v  machine in Shop 2 (v = 1, 2, …, V) 

k  raw material used for Shop 1 (k = 1, 2, …, K) 

r  raw material used for Shop 2 (r = 1, 2, …, R) 

p  warehouse (p = 1, 2, …, P) 

q  retailer (q = 1, 2, …, Q) 

 

Parameters: 

 

Djqt   demand for product j at retailer q in period t (units) 

aij   units of part i required to produce one unit of product j (units) 

dki   units of raw material k required to produce one unit of part i (units) 

grj   units of raw material r required to produce one unit of product j (units) 

ciit   unit cost ($) of production for part i in period t  

cjjt   unit cost ($) of production for product j in period t  

ckkt   unit cost ($) of purchase for raw material k in period t  

crrt   unit cost ($) of purchase for raw material r in period t  

hiit   unit holding cost ($) of part i in period t  

hkkt   unit holding cost ($) of raw material k in period t  

hrrt   unit holding cost ($) of raw material r in period t  

HLjt  unit holding cost ($) of product j at stack point in period t  

HPjpt  unit holding cost ($) of product j at warehouse p in period t  

HQjqt  unit holding cost ($) of product j at retailer q in period t  

SQQjqt  unit shortage cost ($) of product j at retailer q in period t  

LPCp  unit cost ($) of transporting any product from stack point to warehouse p  

LQCq  unit cost ($) of transporting any product from stack point to retailer q  

PQCpq  unit cost ($) of transporting any product from warehouse p to retailer q  

LCt   holding capacity of all products at stack point in period t (units) 
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PCpt  holding capacity of all products at warehouse p in period t (units) 

QCqt  holding capacity of all products at retailer q in period t (units) 

aiiu   processing time to produce a unit of part i on machine u (min) 

ajjv   processing time to produce a unit of product j on machine v (min) 

Ap   time to transport any product from stack point to warehouse p (min) 

Bq   time to transport any product from stack point to retailer q (min) 

Cpq   time to transport any product from warehouse p to retailer q (min) 

WLCt  workload capacity in period t (min) 

Pricej  price of product j ($) 

SSjq  safety stock of product j at retailer q (units) 

 

Decision variables 

Xit   units of part i produced in Shop 1 in period t (units) 

Yjt   units of product j produced in Shop 2 in period t (units) 

Iiit   inventory of part i stored in the end of period t (units) 

Ekt   units of raw material k purchased in period t (units) 

Frt   units of raw material r purchased in period t (units) 

Ikkt   inventory of raw material k in period t (units) 

Irrt   inventory of raw material r in period t (units) 

LPjpt  units of product j transported from stack point to warehouse p in period t (units) 

LQjqt  units of product j transported from stack point to retailer q in period t (units) 

PQjpqt  units of product j transported from warehouse p to retailer q in period t (units) 

Ljt   units of product j stored at stack point in period t (units) 

Pjpt   units of product j stored at warehouse p in period t (units) 

Qjqt   units of product j stored at retailer q in period t (units) 

soldjqt  units of product j sold at retailer q in period t (units) 

WLt  workload of system in period t (min) 

 

Objective Function 

 

𝑀𝑎𝑥 𝑍 = 𝑃𝑟𝑜𝑓𝑖𝑡  
 𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − (𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 + 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 + 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 + 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝐶𝑜𝑠𝑡) 
 

  𝑃𝑟𝑜𝑓𝑖𝑡 =  ∑ ∑ ∑ 𝑠𝑜𝑙𝑑𝑗𝑞𝑡𝑝𝑟𝑖𝑐𝑒𝑗
𝐽
𝑗

𝑄
𝑞

𝑇
𝑡 − ∑

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 ∑ (𝑐𝑖𝑖𝑡𝑋𝑖𝑡 + ℎ𝑖𝑖𝑡

𝐼𝑖𝑖𝑡+𝐼𝑖𝑖𝑡−1

2

𝐼
𝑖 )

+ ∑ 𝑐𝑗𝑗𝑡𝑌𝑗𝑡
𝐽
𝑗

+ ∑ (𝑐𝑘𝑘𝑡𝐸𝑘𝑡 + ℎ𝑘𝑘𝑡
𝐼𝑘𝑘𝑡 +𝐼𝑘𝑘𝑡−1  

2
)𝐾

𝑘

+ ∑ (𝑐𝑟𝑟𝑡𝐹𝑟𝑡
𝑅
𝑟 + ℎ𝑟𝑟𝑡

𝐼𝑟𝑟𝑡+𝐼𝑟𝑟𝑡−1

2
)

+ ∑ 𝐻𝐿𝑗𝑡
𝐿𝑗𝑡+𝐿𝑗𝑡−1

2

𝐽
𝑗

+ ∑ ∑ 𝐻𝑃𝑗𝑝𝑡
𝑃𝑗𝑝𝑡+𝑃𝑗𝑝𝑡−1

2

𝑃
𝑝

𝐽
𝑗  

+ ∑ ∑ 𝐻𝑄𝑗𝑞𝑡
𝑄𝑗𝑞𝑡+𝑄𝑗𝑞𝑡−1

2

𝑄
𝑞

𝐽
𝑗

+ ∑ ∑ 𝐿𝑃𝐶𝑝𝐿𝑃𝑗𝑝𝑡
𝑃
𝑝

𝐽
𝑗

+ ∑ ∑ 𝐿𝑄𝐶𝑞𝐿𝑄𝑗𝑞𝑡
𝑄
𝑞

𝐽
𝑗

+ ∑ ∑ ∑ 𝑃𝑄𝐶𝑝𝑞
𝑄
𝑞

𝑃
𝑝

𝐽
𝑗 𝑃𝑄𝑗𝑝𝑞𝑡  

+  ∑ ∑ 𝑆𝑄𝑄𝑗𝑞𝑡(𝐷𝑗𝑞𝑡 − 𝑠𝑜𝑙𝑑𝑗𝑞𝑡)
𝑄
𝑞

𝐽
𝑗 }

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑇
𝑡       (2) 
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Subject to: 

  Iiit   = Iiit-1 + Xit - ∑ 𝑎𝑖𝑗𝑌𝑗𝑡
𝐽
𝑗  ,         ∀ i, t         (3) 

  Irrt   = Irrt-1 + Frt - ∑ 𝑔𝑟𝑗𝑌𝑗𝑡
𝐽
𝑗  ,        ∀ r, t         (4) 

  Ikkt   = Ikkt-1 + Ekt - ∑ 𝑑𝑘𝑖𝑋𝑖𝑡
𝐼
𝑖  ,        ∀ k, t         (5) 

  Ljt   = Ljt-1 + Yjt - ∑ 𝐿𝑃𝑗𝑝𝑡
𝑃
𝑝  - ∑ 𝐿𝑄𝑗𝑞𝑡

𝑄
𝑞  ,      ∀ j, t         (6) 

  Pjpt   = Pjpt-1 + LPjpt - ∑ 𝑃𝑄𝑗𝑝𝑞𝑡
𝑄
𝑞  ,       ∀ j, p, t        (7) 

  Qjqt   = Qjqt-1 + ∑ 𝑃𝑄𝑗𝑝𝑞𝑡
𝑃
𝑝  + LQjqt – soldjqt ,     ∀ j, q, t        (8) 

  ∑ 𝐿𝑗𝑡
𝐽
𝑗   ≤  LCt ,             ∀ t          (9) 

  ∑ 𝑃𝑗𝑝𝑡
𝐽
𝑗   ≤  PCpt ,             ∀ p, t         (10) 

  ∑ 𝑄𝑗𝑞𝑡
𝐽
𝑗  ≤  QCqt ,             ∀ q, t         (11) 

  soldjqt  ≤ Djqt ,             ∀ j, q, t        (12) 

  WLt  = ∑ ∑ 𝑎𝑖𝑖𝑢𝑋𝑖𝑡
𝑈
𝑢

𝐼
𝑖 +∑ ∑ 𝑎𝑗𝑗𝑣𝑌𝑗𝑡

𝑉
𝑣

𝐽
𝑗 + ∑ ∑ 𝐴𝑝𝐿𝑃𝑗𝑝𝑡

𝑃
𝑝

𝐽
𝑗  

      +∑ ∑ 𝐵𝑞𝐿𝑄𝑗𝑞𝑡
𝑄
𝑞

𝐽
𝑗 + ∑ ∑ ∑ 𝐶𝑝𝑞𝑃𝑄𝑗𝑝𝑞𝑡

𝑄
𝑞

𝑃
𝑝

𝐽
𝑗  ,   ∀ j, q, t        (13) 

  WLt  ≤ WLCt ,             ∀ t          (14) 

  Qjqt   ≥ SSjq ,             ∀ j, q, t        (15) 

  Xit , Iiit  ≥ 0 ,              ∀ i, t         (16) 

  Yjt   ≥ 0 ,              ∀ j, t         (17) 

  Ekt , Ikkt ≥ 0 ,              ∀ k, t         (18) 

  Frt , Irrt ≥ 0 ,              ∀ r, t         (19) 

  Ljt   ≥ 0 ,              ∀ j, t         (20) 

  Pjpt , LPjpt  ≥ 0 ,             ∀ j, p, t        (21) 

  Qjqt , LQjqt  ≥ 0 ,             ∀ j, q, t        (22) 

  PQjpqt   ≥ 0 ,             ∀ j, p, q, t        (23) 

  soldjqt   ≥ 0 ,             ∀ j, q, t        (24) 

 

The objective of the analytical model is to find a production and distribution plan that maximizes the total 

profit of the supply chain under ideal conditions. The total profit of the supply chain is defined as the total revenue 

from all products sold at all retailers in all periods minus the total cost of the whole supply chain in all periods, as 

shown in Equation (2). The total cost consists of production and holding cost for all parts, products, and raw 

materials, transportation cost, and shortage cost at the retailers. Constraints (3) to (8) are the inventory balance 

constraints for their respective units of interest, ensuring that the product entering plus the inventory from the 

previous period equal the products leaving plus the inventory stored at the end of that period. Constraints (9) to 

(11) are the storage capacity of the stack point, warehouses, and retailers, respectively. Constraint (12) ensures 

that the sold products cannot be more than the demand in each period. Constraint (13) is the total workload of the 

system in each period. With a specified value of workload, this equation will determine the production and 

transportation quantity of the solution. Constraint (14) is the workload capacity constraint and is further discussed 

in the following section. Constraint (15) ensures that the inventory of product j at retailer q must be greater than 

the safety stock. Constraints (16) to (24) are the non-negativity constraints for all decision variables. 

 

2.2.2 Simulation model 

 

The simulation model is used to find the makespan, which is the total simulation run time. It is the time elapsed 

from the production of the first part in the first period to the last product delivered to the retailer in the last period. 

The mathematical formulation of the makespan is difficult because of the realistic nature of production, such as 

queueing and work that is done simultaneously. Makespan is usually mistaken for the workload, which is the total 

operational time for production and distribution calculated by the total number of units multiplied by the 

processing time. If it is assumed that there are no queues or simultaneous work in the system, the makespan is 

then equal to the workload. However, in reality, the system is more complicated. The actual makespan is too 

difficult to calculate. This problem is exacerbated by uncertainties such as machine breakdowns, as a machine 

breakdown increases the number of units waiting in the queue and possibly forces the following machines to be 

idle. Demand uncertainty is also incorporated into the simulation model following a normal distribution with a 

mean and a standard deviation, as shown in Table 2. To incorporate machine breakdown into the model, all 

machines are assumed to have an uptime that follows a normal distribution with a mean of 100 minutes and a 

standard deviation of 20 minutes. The downtime is also assumed to follow a normal distribution with a mean of 

10 minutes and a standard deviation of 2 minutes. The simulation model is built in ARENA as shown in Figure 

3, following the model configuration in Figure 1.  
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Figure 3 Production-distribution system modeled in ARENA software. 

 

A total of 10 replications were simulated with the terminating condition between each replication. It was found 

that the 95% confidence interval of the objective value (profit of the chain) has a width of less than 5% of the 

mean. 

 

2.3 Hybrid analytical-simulation approach 

 

The proposed hybrid analytical-simulation approach is divided into two phases. Phase I is solved for a feasible 

plan that does not exceed the makespan limit and satisfies the service level requirements. Phase II is further solved 

for the best amount of safety stock by adding additional or decreasing excess safety stock (which increases the 

profit), resulting in the near optimal solution. 

 

2.3.1 Phase I 

 

The procedure of Phase I is illustrated in Figure 4. Phase I starts by calculating the initial safety stock and 

solving the analytical model. The result is an optimized ideal production-distribution plan without considering 

any uncertainties and makespan limits. With the safety stock as a preventive measure, it is assumed that the plan 

is feasible in terms of service level requirement. Phase II will further discuss the solution to the unsatisfied service 

level after the actual demand is realized. Having obtained the production-distribution plan, the plan is then inputted 

and simulated in the simulation model. This allows us to find the true makespan that otherwise would have been 

difficult to find in the analytical model. Uncertainties such as machine breakdowns, repair time, and demand 

fluctuation are also considered in the simulation model.  

 

 
 

Figure 4 Phase I flowchart. 
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The makespan for each period is then checked if it exceeds the makespan limit. Any period that exceeds its 

makespan limit must have its production level cut down in that period or change modes of transportation, resulting 

in a shorter time but with a higher cost. Therefore, the workload capacity (WLCt) for periods with a makespan 

exceeding the limit must be recalculated by Equation (25) and constraint (14) is updated in the analytical model. 

The adjustment of workload and mechanism combining the analytical and simulation model are made through the 

following formulation: 

 

  𝑊𝐿𝐶𝑡 = 𝑊𝐿𝐶𝑡𝐴𝐹𝑡                        (25) 

  𝐴𝐹𝑡 = 
𝑀𝑆𝐿𝑡

𝑀𝑆𝑡
                          (26) 

 

where t = 1, 2, …, T is the period. MSLt is the makespan limit for each period t, which is set at 21,600 minutes for 

all periods in this case study. AFt is the adjusting factor for each period t that exceeds the MSLt in each period and 

can be calculated by Equation (26). The calculated AFt is then used to calculate the WLCt for the next iteration as 

seen in Equation (25). MSt is the actual makespan found by the simulation model for each period t. The initial 

WLCt must be set arbitrarily large to allow the analytical model to obtain the optimal solution. In this study, the 

initial WLCt is set to 50,000 minutes. This adjustment mechanism of the workload capacity allows faster 

convergence to find an optimal and feasible solution. Periods with their makespan not exceeding the limit undergo 

no change in their WLCt. The actual makespan in each period is found by simulating 10 independent replication 

runs and selecting the upper 95% confidence interval for the average makespan of each period. This ensures that 

a bad case scenario where the makespan may be higher than usual is employed for assurance. Each iteration is 

repeated until all periods satisfy the makespan limit.  

The service level, defined by Equation (1), must be greater than 90%. Otherwise, the safety stock (SSjq) should 

be added to satisfy the requirement. Adding safety stock in the analytical model will decrease the profit as the 

model does not consider demand uncertainty, incurring an additional holding cost. However, in the simulation 

model, increasing SSjq can increase the profit as the shortage cost can be reduced with additional safety stock.  

The initial SSjq is calculated by Equations (27) ‒ (29). y is first calculated by Equation (27) which is the density 

function of t-distribution from Chen [16] . However, y is in a standardized value. Therefore, y needs to be 

converted by Equation (28) into an observational value, x. SSjq is the additional stock required to exceed the 

average demand and is calculated by Equation (29). 

  

              𝑝 = 𝐹(𝑦|𝑣) = 𝑝 =  ∫
Γ(
𝑣+1

2
)

Γ(
𝑣

2
)

𝑦

−∞

1

√𝑣𝜋

1

(1+
𝑡2

𝑣
)
𝑣+1
2

𝑑𝑡                   (27) 

 

where  𝑝 = 0.90   service level requirement 

   𝑣 = 𝑛 − 1  degrees of freedom 

   𝑛 = 10  number of replications 

 

then  𝑦  =  
𝑥−𝜇

𝜎
  t test statistic                    (28) 

   𝑆𝑆 = 𝑥 −  𝜇  safety stock                    (29) 

 

𝑥    = total inventory required to achieve the 90% service level 

𝜇𝑗𝑞 = 
∑ 𝐷𝑗𝑞𝑡
𝑇
𝑡

𝑇
  average demand of each product j and retailer q  

𝜎𝑗𝑞 = 
√∑ 𝑠𝑑𝑗𝑞𝑡

2𝑇
𝑡

𝑇
  average standard deviation of demand of each product j and retailer q  

 

For example, 10 replications are run in the simulation model. Therefore, v is equal to 9. The goal is to find SSjq 

that satisfies the 90% service level, so p is equal to 0.90. Product j at retailer q has a demand of 10 units in period 

1, 12 units in period 2, and 8 units in period 3. The standard deviation of the demand (sdjqt) is 2 units in period 1, 

3 units in period 2, and 2 units in period 3. The average demand (µ) is therefore 10 units [(10 + 12 + 8)/3]. The 

average standard deviation (σ) is 1.37 units [(√22 + 32 + 22)/3]. From Equation (27), y is equal to 1.38. Then, y 

is converted to observational units by Equation (28), which is equal to 11.89. This is rounded up to 12 units, which 

is the amount of stock required to fulfill the 90% service level. However, the analytical model produces an average 

demand of 10 units. Therefore, by Equation (29), the SSjq is equal to 2 units. 

The solution is now feasible in both makespan and service level requirements. The initial SSjq is inputted into 

the analytical model and then the simulation model, to determine the current optimal profit (Q_Optimal) and 

service level (SLjqt). 
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2.3.2 Phase II 

 

Although the plan is now feasible, it may not yet be optimal. In this phase, the algorithm further fine-tunes or 

searches for the solution to further improve the profit. The algorithm in this phase is illustrated in Figure 5. 

  

 
 

Figure 5 Phase II flowchart. 

 

Phase II starts by finding the probability of shortage (chanceshortagejq) by Equation (30). The critical score 

(criticalscorejq) determines which product j at retailer q has the highest chance of increasing the profit. The 

calculation of the critical score is shown in Equation (31). All variables in Equation (31) have an impact on 

determining whether the safety stock should be increased or decreased. Products with a higher shortage cost can 

risk a huge penalty cost if products are out of stock. The inventory cost should also be considered, as products 

with a very high holding cost are less attractive to store (in large amounts). For example, product j at retailer q 

can have a very high shortage cost but a low probability of shortage. Therefore, additional safety stock is not 

needed for product j. Determining whether to increase or decrease the safety stock for product j at retailer q is 

important. 
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  Chance shortagejq = 1 ‒  
∑ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐿𝑒𝑣𝑒𝑙𝑗𝑞𝑡
𝑇
𝑡

𝑇
                (30) 

 

  𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑐𝑜𝑟𝑒𝑗𝑞 =
𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡𝑗𝑞

𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑗𝑞
× 𝑐ℎ𝑎𝑛𝑐𝑒 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑗𝑞           (31) 

 

  𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 𝑔𝑎𝑝𝑗𝑞 = 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑐𝑜𝑟𝑒𝑗𝑞 −
∑ ∑ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑐𝑜𝑟𝑒𝑗𝑞

𝑄
𝑞

𝐽
𝑗

𝐽 ×𝑄
           (32) 

 

The critical score gap is the difference of the critical score from the average critical score as shown in Equation 

(32), to determine which safety stock of product j at retailer q to increase or decrease first. One unit of safety stock 

is increased or decreased in each iteration to minimize the risk of missing the optimal solution. A positive critical 

score gap means that the safety stock of that product should be increased and a negative critical score gap means 

that the safety stock of that product should be decreased. Product j at retailer q with the highest absolute critical 

score gap will be considered first as a candidate. A positive value means increasing the safety stock and a negative 

value means decreasing the safety stock. After candidate SSjq has been chosen, it is inputted into the analytical 

model and then simulated in the simulation model, to check whether the profit (Q_Simu) is increased and the 

service level is still feasible. If the profit is increased without affecting the service level feasibility, the SSjq solution 

set and Q_Optimal are updated and the SSjq candidate is added to the tabu list+ (if SSjq is decreased) or the tabu 

list‒ (if SSjq is increased). SSjq in the tabu list+ will never be considered as a candidate for an increase. SSjq in the 

tabu list‒ will never be considered as a candidate for a decrease. In Figure 5, tabu list+(j)(q) = 1 means that product 

j at retailer q is in the tabu list+. For example, if increasing SSjq is shown to increase profit, it will not be reasonable 

to decrease that SSjq in the following iterations. Therefore, the tabu list‒ will prevent this from happening. 

However, if the profit is not increased or the service level becomes infeasible, the SSjq solution set will not be 

updated and the SSjq candidate will be added to the tabu list+ if SSjq is increased or the tabu list‒ if SSjq is decreased. 

This is the end of the first iteration. 

The next iteration starts by recomputing the critical score gap if the SSjq solution set has been updated. 

Otherwise, the previous iteration’s critical score gap is used. After candidate SSjq is chosen, if the SSjq is in the 

tabu list+ or tabu list‒ depending on whether the critical score gap is positive or negative, SSjq with the next highest 

absolute critical score gap is selected as the candidate instead. For example, SSjq of product j at retailer q has been 

chosen as a candidate based on having the highest absolute critical score gap that is originally positive. The SSjq 

should be increased, but SSjq is in the tabu list+. In this case, the SSjq with the second highest absolute critical 

score gap is selected as the candidate.  

If all the SSjq have been selected as candidates but cannot proceed further due to being in the tabu list, the 

procedure is reversed. Product j at retailer q with the lowest absolute critical score gap will be considered as a 

candidate. A positive value means decreasing the safety stock and a negative value means increasing the safety 

stock. This step allows a more thorough search for the potential optimal solution. For example, increasing SSjq 

with a negative critical score gap can sometimes lead to a higher profit. If all the SSjq are in both the tabu list+ 

and the tabu list‒, the algorithm stops, as no candidates can be selected. The near or possibly optimal and feasible 

solution is then found. 

 

3. Results and discussion 

 

Visual Basic for Applications (VBA) is implemented to iteratively solve the analytical model coded in CPLEX 

and the simulation model coded in ARENA.  

 

3.1 Phase I result 

 

The makespan and workload capacity of each iteration in Phase I are shown in Table 11 and illustrated in 

Figure 6. The production plan and the profit for each iteration are shown in Table 12. The distribution plan for 

each iteration is shown in Table 13. From the results in Table 11, it was found that the initial solution (iteration 

1) from the analytical model is optimal but infeasible, as the makespan in period 1 (26,768 min) exceeds the 

makespan limit of 21,600 min as shown in circle A. The model suggests the production of everything in the first 

period because of the low raw material cost, as shown in Table 12 (circle C for product 1). In the next iteration, 

the analytical model adjusts its workload constraint to reduce the production level in period 1 and push the 

production to other periods, as shown in circle D. This results in a balanced production throughout the timeline 

and the plan becomes feasible, as shown in Table 11 circle B. For the distribution plan as shown in Table 13, the 

model first suggests transporting the products to warehouses to be stored as the cost is lower (circle E), but later 

iterations suggest directly transporting the products to retailers as the transportation time is shorter (circle F). 
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C D 

B A

B 

 
 

Figure 6 Makespan of each period t (MSt). 

 

Table 11 Workload capacity (WLCt) and makespan (MSt). 

 Period (t) Iteration 

1 2 3 

Workload capacity (WLC) min 1 50,000 40,347 40,347 

2 50,000 47,912 40,492 

3 50,000 50,000 50,000 

Makespan (MC) min 1 26,768 21,311 21,296 

2 22,541 25,558 21,180 

3 5,800 4,780 5,183 

Profit (Q_MILP) $ 89,028 87,999 87,343 

Profit (Q_SIMU) $ 86,433 85,542 85,294 

 

Table 12 Production levels and profit. 

    Iteration 

  Period (t) Demand (units) 1 2 3 

Part (i) (units) 1 1 200 376 305 305 

2 204 291 344 300 

3 196 0 18 62 

2 1 280 520 426 425 

2 286 413 480 415 

3 274 0 27 93 

Product (j) (units) 1 1 40 56 55 55 

2 42 75 67 45 

3 38 0 9 31 

2 1 40 88 65 65 

2 40 47 70 70 

3 40 0 0 0 

Profit (Q_MILP) $ 89,028 87,999 87,343 

Profit (Q_SIMU) $ 86,433 85,542 85,294 
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F E 

Table 13 Distribution plan. 

   Iteration (s) 

Products (j) Period (t) Distribution routes 1 2 3 

1 1 L ‒ P  0 0 0 

 L ‒ Q 55 55 55 

 P ‒ Q 0 0 0 

2 L ‒ P 38 19 0 

 L ‒ Q  38 48 45 

 P ‒ Q 0 0 0 

3 L ‒ P 0 0 0 

 L ‒ Q 0 9 31 

 P ‒ Q 38 19 0 

2 1 L ‒ P 26 2 2 

 L ‒ Q 53 53 53 

 P ‒ Q 0 0 0 

2 L ‒ P 6 30 30 

 L ‒ Q 40 40 40 

 P ‒ Q 0 0 0 

3 L ‒ P 0 0 0 

 L ‒ Q 10 10 10 

 P ‒ Q 32 32 32 

Profit (Q_MILP) $ 89,028 87,999 87,343 

Profit (Q_SIMU) $ 86,433 85,542 85,294 

Remarks: L = Stack point 

   P = Warehouse 

   Q = Retailer 

 

From Equations (27)-(29), the initial safety stock (SSjq) is calculated and shown in Table 14, where the results 

from excluding and including the initial safety stock are compared. The makespan has not changed much despite 

producing more products because of the change in the modes of transportation that reduces the makespan but 

increases the cost. However, by increasing the safety stock, the shortage cost is reduced, increasing the profit and 

eventually the service level. 

 

Table 14 Makespan, minimum service level, and profit: before and after introducing SSjq. 

SSjq No safety stock With initial safety stock 

SS11 0 4 

SS12 0 5 

SS13 0 4 

SS21 0 4 

SS22 0 5 

SS23 0 4 

Makespan (min)   

Period 1 21,479 21,296 

Period 2 21,392 21,180 

Period 3 4,660 5,183 

Minimum Service Level 78.12% 90.61% 

Q_Simu ($) 77,687 85,294 

 

3.2 Phase II result 

 

After the makespan and service level are feasible for all periods, the algorithm checks whether the solution 

can be further improved by adding or removing the safety stock. The result of the safety stock solution set (SSjq) 

of each iteration is shown in Table 16. The underlined value represents the SSjq candidate selected in that iteration. 

Q_Optimal is the current optimal solution from the previous iterations. Phase II stops after all product j at retailer 

q are in the tabu list+ and tabu list‒, as shown in Table 17 (iteration 13). In each iteration, the SSjq that is added to 

either the tabu list+ or the tabu list‒
 is represented by the value 1. The approach of choosing a SSjq candidate is 

demonstrated in Table 15. After the initial safety stock is calculated, an SSjq candidate must be selected to decide 

whether to increase or decrease the safety stock for product j at retailer q. chanceshortagejq is calculated from 

Equation (30) and later used to calculate the critical score gap from Equation (32). The highest absolute critical 
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score gap, which is SS21, is selected as the candidate and should be increased because of its positive critical score 

gap value. The resulting impact of increasing SS21 is shown in Table 16 at iteration 2. As increasing SS21 increased 

the profit and satisfies the service level requirement, SS21 is added to the tabu list‒ as shown in Table 17 to never 

be chosen as a candidate to be decreased. From Table 16, the near or possibly optimal solution is found in iteration 

7 with the profit equal to $85,975. This solution has the highest profit (Q_Simu = Q_Optimal) that satisfies the 

service level requirement when all SSjq are in both the tabu list+ and the tabu list‒. 

 

Table 15 Values used in selecting the SSjq candidate in iteration 1. 

SSjq SS11 SS12 SS13 SS21 SS22 SS23 

Safety stock (units) 4 5 4 4 5 4 

chanceshortagejq 0.0123 0.0135 0.0222 0.0273 0.0221 0.0103 

criticalscorejq 135.32 242.31 266.77 382.20 265.26 154.41 

critical score gapjq -105.73 1.26 25.72 141.16 24.22 -86.63 

 

Table 16 Safety stock solution set of each iteration. 

Iteration SS11 SS12 SS13 SS21 SS22 SS23 Q_SIMU 

($) 

Q_Optimal 

($) 

Profit 

Increased? 

Service 

Level 

satisfied? 

1 4 5 4 4 5 4 85,294 ‒ ‒ Yes 

2 4 5 4 5 5 4 85,774 85,294 Yes Yes 

3 3 5 4 5 5 4 85,775 85,774 Yes No 

4 4 5 5 5 5 4 85,824 85,774 Yes Yes 

5 4 5 5 5 6 4 85,814 85,824 No Yes 

6 4 6 5 5 5 4 85,840 85,824 Yes Yes 

7 4 6 5 5 5 3 85,975 85,840 Yes Yes 

8 4 6 6 5 5 3 85,864 85,975 No Yes 

9 4 6 5 6 5 3 85,828 85,975 No Yes 

10 4 6 5 5 5 2 85,619 85,975 No Yes 

11 5 6 5 5 5 3 85,856 85,975 No Yes 

12 4 7 5 5 5 3 85,872 85,975 No Yes 

13 4 6 5 5 4 3 85,956 85,975 No No 

 

Table 17 SSjq in tabu list+ and tabu list‒ on each iteration. 

Iteration tabu list+ tabu list‒ 

SS11 SS12 SS13 SS21 SS22 SS23 SS11 SS12 SS13 SS21 SS22 SS23 

1 ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

2          1   

3       1   1   

4       1  1 1   

5     1  1  1 1   

6     1  1 1 1 1   

7     1 1 1 1 1 1   

8   1  1 1 1 1 1 1   

9   1 1 1 1 1 1 1 1   

10   1 1 1 1 1 1 1 1  1 

11 1  1 1 1 1 1 1 1 1  1 

12 1 1 1 1 1 1 1 1 1 1  1 

13 1 1 1 1 1 1 1 1 1 1 1 1 
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3.3 Result comparison 

 

A comparison of the solution and computational time among the proposed hybrid approach, the analytical 

model by CPLEX, and the simulation-based optimization model by OptQuest is shown in Table 18. OptQuest is 

a built-in optimization tool in ARENA. It is used as a benchmark of simulation-based optimization models for 

comparison. Further details of the advantages and disadvantages of OptQuest are discussed by Fu [3] and Glover 

et al. [4]. All three methods are run using an Intel Core i7-8750H CPU @ 2.20GHz and 8 GB of RAM. 

 

Table 18 Comparison among the analytical model, simulation-based optimization model, and proposed hybrid 

approach. 

 Analytical Model (CPLEX) Simulation-based optimization 

model (OptQuest) 

Hybrid approach 

Profit ($) 98,770 77,807 85,975 

Computational Time 3.86 sec 5 hr. 32 min 12 min 38 sec 

 

From Table 18, the analytical model by CPLEX gives the best solution but is not feasible since it cannot 

incorporate uncertainties into the model. Since there are 96 decision variables to be determined in the solution, 

the simulation-based optimization by OptQuest requires a long computational time and yields a statistically worse 

solution than CPLEX but is feasible. With 10 replications, the profits obtained from the hybrid approach are 

significantly higher than the profits obtained from OptQuest under 95% confidence level (p-value < 0.01). 

Moreover, the computational time would be a lot longer if the model is extended to study longer periods, as it 

would require a higher number of decision variables. Therefore, the hybrid approach is shown to be superior to 

the other methods. 

 

3.4 Managerial Implications 

 

The proposed approach is useful for finding the production and distribution plan that maximizes the supply 

chain profit. With this approach, it is possible to find the total time needed for the production and distribution plan 

(makespan) and ensure that the plan is completed within the makespan limit. This approach considers the service 

level and is solved for the suitable amount of safety stock required to satisfy the minimum service level of the 

customers. Too high safety stock can lead to excessive inventory holding cost while too low may not satisfy the 

minimum service level. Phase II in the approach further improve the solution by searching for the best amount of 

safety stocks. The solution set consists of the optimal amount of production of each product in each period and its 

distribution plan as well as the best amount of safety stock required to satisfy the minimum service level as 

imposed by the retailers. By combining analytical and simulation models together, it is possible to find the near 

or possibly optimal solution with reasonable computational time compared to the simulation-based optimization 

alone. For a large-scale business, this approach’s concept can be applied to the business model to significantly 

increase the profit of the supply chain within a reasonable solving time as required in the current market 

competition. 

 

4. Conclusions 

 

In this study, a hybrid analytical-simulation approach for supply chain optimization was proposed. The aim is 

to find an optimal production-distribution plan that is feasible in terms of meeting the makespan limit and service 

level requirement, which are often overlooked but can be crucial for the production level, labor, and machine 

capacity planning. From our literature review, no research paper considers both of these requirements and 

optimizing the production-distribution plan at the same time. The results show that the analytical model by itself 

cannot easily find the makespan, as queueing and uncertainties cannot simply be incorporated into the model. The 

service level is one of the main requirements from customers that a company must consider. Therefore, the safety 

stock must be introduced to increase the service level, and hence, increase the profit.  

The proposed hybrid analytical-simulation approach is divided into two phases. Phase I is solved for a feasible 

plan that does not exceed the makespan limit and satisfies the service level requirements. Phase II is further solved 

for the best amount of safety stock by adding additional or decreasing excess safety stock (which increases the 

profit). Our proposed approach has a shorter solving time, compared to the simulation-based optimization by 

OptQuest, and can be easily applied in other cases that require near or possibly optimal and feasible plans under 

different types of uncertainty. 

For larger problems with a higher number of decision variables, this approach may need some adjustments to 

reduce the computational time. For instance, if the number of safety stock required is large, the addition or 

subtraction of safety stock one unit at a time in Phase II might not be efficient. Therefore, the suitable amount of 

safety stock to be added or subtracted in each iteration must be considered in order to decrease the computational 
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time. This is one limitation that should be considered based on the size of the problem. In addition, due to 

uncertainty of customer demand at the retailers, other techniques of product transshipments in the same echelon 

such as lateral transshipment among retailers can be introduced to balance the inventory among the retailers 

themselves. This can be further introduced in the model to improve its effectiveness. 
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