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Abstract

Supply chain planning consists of designing an optimal and feasible production and distribution plan for the whole
supply chain. Traditionally, two common methods of optimization are analytical and simulation- based
optimization, and each of them has pros and cons. In this paper, both methods are combined to consolidate the
strengths of each, also known as the hybrid analytical and simulation approach. A case study of a multi-period,
multi-echelon, and multi-product production and distribution problem that maximizes the whole supply chain’s
profit is introduced, to demonstrate the proposed hybrid approach. The analytical model is solved to find the
optimal production-distribution plan, and then the plan is inputted into a simulation model, where uncertainties
are incorporated. The proposed algorithm is then applied to identify a feasible plan that meets makespan limitation
and service level requirements. Safety stock is incorporated to satisfy the service level requirements and maximize
the supply chain’s profit. This procedure continues iteratively until the production-distribution plan is feasible
and optimized. The results show that the proposed approach can solve for a near or possibly optimal as well as
feasible solution with relatively fast computational time.

Keywords: Production-distribution planning, Hybrid analytical-simulation optimization, Makespan, Safety
stock

1. Introduction

A supply chain consists of activities involved in the production and distribution of products. A supply chain
can generally be divided into two parts: production and distribution. Production consists of planning and control
of the entire manufacturing process, such as production itself, material handling, scheduling, and inventory
control. Distribution consists of processes that determine how products are retrieved and transported from the
suppliers, manufacturer, or warehouse to customers, including the management of inventory retrieval,
transportation, and final product delivery [1].

Supply chain optimization aims to plan and design the best production, storage locations, flow of materials
among facilities, and transportation in the chain to either maximize the profit or minimize the costs. Two
traditional optimization approaches are the analytical and simulation-based optimization methods. Analytical or
mathematical model optimization can solve problems efficiently and quickly, but provides static information. In
contrast, simulation-based optimization can solve problems under uncertainties and is capable of solving complex
models. It is popular for solving most realistic problems but requires a long computational time and does not
guarantee an optimal solution. Therefore, the hybrid analytical-simulation approach is proposed in this study, to
be a useful way to reduce the computational time and provide realistic results. However, after the optimal
production-distribution plan is achieved, the plan could be infeasible. For example, the optimal plan might suggest
to produce all products in the first period for its low production cost. This creates too much workload in the first
period and allowing the subsequent periods to be idle, which is unlikely to happen in real life because of the



working time limit. The service level is one of the main requirements from customers that a company must
consider. The optimal plan may suggest to ignore a customer completely as the shortage cost incurring from that
customer is the least among all customers. Therefore, service level constraints must be introduced to ensure that
all customers receive products no less than the minimum service level. It is imperative for the production-
distribution plan to satisfy the service level requirement and complete before the working time limit imposed by
the law or availability of labor. These two crucial requirements are addressed in this paper. First different types
of optimization methods various methods of optimization have been introduced to solve problems in the supply
chain, ranging from solving the optimal production plan to solving the optimal supply chain network. Beamon [1]
provided a focused review of the literature in multi-stage and multi-shop supply chain modeling and suggested
four categories of models: deterministic analytic, stochastic analytic, economic, and simulation. Deterministic
analytic can be modeled simply and solved efficiently with mathematical formulation, however does not include
uncertainty, while the stochastic analytic can consider uncertainty. Economic model is used as a framework for
modeling the buyer-supplier relationship in a supply chain. Simulation is the use of software to imitate the
behavior of a system that would otherwise be difficult to analyze in reality. In this study, we will focus on the
deterministic analytic and simulation modelling.

Deterministic analytical optimization is one of the classic methods of optimization. Its ability to achieve a
globally optimal solution makes it an ideal choice for optimization. However, its inability to incorporate
uncertainties makes it difficult to represent real-life scenarios under various uncertainties. An example of
analytical optimization is presented by Susarla & Karimi [2] where they solved for the optimal production and
distribution plan that maximizes the profit of a pharmaceutical supply chain.

The simulation- based optimization model has been popular during the last decade with increasing
computational power. Fu [ 3] indicated that current commercial software mainly combines heuristics and
simulation in which a satisfactory solution can be obtained from working with the families of solutions. The
biggest problem found, when applying simulation-based optimization, is that the stochastic nature of the systems
is unaware. Thus, the efficiency of computation resources is not fully utilized. Variance reduction techniques are
suggested in order to improve the convergence rate. Glover et al. [4] presented a simulation-based optimization
model using a practical software system called OptQuest, which combines three metaheuristics to optimize
decisions. Layeb [5] also used OptQuest to solve a scheduling problem in freight transportation. However, its
long computational solving time has led to various modifications to lower the computational time. Chiadamrong
& Kawtummachai [6] used a Genetic Algorithm (GA) to solve for the best transportation route and inventory
position in the Thai sugar industry distribution system. The model solves for the minimal cost of sugar transport
from the origin (mills) to the destination (seaports). The approach incorporates the uncertainties in the distribution
network such as clients’ demands, travel time, and order-picking time by using GA-based heuristics.

Second is the hybrid analytical-simulation methods to further increase the computational speed and get a better
solution, many researchers started integrating the simulation model with the analytical model for achieving a
reasonable computational time and solution. Acar et al. [7] proposed a hybrid method that uses mathematical
optimization to solve for the optimal solution. Then, a simulation model of the analytical solution determines the
impact of uncertainty on the objective function. The difference between the analytical and simulated objective
function is included in the mathematical formulation. The process continues iteratively until a solution (with
uncertainty impact from the simulation model) is found to be optimal in the current mathematical formulation.
Thammatadatrakul & Chiadamrong [8] further modified Acar et al.”s [ 7] solving procedure. They used the
modified hybrid method to find the optimal inventory control policy of a hybrid manufacturing—remanufacturing
system. Chiadamrong & Piyathanavong [9] combined analytical and discrete event simulation models for
optimizing an agricultural product supply chain network design. The proposed method solves the problem
iteratively until the difference between the succeeding solutions satisfies the pre-determined termination criteria.
The analytical model is used to solve for the best storage locations, and then the simulation-based optimization
model improves the solution further under a stochastic environment with uncertainty arising from customer
demand, plant production levels, and delivery lead time. The procedure ends when the solution cannot be further
improved.

After the hybrid analytical and simulation method have sparked interest in the research area of optimization,
many researchers started to apply this concept into various ways of optimization. Some studies have incorporated
the utilization and capacities of the system as one of the criteria in determining the optimal solution. Ko et al. [10]
proposed a hybrid optimization/simulation modeling approach for the design of a distribution network. GA-based
heuristics was used to determine the dynamic distribution network. Then, the simulation model determines the
best capacities of warehouses based on the level of service time. Suyabatmaz et al. [11] used Ko et al. [10] and
Acar et al.’s [ 7] approach for solving the problem where the performance measures are related to the capacity
utilization. Byrne & Bakir [12] proposed a hybrid analytical-simulation method to optimize the production
planning in a multiperiod and multiproduct problem. Linear Programming (LP) was used to find the production
level and inventory with inventory balance and capacity constraints. The LP solution is then inputted into a
simulation model and checked for the capacity. The solving process stops when the capacity is feasible. Otherwise,



the capacity in LP is adjusted and the solving process is repeated until the optimal and feasible solution is found.
Lee & Kim [13] extended Byrne & Bakir’s [12] study by increasing the complexity of the supply chain and
modifying the capacity adjustment method. Lee & Kim [13] combined the analytic and simulation method to
solve production-distribution problems in a supply chain. They optimized the problem analytically to obtain
outputs that will be then be used as inputs in the next simulation procedure. Then, the output of the simulation,
which is the makespan, was obtained and checked as to whether it met a certain criterion or not. If not, the capacity
in the mathematical model was adjusted and recomputed, which is the beginning of a new iteration. This approach
continues iteratively until the result from the simulation model meets the criterion and the procedure ends with
the optimal production-distribution plan.

Many studies have also implemented the hybrid analytical-simulation optimization approach in real case
studies with disparate constraints. Martins et al. [14] proposed a hybrid optimization and simulation approach for
solving the wholesaler network redesign problem in the pharmaceutical business. The tradeoffs in the problem
are the operational costs versus customer service levels. The tactical-strategic level problem is first solved by a
mixed-integer linear programming (MILP) model. The capacity, number, and location of the warehouses are
defined at this step. At the operational level, the solution from the MILP model is evaluated by the simulation
model to evaluate the impact of the wholesaler’s daily activities, and eventually the customer service level. de
Keizer et al. [15] presented a hybrid optimization and simulation approach for finding the optimal network design
for flowers under product quality requirement constraints. The mixed-integer linear programming (MILP) model
is solved. Then, a discrete event simulation is used to check the feasibility of the plan given by the MILP,
considering uncertainties in processing, supply, and transport. The initial MILP always suggests a plan with the
lowest cost. However, the products will arrive at the retailer with too low a quality. A constraint on the
approximated product quality is therefore added to the MILP model. The whole process is iteratively solved until
a minimal cost solution is found that is feasible according to the simulation model. Table 1 summarizes different
methods of optimization and various approaches of hybrid analytical-simulation optimization.

Table 1 Literature review of different methods of optimization.
Analytical optimization Heuristic and simulation-based

Hybrid optimization

optimization
Authors Avrea of interest Authors Avrea of interest Authors Area of interest
Susarla &  Optimal production  Fu (2002) [3] Overview of Acar et al. (2009) Hybrid analytical-
Karimi and distribution simulation-based [7] simulation method
(2012)[2]  plan of optimization. by determining the
pharmaceutical impact of
supply chain. uncertainty on the

objective function.

Glover Introduction of Thammatadatrakul Optimal inventory
etal. (1999)[4] simulation based- & Chiadamrong control policy of a
optimization tool (2017) [8] hybrid

Layeb
etal. (2018) [5]

Chiadamrong &
Kawtummachai
(2008) [6]

called OptQuest.

Simulation-based
optimization for
scheduling freight
transportation.

Optimal inventory
position and
transportation
route in Thai
sugar distribution
system by Genetic
Algorithm.

Chiadamrong &
Piyathanavong
(2017)[9]

Ko et al. (2006) [10]

Suyabatmaz et al.
(2014) [11]

manufacturing-
remanufacturing
system.

Combination of
analytical and
simulation models
for optimizing an
agricultural product
supply chain.

Hybrid analytical-
simulation
approach for the
design of a
distribution
network.

Hybrid analytical-
simulation
approach for
reverse logistic
network design.




Analytical optimization Heuristic and simulation-based Hybrid optimization
optimization
Authors Avrea of interest Authors Avrea of interest Authors Area of interest
Byrne & Bakir Hybrid analytical-
(1999) [12] simulation
approach by
modifying the
capacity adjustment
method.

Lee & Kim (2002) Hybrid analytical-

[13] simulation
approach in
production-
distribution
planning
considering
capacity
constraints.

Martins et al. (2017)  Hybrid analytical-

[14] simulation
approach in
pharmaceutical
business balancing
the tradeoffs
between cost and
service level.

de Keizer et al. Hybrid analytical-

(2015) [15] simulation
approach in
logistics network
for perishable
products under
product quality
constraints.

Most of the papers reviewed have shown that combining the analytical and simulation models can improve
both the computational time and the solution. This has led us to pursue further approaches that can be
implemented. The feasibility of a plan, including the working time limit in terms of limited makespan and possible
required service level, has not been adequately considered in most studies. Therefore, the feasibility is considered
in this study. As can be seen in most papers, the computational time is important, and potential methods to improve
the computing speed are identified in this study.

2. Materials and methods
2.1 Case study

Supply chain models contain various structures, but generally, there are two distinguishing models, production
and distribution models, which are the most vital parts. These two models can be linked together into one
integrated model for a supply chain, which is called the production-distribution model. The production model
consists of production plants where the manufacturing and transformation processes of materials occur. The
distribution model consists of all locations that the products are stored and transported to, which commonly are
upstream suppliers, distribution centers, warehouses, and downstream retailers.

This hypothetical problem is a multi-period, multi-echelon, and multi-product production and distribution
problem. It is modified from Lee & Kim [13] to illustrate our hybrid analytical and simulation optimization
approach. The flow in the supply chain in this study is illustrated in Figure 1. The production system consists of
two shops, where Shop 1 produces N parts to be used for the production of M products in Shop 2. Each shop
consists of 3 machine (MC), arranging in a flow line. Raw materials are inputted into the first machine of each
shop, which are machine 1.1 and 2.1 (Figure 1). The arrows in Figure 1 shows the flow of production, starting
from machine 1.1 and ending at machine 2.3. The quantity of products produced is determined by the demand
from the retailers, where the products are sold, and revenue earned. It is assumed that products are sold at the end
of each period, and the remaining unsold products are transferred to the next period, resulting in a holding cost.
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Figure 1 Production-distribution supply chain system in this study.

The distribution system consists of a stack point, warehouses, and retailers. The stack point is a location where
the finished goods from production are initially stored before being sent to warehouses or retailers. Warehouses
store the products before they are sent to retailers. Raw materials and parts are assumed to be stored in the
production plant. It is assumed that backlogging is not permitted, so unsatisfied demand in the current period
cannot be transferred to the next period and a shortage cost is incurred as lost sales. Products are directly
transferred in a unit size from the stack point to warehouses or retailers. The initial inventory at every location is
assumed to be zero. The goal is to maximize the supply chain profit, subject to various resource constraints. For
demonstrative purpose, there are 3 periods in this study. Each period represents one working month. Each month
is assumed to have 21,600 minutes of working time (30 days/month x 12 hours/day x 60 minutes/hour). Therefore,
the makespan limit or the time until all products are produced and distributed must not exceed 21,600 minutes in
each period. For other cases, this makespan limit may be the working hour limit imposed by law or the machine
working capacity. The service level (SL), defined by Equation (1) is set to be at least 90% in this study for every
product, retailer, and period.

__ Dproducts sold

SL= demand (1)
Demand for each product at each retailer in each period is assumed to follow a normal distribution with a mean
and a standard deviation (about 20% of the mean) as shown in Table 2. The number of units of raw materials or
parts required to produce a unit of product or part is shown in Table 3. The Bill of Materials of both products is
shown in Figure 2. The monetary unit in this study is the dollar ($).

Table 2 Mean and standard deviation of demand for product j at retailer g in period t (units).

Retailer (q) 1 2 3

Product (j) 1 2 1 2 1 2

Mean Demand Period (t) 1 14 12 14 16 14 12

(Djat) 2 16 10 16 16 12 14
3 14 14 14 14 12 14

Standard Period (t) 1 3 2 3 3 3 2

Deviation (sdjqt) 2 3 2 3 3 2 3
3 2 3 3 3 2 3

Table 3 Number of units of raw materials or parts required to produce one unit of product or part (units).
Part (i) 1 2 Product (j) 1 2 Product (j) 1 2

Material (k) 1 2 4 Material (r) 1 2 3 Part (i) 1 2
2 3 2 2 2 2 2 3 4

w
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Figure 2 Bill of Materials for Products 1 and 2.
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The production, holding, shortage, and distribution costs are shown in Tables 4 — 8. The transportation time
from each origin to the destination is shown in Table 7. For example, transportation time from stack point to
retailer 2 is 40 min and the cost is $25. The production time of each part and product is shown in Table 9. The
holding capacity for each location in the supply chain is shown in Table 10.
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Table 4 Production cost ($) of part i, product j, and raw materials k and r in each period t.

Part (i) 1 2 Product(j) 1 2 RawMaterial(ky 1 2 Raw Material(r) 1 2
Period) 1 15 10 30 30 4 3 4 5
2 15 10 30 30 5 4 6 6
3 15 10 30 30 7 5 7 8
Table 5 Holding cost ($) of part i and raw materials k and r in each period t in the production plant.
Part (i) 1 2 Raw Material (k) 1 2 Raw Material () 1 2
Period (t) 1 12 10 5 5 5 5
2 12 10 5 5 5 5
3 12 10 5 5 5 5
Table 6 Holding cost ($) of product j at the stack point, warehouse p, and retailer g.
Product (j) Stack Point  Warehouse (p) Retailer (q)
1 2 1 2 3
1 Period (t) 1 10 20 15 30 20 30
2 10 20 15 30 20 30
3 10 20 15 30 20 30
2 Period (t) 1 10 15 20 40 50 40
2 10 15 20 40 50 40
3 10 15 20 40 50 40
Table 7 Transportation cost ($) and time (min) for all products.
Warehouse (p) 1 2 Retailer (q) 1 2 3 Retailer (q) 1 2 3
Transportation ~ Stack 10 15  Stack 20 25 20 Warehouse(p) 1 20 20 15
cost ($) 2 10 15 10
Transportation  Stack 80 90  Stack 50 40 50 Warehouse(p) 1 90 60 80
time (min) 2 80 70 90
Table 8 Shortage cost ($) of each product j at retailer q in period t.
Retailer (q) 1 2 3
Product (j) 1 2 1 2 1 2
Period (t) 1 550 700 600 750 600 700
2 550 700 600 750 600 700

3 550 700 600 750 600 700




Table 9 Production time (min).

Shop 1 Shop 2
Machine (u) Machine (v)
1 2 3 1 2 3
Part (i) 1 15 10 10 Product (j) 1 30 20 30
2 15 15 5 2 30 30 20
Table 10 Holding capacity of each location in the distribution system (units).
Stack Point Warehouse (p) Retailer (q)
1 2 1 2 3
Period (t) 1 10 1,000 1,000 20 20 20
2 10 1,000 1,000 20 20 20
3 10 1,000 1,000 20 20 20

2.2 Components in the hybrid analytical-simulation approach

The hybrid analytical-simulation approach starts with formulating and solving the analytical model by CPLEX
optimization software. This model contains no uncertainty; therefore, it does not accurately reflect the reality
where there might be some uncertainties involved. The decision variables or outputs from the solution are used as
values of the inputs in the simulation model. The outputs from the simulation model are checked to see if a certain
criterion is met. Otherwise, the mathematical model adjusts itself and continues the process iteratively until all

criteria are met.

2.2.1 Analytical model

A Mixed- Integer Linear Programming (MILP) is used to solve the problem. The objective of the problem is
to maximize the profit of the supply chain. The mathematical formulation and notation are presented as follows:

Indices:
t period (t=1,2,...,T)
i partin Shop1 (i=1,2,...,1)
j productinShop 2 (j=1,2,...,J)
u machinein Shop1(u=1,2,...,U)
v machine in Shop2 (v=1,2,...,V)
k raw material used for Shop 1 (k=1, 2, ..., K)
r raw material used for Shop 2 (r=1, 2, ..., R)
p warehouse (p=1, 2, ..., P)
q retailer (=1, 2, ..., Q)
Parameters:
Djat demand for product j at retailer g in period t (units)
ajj units of part i required to produce one unit of product j (units)
i units of raw material k required to produce one unit of part i (units)
Orj units of raw material r required to produce one unit of product j (units)
Ciit unit cost ($) of production for part i in period t
Cjt unit cost ($) of production for product j in period t
CKit unit cost ($) of purchase for raw material k in period t
Cryt unit cost ($) of purchase for raw material r in period t
hiit unit holding cost ($) of part i in period t
hke unit holding cost ($) of raw material k in period t
hry unit holding cost ($) of raw material r in period t
HLe unit holding cost ($) of product j at stack point in period t

HPjpt unit holding cost ($) of product j at warehouse p in period t

HQjqt unit holding cost ($) of product j at retailer ¢ in period t

SQQje  unit shortage cost ($) of product j at retailer g in period t

LPC, unit cost ($) of transporting any product from stack point to warehouse p
LQCq unit cost ($) of transporting any product from stack point to retailer q
PQCyy  unit cost ($) of transporting any product from warehouse p to retailer g
LC holding capacity of all products at stack point in period t (units)



holding capacity of all products at warehouse p in period t (units)
holding capacity of all products at retailer g in period t (units)
processing time to produce a unit of part i on machine u (min)
processing time to produce a unit of product j on machine v (min)
time to transport any product from stack point to warehouse p (min)
time to transport any product from stack point to retailer g (min)
time to transport any product from warehouse p to retailer g (min)
workload capacity in period t (min)

price of product j ($)

safety stock of product j at retailer q (units)

Decision variables

Xit

Yit

liit

Ex

Fr
1Kt
I
LPjpt
LQijqt
PQjpqt
Lt
Pipt
Qiat
soldjqt
WL

units of part i produced in Shop 1 in period t (units)

units of product j produced in Shop 2 in period t (units)

inventory of part i stored in the end of period t (units)

units of raw material k purchased in period t (units)

units of raw material r purchased in period t (units)

inventory of raw material k in period t (units)

inventory of raw material r in period t (units)

units of product j transported from stack point to warehouse p in period t (units)
units of product j transported from stack point to retailer g in period t (units)
units of product j transported from warehouse p to retailer q in period t (units)
units of product j stored at stack point in period t (units)

units of product j stored at warehouse p in period t (units)

units of product j stored at retailer q in period t (units)

units of product j sold at retailer g in period t (units)

workload of system in period t (min)

Objective Function

Max Z = Profit
Profit = Revenue — (Production Cost + Holding Cost + Transportation Cost + Shortage Cost)

. , Tigp+Hige—
Zg(aitxit + hiy ——= 2” 1)
] .

+ Zj ¢jitYe

+ XK (ChieEe + ey 2001
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+ Zr (CrrtFrt + hrrt 2 )
th+th—1
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Subject to:

lii = liiea + Xie- X ay¥e Vit 3)
Ire = Irn.1+Fn-Z§gr,~Y,~t ) vrt (4)
1Kt = ki1 + Ewe - X dpiXir vkt (5)
Lt = Lt +Yie- 5 LPps - X2 LQjgr Vit (6)
Pipt = Pipra+ LPipr- 24 PQjpage Vi pt (7)
Qiat = Qa1 + Xy PQjpge + LQjqt — s0ldiqe , vij,qt 8
YL < LG, vt ©)
YiPpe < PCp, vp,t (10)
Y Qe < QCq. va,t (11
Sold]qt S qut y V j: qv t (12)
WL = YiXVainXe + 230 ajp Y + T35 ALLP,,

+ EJ Zg B4LQjqe + Z; ZZI; Zg CoaPQjpgt » vij.at 13)
WL, < WLC, vt (14)
qut = Squ ) Vj! q, t (15)
Xit, lit > 0, Vi, t (16)
Yit > 0, vijt 17)
Ew,lke« > O, vkt (18)
Fe, Ik > 0, vr,t (19)
Lt > 0, vt (20)
Piot,LPjx > 0, vipt (21)
Qigt, LQe > 0, Vit (22)
PQijpat > 0, vijpat (23)
soldth 2 0 [l vJv qv t (24)

The objective of the analytical model is to find a production and distribution plan that maximizes the total
profit of the supply chain under ideal conditions. The total profit of the supply chain is defined as the total revenue
from all products sold at all retailers in all periods minus the total cost of the whole supply chain in all periods, as
shown in Equation (2). The total cost consists of production and holding cost for all parts, products, and raw
materials, transportation cost, and shortage cost at the retailers. Constraints (3) to (8) are the inventory balance
constraints for their respective units of interest, ensuring that the product entering plus the inventory from the
previous period equal the products leaving plus the inventory stored at the end of that period. Constraints (9) to
(11) are the storage capacity of the stack point, warehouses, and retailers, respectively. Constraint (12) ensures
that the sold products cannot be more than the demand in each period. Constraint (13) is the total workload of the
system in each period. With a specified value of workload, this equation will determine the production and
transportation quantity of the solution. Constraint (14) is the workload capacity constraint and is further discussed
in the following section. Constraint (15) ensures that the inventory of product j at retailer g must be greater than
the safety stock. Constraints (16) to (24) are the non-negativity constraints for all decision variables.

2.2.2 Simulation model

The simulation model is used to find the makespan, which is the total simulation run time. It is the time elapsed
from the production of the first part in the first period to the last product delivered to the retailer in the last period.
The mathematical formulation of the makespan is difficult because of the realistic nature of production, such as
queueing and work that is done simultaneously. Makespan is usually mistaken for the workload, which is the total
operational time for production and distribution calculated by the total number of units multiplied by the
processing time. If it is assumed that there are no queues or simultaneous work in the system, the makespan is
then equal to the workload. However, in reality, the system is more complicated. The actual makespan is too
difficult to calculate. This problem is exacerbated by uncertainties such as machine breakdowns, as a machine
breakdown increases the number of units waiting in the queue and possibly forces the following machines to be
idle. Demand uncertainty is also incorporated into the simulation model following a normal distribution with a
mean and a standard deviation, as shown in Table 2. To incorporate machine breakdown into the model, all
machines are assumed to have an uptime that follows a normal distribution with a mean of 100 minutes and a
standard deviation of 20 minutes. The downtime is also assumed to follow a normal distribution with a mean of
10 minutes and a standard deviation of 2 minutes. The simulation model is built in ARENA as shown in Figure
3, following the model configuration in Figure 1.
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Figure 3 Production-distribution system modeled in ARENA software.

A total of 10 replications were simulated with the terminating condition between each replication. It was found
that the 95% confidence interval of the objective value (profit of the chain) has a width of less than 5% of the
mean.

2.3 Hybrid analytical-simulation approach

The proposed hybrid analytical-simulation approach is divided into two phases. Phase | is solved for a feasible
plan that does not exceed the makespan limit and satisfies the service level requirements. Phase Il is further solved
for the best amount of safety stock by adding additional or decreasing excess safety stock (which increases the
profit), resulting in the near optimal solution.

2.3.1 Phase |

The procedure of Phase | is illustrated in Figure 4. Phase | starts by calculating the initial safety stock and
solving the analytical model. The result is an optimized ideal production-distribution plan without considering
any uncertainties and makespan limits. With the safety stock as a preventive measure, it is assumed that the plan
is feasible in terms of service level requirement. Phase Il will further discuss the solution to the unsatisfied service
level after the actual demand is realized. Having obtained the production-distribution plan, the plan is then inputted
and simulated in the simulation model. This allows us to find the true makespan that otherwise would have been
difficult to find in the analytical model. Uncertainties such as machine breakdowns, repair time, and demand
fluctuation are also considered in the simulation model.

Input initial WLC()

| Calculate initial safety stocks SS(j)(q) |

*

Solve for optimal production-distribution plan from the analytical WLC() = WLC(1) * 4F()
model and input plan into the simulation model

¥ A
Make 10 independent replication runs and select the upper 95%
confidence interval for the average makespan of each period [MS(f)]

1h

No MSL(t
AR = é))

, for MS() > MSL(?)

Yes
| Set O Optimal = Q_Simu |

Figure 4 Phase | flowchart.
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The makespan for each period is then checked if it exceeds the makespan limit. Any period that exceeds its
makespan limit must have its production level cut down in that period or change modes of transportation, resulting
in a shorter time but with a higher cost. Therefore, the workload capacity (WLC;) for periods with a makespan
exceeding the limit must be recalculated by Equation (25) and constraint (14) is updated in the analytical model.
The adjustment of workload and mechanism combining the analytical and simulation model are made through the
following formulation:

WLC, = WLC,AF, (25)
MSL
AF, = (26)

wheret=1, 2, ..., Tis the period. MSL; is the makespan limit for each period t, which is set at 21,600 minutes for
all periods in this case study. AF is the adjusting factor for each period t that exceeds the MSL in each period and
can be calculated by Equation (26). The calculated AF; is then used to calculate the WLC; for the next iteration as
seen in Equation (25). MS; is the actual makespan found by the simulation model for each period t. The initial
WLC: must be set arbitrarily large to allow the analytical model to obtain the optimal solution. In this study, the
initial WLC; is set to 50,000 minutes. This adjustment mechanism of the workload capacity allows faster
convergence to find an optimal and feasible solution. Periods with their makespan not exceeding the limit undergo
no change in their WLC:. The actual makespan in each period is found by simulating 10 independent replication
runs and selecting the upper 95% confidence interval for the average makespan of each period. This ensures that
a bad case scenario where the makespan may be higher than usual is employed for assurance. Each iteration is
repeated until all periods satisfy the makespan limit.

The service level, defined by Equation (1), must be greater than 90%. Otherwise, the safety stock (SS;q) should
be added to satisfy the requirement. Adding safety stock in the analytical model will decrease the profit as the
model does not consider demand uncertainty, incurring an additional holding cost. However, in the simulation
model, increasing SSjq can increase the profit as the shortage cost can be reduced with additional safety stock.
The initial SSjq is calculated by Equations (27) — (29). y is first calculated by Equation (27) which is the density
function of t-distribution from Chen [16] . However, y is in a standardized value. Therefore, y needs to be
converted by Equation (28) into an observational value, x. SSjq is the additional stock required to exceed the
average demand and is calculated by Equation (29).

CFol=p= PR 1y 27)
pErVmIER= L re) ﬁ(1+§)%

where  p =0.90 service level requirement
v=n—1 degrees of freedom

n=10 number of replications
then y = ij” t test statistic (28)
SS = x — p safety stock (29)

x = total inventory required to achieve the 90% service level
_ ZiDjge

Ujq - average demand of each product j and retailer g
\ ZtTSdJZ‘qt L. . .
Ojq = ~——— average standard deviation of demand of each product j and retailer g

For example, 10 replications are run in the simulation model. Therefore, v is equal to 9. The goal is to find SSjq
that satisfies the 90% service level, so p is equal to 0.90. Product j at retailer g has a demand of 10 units in period
1, 12 units in period 2, and 8 units in period 3. The standard deviation of the demand (sdjq) is 2 units in period 1,
3 units in period 2, and 2 units in period 3. The average demand (W) is therefore 10 units [(10 + 12 + 8)/3]. The
average standard deviation (o) is 1.37 units [(v22 + 32 + 22)/3]. From Equation (27), y is equal to 1.38. Then, y
is converted to observational units by Equation (28), which is equal to 11.89. This is rounded up to 12 units, which
is the amount of stock required to fulfill the 90% service level. However, the analytical model produces an average
demand of 10 units. Therefore, by Equation (29), the SSq is equal to 2 units.

The solution is now feasible in both makespan and service level requirements. The initial SSjq is inputted into
the analytical model and then the simulation model, to determine the current optimal profit (Q_Optimal) and
service level (SLjq).



2.3.2 Phase Il

12

Although the plan is now feasible, it may not yet be optimal. In this phase, the algorithm further fine-tunes or

searches for the solution to further improve the profit. The algorithm in this phase is illustrated in Figure 5.

n=1
reverse =0

Find probability of shortage and critical score for each product () and
retailer (g) from the service level obtained in the simulation model. Safety
stock from solution set is used for the calculation.

Find the critical score gap for each product (j) and retailer () and rank
them with rank n = 1 being the largest absolute value

¥
1

I Choose product () and retailer (g) with rank » as a candidate |+

Is critical score
gap positive?

reverse=1

Have all candidates
been chosen ?

A A Y

Set S5())(q) = 55())(q) — 1 Set S5())(q) = S5())(q) + 1

positive = 0 positive = 1

I |
L 2

Solve for the optimal production-distribution plan from the analytical
model and input plan into the simulation model

¥

Make 10 independent replication runs to find the average profit (O_Simu)
and lower 95% confidence interval for the ServiceLevel()g)(r)

ServiceLevel(i)(g) = 0.90 .
forallj. g

| Update S5 solution set = SS(7)(q) |
¥

| Set Q_Optimal = Q_Simu |

tabu list(7)(gq) = 1

Is rabu lisr (j)g) = 1

Is tabu list(j)(g) = 1 and
tabu list*(j)(g) = 1
forall j, ¢ ?

Figure 5 Phase 1l flowchart.

Phase |1 starts by finding the probability of shortage (chanceshortagejq) by Equation (30). The critical score
(criticalscorejq) determines which product j at retailer g has the highest chance of increasing the profit. The
calculation of the critical score is shown in Equation (31). All variables in Equation (31) have an impact on
determining whether the safety stock should be increased or decreased. Products with a higher shortage cost can
risk a huge penalty cost if products are out of stock. The inventory cost should also be considered, as products
with a very high holding cost are less attractive to store (in large amounts). For example, product j at retailer g
can have a very high shortage cost but a low probability of shortage. Therefore, additional safety stock is not
needed for product j. Determining whether to increase or decrease the safety stock for product j at retailer q is

important.
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T .
Xt Service Leveljq¢

Chance shortagejq=1— T (30)
L. shortage costjq
critical score;, = - - X chance shortage; 31
Jq inventory holding cost jq Jq
. L ZquQ critical scorejg
critical score gap;, = critical scorej; — 32)

JxQ

The critical score gap is the difference of the critical score from the average critical score as shown in Equation
(32), to determine which safety stock of product j at retailer g to increase or decrease first. One unit of safety stock
is increased or decreased in each iteration to minimize the risk of missing the optimal solution. A positive critical
score gap means that the safety stock of that product should be increased and a negative critical score gap means
that the safety stock of that product should be decreased. Product j at retailer g with the highest absolute critical
score gap will be considered first as a candidate. A positive value means increasing the safety stock and a negative
value means decreasing the safety stock. After candidate SSjq has been chosen, it is inputted into the analytical
model and then simulated in the simulation model, to check whether the profit (Q_Simu) is increased and the
service level is still feasible. If the profit is increased without affecting the service level feasibility, the SSjq solution
set and Q_Optimal are updated and the SSj; candidate is added to the tabu list™ (if SSjq is decreased) or the tabu
list™ (if SSjq is increased). SSjq in the tabu list* will never be considered as a candidate for an increase. SSjq in the
tabu list-will never be considered as a candidate for a decrease. In Figure 5, tabu list*(j)(q) = 1 means that product
j atretailer g is in the tabu list*. For example, if increasing SS;q is shown to increase profit, it will not be reasonable
to decrease that SSjq in the following iterations. Therefore, the tabu list- will prevent this from happening.
However, if the profit is not increased or the service level becomes infeasible, the SSjq solution set will not be
updated and the SSj; candidate will be added to the tabu list™ if SSjq is increased or the tabu list™ if SSjq is decreased.
This is the end of the first iteration.

The next iteration starts by recomputing the critical score gap if the SSjq solution set has been updated.
Otherwise, the previous iteration’s critical score gap is used. After candidate SSjq is chosen, if the SSq is in the
tabu list™ or tabu list™ depending on whether the critical score gap is positive or negative, SSjq with the next highest
absolute critical score gap is selected as the candidate instead. For example, SS;jq of product j at retailer g has been
chosen as a candidate based on having the highest absolute critical score gap that is originally positive. The SS;q
should be increased, but SSjq is in the tabu list*. In this case, the SSj; with the second highest absolute critical
score gap is selected as the candidate.

If all the SSjq have been selected as candidates but cannot proceed further due to being in the tabu list, the
procedure is reversed. Product j at retailer q with the lowest absolute critical score gap will be considered as a
candidate. A positive value means decreasing the safety stock and a negative value means increasing the safety
stock. This step allows a more thorough search for the potential optimal solution. For example, increasing SSjq
with a negative critical score gap can sometimes lead to a higher profit. If all the SSjq are in both the tabu list*
and the tabu list, the algorithm stops, as no candidates can be selected. The near or possibly optimal and feasible
solution is then found.

3. Results and discussion

Visual Basic for Applications (VBA) is implemented to iteratively solve the analytical model coded in CPLEX
and the simulation model coded in ARENA.

3.1 Phase | result

The makespan and workload capacity of each iteration in Phase | are shown in Table 11 and illustrated in
Figure 6. The production plan and the profit for each iteration are shown in Table 12. The distribution plan for
each iteration is shown in Table 13. From the results in Table 11, it was found that the initial solution (iteration
1) from the analytical model is optimal but infeasible, as the makespan in period 1 (26,768 min) exceeds the
makespan limit of 21,600 min as shown in circle A. The model suggests the production of everything in the first
period because of the low raw material cost, as shown in Table 12 (circle C for product 1). In the next iteration,
the analytical model adjusts its workload constraint to reduce the production level in period 1 and push the
production to other periods, as shown in circle D. This results in a balanced production throughout the timeline
and the plan becomes feasible, as shown in Table 11 circle B. For the distribution plan as shown in Table 13, the
model first suggests transporting the products to warehouses to be stored as the cost is lower (circle E), but later
iterations suggest directly transporting the products to retailers as the transportation time is shorter (circle F).
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Figure 6 Makespan of each period t (MS).
Table 11 Workload capacity (WLCt) and makespan (MSt).
Period (t) Iteration
1 2 3
Workload capacity (WLC) min 1 50,000 40,347 40,347
2 50,000 47,912 40,492
3 50,000 50,000 50,000
Makespan (MC) min 1 A /26,768\\ 21,311 {/ 21,296\\ B
2 ( 22541 25558 | 21,180 |
3 \ 5,800 / 4,780 \ 5,183 /
Profit (Q_MILP) $ 89,028 87,999 87,343
Profit (Q_SIMU) $ 86,433 85,542 85,294
Table 12 Production levels and profit.
Iteration
Period (t) Demand (units) 1 2 3
Part (i) (units) 1 200 376 305 305
2 204 291 344 300
3 196 0 18 62
1 280 520 426 425
2 286 413 480 415
3 274 0. 27 93
Product (j) (units) 1 40 / 56 \ 55 / 55\
2 42 ¢ ‘\ 75 | 67 Pl 45
3 38 \ 9__ /l 9 \\ 31 //
1 40 88 65 65
2 40 47 70 70
3 40 0 0 0
Profit (Q_MILP) $ 89,028 87,999 87,343
Profit (Q_SIMU) $ 86,433 85,542 85,294
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Table 13 Distribution plan.

Iteration (s)

Products (j)  Period (t) Distribution routes 1 2 3
1 1 L-P 0 0 0
L-Q 55 55 55
P-Q 0_ 0 0
2 L-P E/ 38\ 19 F/7o
L-Q \ 38/ 48 \ 45)
P-Q 0 0 i
3 L-P 0 0 0
L-Q 0 9 31
P-Q 38 19 0
2 1 L-P 26 2 2
L-Q 53 53 53
P-Q 0 0 0
2 L-P 6 30 30
L-Q 40 40 40
P-Q 0 0 0
3 L-P 0 0 0
L-Q 10 10 10
P-Q 32 32 32
Profit (Q_MILP) $ 89,028 87,999 87,343
Profit (Q_SIMU) $ 86,433 85,542 85,294

Remarks: L = Stack point
P = Warehouse
Q = Retailer

From Equations (27)-(29), the initial safety stock (SS;jq) is calculated and shown in Table 14, where the results
from excluding and including the initial safety stock are compared. The makespan has not changed much despite
producing more products because of the change in the modes of transportation that reduces the makespan but
increases the cost. However, by increasing the safety stock, the shortage cost is reduced, increasing the profit and
eventually the service level.

Table 14 Makespan, minimum service level, and profit: before and after introducing SSjq.

SSjq No safety stock With initial safety stock
SSu 0 4

SS1» 0 5

SS13 0 4

SSa1 0 4

SS2 0 5

SS3 0 4
Makespan (min)

Period 1 21,479 21,296
Period 2 21,392 21,180
Period 3 4,660 5,183
Minimum Service Level 78.12% 90.61%
Q_Simu ($) 77,687 85,294

3.2 Phase Il result

After the makespan and service level are feasible for all periods, the algorithm checks whether the solution
can be further improved by adding or removing the safety stock. The result of the safety stock solution set (SSjq)
of each iteration is shown in Table 16. The underlined value represents the SS;q candidate selected in that iteration.
Q_Optimal is the current optimal solution from the previous iterations. Phase Il stops after all product j at retailer
qg are in the tabu list" and tabu list-, as shown in Table 17 (iteration 13). In each iteration, the SSjq that is added to
either the tabu list™ or the tabu list™is represented by the value 1. The approach of choosing a SSjq candidate is
demonstrated in Table 15. After the initial safety stock is calculated, an SSjq candidate must be selected to decide
whether to increase or decrease the safety stock for product j at retailer g. chanceshortagejq is calculated from
Equation (30) and later used to calculate the critical score gap from Equation (32). The highest absolute critical
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score gap, which is SSy1, is selected as the candidate and should be increased because of its positive critical score
gap value. The resulting impact of increasing SS;: is shown in Table 16 at iteration 2. As increasing SS»1 increased
the profit and satisfies the service level requirement, SS,; is added to the tabu list™ as shown in Table 17 to never
be chosen as a candidate to be decreased. From Table 16, the near or possibly optimal solution is found in iteration
7 with the profit equal to $85,975. This solution has the highest profit (Q_Simu = Q_Optimal) that satisfies the
service level requirement when all SSjq are in both the tabu list™ and the tabu list™.

Table 15 Values used in selecting the SS;q candidate in iteration 1.

SSig SSu SS12 SS13 SSa1 SS22 SSz3

Safety stock (units) 4 5 4 4 5 4

chanceshortagejq 0.0123 0.0135 0.0222 0.0273 0.0221 0.0103

criticalscorejq 135.32 242.31 266.77 382.20 265.26 154.41

critical score gapjq -105.73 1.26 25.72 141.16 24.22 -86.63

Table 16 Safety stock solution set of each iteration.

Iteration SS;1 SS12 SSi3 SSm SS»»  SSzz Q_SIMU Q_Optimal Profit Service

%) %) Increased?  Level
satisfied?

1 4 5 4 4 5 4 85,294 - - Yes

2 4 5 4 5 5 4 85,774 85,294 Yes Yes

3 3 5 4 5 5 4 85,775 85,774 Yes No

4 4 5 5 5 5 4 85,824 85,774 Yes Yes

5 4 5 5 5 6 4 85,814 85,824 No Yes

6 4 6 5 5 5 4 85,840 85,824 Yes Yes

7 4 6 5 5 5 3 85,975 85,840 Yes Yes

8 4 6 6 5 5 3 85,864 85,975 No Yes

9 4 6 5 6 5 3 85,828 85,975 No Yes

10 4 6 5 5 5 2 85,619 85,975 No Yes

11 5 6 5 5 5 3 85,856 85,975 No Yes

12 4 7 5 5 5 3 85,872 85,975 No Yes

13 4 6 5 5 4 3 85,956 85,975 No No

Table 17 SSjq in tabu list” and tabu list” on each iteration.

Iteration  tabu list* tabu list
SS11 SS12 SSiz SSa;i SSz; SSzz SSi1 SS;p SSiz SSa1 SS22 SSx
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3.3 Result comparison

A comparison of the solution and computational time among the proposed hybrid approach, the analytical
model by CPLEX, and the simulation-based optimization model by OptQuest is shown in Table 18. OptQuest is
a built-in optimization tool in ARENA. It is used as a benchmark of simulation-based optimization models for
comparison. Further details of the advantages and disadvantages of OptQuest are discussed by Fu [3] and Glover
et al. [4]. All three methods are run using an Intel Core i7-8750H CPU @ 2.20GHz and 8 GB of RAM.

Table 18 Comparison among the analytical model, simulation-based optimization model, and proposed hybrid
approach.

Analytical Model (CPLEX)  Simulation-based optimization Hybrid approach
model (OptQuest)
Profit ($) 98,770 77,807 85,975
Computational Time  3.86 sec 5 hr. 32 min 12 min 38 sec

From Table 18, the analytical model by CPLEX gives the best solution but is not feasible since it cannot
incorporate uncertainties into the model. Since there are 96 decision variables to be determined in the solution,
the simulation-based optimization by OptQuest requires a long computational time and yields a statistically worse
solution than CPLEX but is feasible. With 10 replications, the profits obtained from the hybrid approach are
significantly higher than the profits obtained from OptQuest under 95% confidence level (p-value < 0.01).
Moreover, the computational time would be a lot longer if the model is extended to study longer periods, as it
would require a higher number of decision variables. Therefore, the hybrid approach is shown to be superior to
the other methods.

3.4 Managerial Implications

The proposed approach is useful for finding the production and distribution plan that maximizes the supply
chain profit. With this approach, it is possible to find the total time needed for the production and distribution plan
(makespan) and ensure that the plan is completed within the makespan limit. This approach considers the service
level and is solved for the suitable amount of safety stock required to satisfy the minimum service level of the
customers. Too high safety stock can lead to excessive inventory holding cost while too low may not satisfy the
minimum service level. Phase 11 in the approach further improve the solution by searching for the best amount of
safety stocks. The solution set consists of the optimal amount of production of each product in each period and its
distribution plan as well as the best amount of safety stock required to satisfy the minimum service level as
imposed by the retailers. By combining analytical and simulation models together, it is possible to find the near
or possibly optimal solution with reasonable computational time compared to the simulation-based optimization
alone. For a large-scale business, this approach’s concept can be applied to the business model to significantly
increase the profit of the supply chain within a reasonable solving time as required in the current market
competition.

4. Conclusions

In this study, a hybrid analytical-simulation approach for supply chain optimization was proposed. The aim is
to find an optimal production-distribution plan that is feasible in terms of meeting the makespan limit and service
level requirement, which are often overlooked but can be crucial for the production level, labor, and machine
capacity planning. From our literature review, no research paper considers both of these requirements and
optimizing the production-distribution plan at the same time. The results show that the analytical model by itself
cannot easily find the makespan, as queueing and uncertainties cannot simply be incorporated into the model. The
service level is one of the main requirements from customers that a company must consider. Therefore, the safety
stock must be introduced to increase the service level, and hence, increase the profit.

The proposed hybrid analytical-simulation approach is divided into two phases. Phase | is solved for a feasible
plan that does not exceed the makespan limit and satisfies the service level requirements. Phase 11 is further solved
for the best amount of safety stock by adding additional or decreasing excess safety stock (which increases the
profit). Our proposed approach has a shorter solving time, compared to the simulation-based optimization by
OptQuest, and can be easily applied in other cases that require near or possibly optimal and feasible plans under
different types of uncertainty.

For larger problems with a higher number of decision variables, this approach may need some adjustments to
reduce the computational time. For instance, if the number of safety stock required is large, the addition or
subtraction of safety stock one unit at a time in Phase 11 might not be efficient. Therefore, the suitable amount of
safety stock to be added or subtracted in each iteration must be considered in order to decrease the computational
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time. This is one limitation that should be considered based on the size of the problem. In addition, due to
uncertainty of customer demand at the retailers, other techniques of product transshipments in the same echelon
such as lateral transshipment among retailers can be introduced to balance the inventory among the retailers
themselves. This can be further introduced in the model to improve its effectiveness.
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