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Abstract

This study utilizes an interactive Fuzzy Linear Programming (FLP) model for solving the Aggregate Production
Planning (APP) problem in an uncertain environment. The uncertain conditions include uncertainties of
customer demand, operation time, operation cost, and machine capacity. The proposed model tries to minimize
the total costs of the APP plan. Through the concept of obtaining an optimal solution in different levels of the
feasible degree (o), decision-makers can interact with the given goal until achieving an efficient compromised
solution that presents the overall satisfaction level of Decision-Makers (DMs) based on the given goal values.
The outcome of this approach provides more flexibility for DMs to achieve a satisfactory solution. Finally, the
proposed approach is compared with other traditional approaches and the results are analyzed.

Keywords: Aggregate production planning, Possibilistic linear programming, Interactive fuzzy linear
programming, Fuzzy set theory, Decision making

1. Introduction

Aggregate Production Planning (APP) is the intermediate-time capacity plan that identifies the cost
minimization of production plans and human resources to fulfill market needs in the most effective way. Its
purpose is to determine a suitable amount of production and the level of inventory in terms of aggregation. The
time period ranging of APP is from 2 to 12, or even 18 months [1]. APP brings a connection between strategic
management and operations management. In addition, APP operating strategies play a significant role in
organizational integration and enterprise resource planning. The target making APP in manufacturing enterprise
is to acquire the minimum cost and maximum profit by determining the quantity of produced products, the
quantity of subcontracting products, levels of labor, etc., to fulfill the market demand [2].

In practice, some input data for APP problems are regularly imprecise owing to some information is
incomplete or cannot be accurately obtained. In these circumstances, fuzzy logic can provide a form of
reasoning that allows approximate human inference skills to be used as knowledge-based systems. Zadeh [3]
developed the fuzzy logic theory. It brings a mathematical framework to apprehend the uncertainty related to the
processes of human perception, such as reasoning and thinking. The theory of fuzzy sets has been extensively
adopted in many fields (i.e. operations research, management science, artificial intelligence and control theory).
By applying the theory of fuzzy sets, Fuzzy Mathematical Programming (FMP) is a well-known decision-
making approach. Zimmermann [4] first proposed the theory of fuzzy sets into typical Linear Programming (LP)
model that has both fuzzy objective and fuzzy constraints. An equivalent single-goal linear programming model
by combining a linear membership function and the fuzzy decision-making method of Bellman & Zadeh [5] that
is introduced in this study. Subsequently, some of fuzzy optimization approaches for handling APP problems in
an ambiguous condition has been developed based on FMP. Moreover, Zadeh [3] introduced the possibility
theory, which is in relation to the fuzzy set theory. The possibility distribution concept is defined as a vague
limitation, which can work as a flexible constraint on the values that may be allocated to a variable.
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The research also shows the significance of the possibility theory because most of the information about
human decisions is understood to be possibilistic instead of being probabilistic as in nature. Uncertainties are
common in aggregate production planning such as imprecise capacities, imprecise demands, imprecise operating
times, imprecise costs, etc. The uncertainties of these types of data are not able to be completely depicted by
frequency-based probability distributions. Thus, it is extremely necessary to use the theory of fuzzy sets and
fuzzy optimization approaches for formulating APP problems.

Possibilistic Linear Programming (PLP) is a fuzzy optimization approach that could be modeled based on
possibility distributions (triangular or trapezoidal distribution). Tang et al. [6] introduced two kinds of PLP with
common possibilistic distribution, which are Linear Programming (LP) problems with common possibilistic
resources and common possibilistic objective coefficients by applying the concepts of the biggest and smallest
of most likely value, the most pessimistic value and the most optimistic value. Hsu & Wang [7] used the PLP
approach that are developed by Lai & Hwang [8] to deal with vague and imprecise data in APP problems in an
Assemble-To-Order (ATO) system. Wang & Liang [9] studied APP problem in an uncertain environment. By
using PLP to formulate for APP problem, which brings an efficient compromised solution of APP plan and
overall satisfaction level of Decision-Maker (DM) with identified goal values. Liang [10] presented an
interactive Possibilistic Linear Programming (i-PLP) approach to handle multiple imprecise objective and cost
coefficients in an APP problem that considers multiple product and multiple time period based on triangular
possibility distributions. The proposed i-PLP approach can provide a systematic framework that supports the
process of decision-making for solving fuzzy multiple objective APP problems. This enables a Decision-Maker
(DM) to interactively adjust fuzzy parameters as far as a set of satisfactory solutions is obtained. Sutthibutr &
Chiadamrong [11] integrated a weighted additive method into PLP to solve an APP problem in an uncertain
environment. They proposed a hybrid approach that is applied for solving most practical planning problems that
are related to fuzzy parameters through an interactive process in making decisions. The results of the
investigation can provide different compromise solutions which help the DM to select an efficient one based on
their preferences with the highest satisfaction.

Fuzzy Linear Programming (FLP) is another fuzzy optimization approach that could be formulated by using
subjective preference-based membership functions. Wang & Fang [12] studied an APP problem with some fuzzy
parameters that consist of the product price, subcontracted cost, production quantity, workforce level, market
demand, and the fuzzy satisfaction levels of objective functions. The proposed approach provided a systematic
framework to interactively support DMs until satisfactory results are achieved. An aggregation operator was
deployed at the final step to acquire the compromise solution of the proposed system. Madadi & Wong [13]
extended the multiple objective fuzzy APP model to best serve businesses that aim to make the best utilization of
their resources in an ambiguous condition whilst attempting to maintain an acceptable level of quality and
customer service level at the same time. Iris & Cevikcan [2] presented a structure of mathematical programming
for APP problems in an ambiguous data environment. After giving background information about Fuzzy Linear
Programming (FLP) and the APP problem, the formulated FLP model for an APP problem that is solved on an
illustrative example with the various values of a-cut. Chen & Huang [14] proposed a novel methodology for
solving the APP problem in uncertain condition. After constructing the membership function by applying Zadeh’s
extension principle and fuzzy solutions, an equivalent mathematical parametric programming is formed to identify
the lower and upper bound of the total cost with the different levels of a. Since the objective value is represented
based on a membership function. Thus, the achieved solutions can be more information with more accuracy, which
provides more opportunities to gain the optimal solution on the disaggregate plan.

The process of decision making can be better expressed based on the theory of fuzzy sets instead of using
precise methods. Nevertheless, a person in charge of making decisions called the Decision-Maker (DM) does
play a critical role in using the theory of fuzzy sets. Thus, an interactive process between DM and the processes
of decision making is significant for dealing with practical issues [15]. The interactive Fuzzy Linear
Programming (i-FLP) is considered as a problem-oriented and user-dependent method. This approach is a
systematic and effective method to deal with linear problems because the feasible results will be provided for
DM. The problem will be solved if the DM is satisfied with the obtained result. In contrast, if the DM is still not
satisfied, an interactive process will continue until the DM can find a satisfactory solution [16].

Generally, the uncertainty of parameters imposes two key problems in the solving process of possibilistic
fuzzy programming: handling the relationship between the fuzzy left-hand side as well as the right-hand side of
constraints and finding the optimal value for the fuzzy objective function. These problems are associated with
the process of ranking fuzzy numbers based on the interactive resolution method that is proposed by Jimenez et
al. [17]. The method utilizes two primary ideas, which are optimality and feasibility for handling with ranking
fuzzy objective functions and inequality relations in constraints, correspondingly. In addition, it also provides
some benefits as follows:

e The method is computationally efficient for solving LP model since the linearity is maintained and does not
raise the number of objective functions as well as inequality constraints. Thus, it can be applied to solve large
scope FLP models.



o The method relies on a fuzzy relation to compare fuzzy numbers, while the other relevant methods just use
comparison relations that commonly described as a fuzzy number that is larger or smaller than others. These relations
do not provide any information about a likely violation of constraints (the concept of feasibility degree).

o This method could be applied for different kinds of fuzzy numbers (i.e. triangular, trapezoidal), and it also
could be applied easily for linear or even nonlinear forms.
o The concepts of feasibility and optimality of this method permit DM to interactively make a compromise
between the risk of constraints (feasibility degree) and the degree of achievement of DM’s aspiration level.

The interactive method of Jimenez et al. [17] subjects to the definition of the expected interval and the
expected value of fuzzy numbers, which are considered as strong mathematical concepts. These concepts were
first developed by Arenas et al. [18], followed by Heilpern [19] and Jimenez [20].

Table 1 Summary of related studies on solving fuzzy APP models.

Articles Place of fuzzy parameters Defuzzification method Type of Solution
Model technique
Iris & Cevikcan (2014) Obijective function Zimmerman Method FMILP FLP
[2] RHS of constraints
Hsu & Wang (2001) [11]  Obijective function Zimmerman Method FMILP PLP
Wang & Liang (2005) Obijective function Zimmerman Method FMILP PLP
[13] Both sides of constraints  Fuzzy ranking method
RHS of constraints Weighted average method
LHS of constraints
Liang (2007) [14] Obijective function Zimmerman Method FMOMILP PLP
Both sides of constraints  Fuzzy ranking method
RHS of constraints Weighted average method
LHS of constraints
Sutthibutr & Obijective function Zimmerman Method FMILP PLP
Chiadamrong (2020) [15]  Both side of constraints ~ Fuzzy ranking method
RHS of constraints Weighted average method
LHS of constraints
Wang & Fang (2001) [16] Objective function Zimmerman Method FMOMILP  FLP
RHS of constraints
Both sides of constraints
Madadi & Wong (2014) Obijective function Expected interval value FMOMILP  FLP
[17] RHS of constraints a-Level of fuzzy sets
Chen & Huang (2010) [18] RHS of constraints a-Level of fuzzy sets FMILP FLP
This study Obijective function Expected value FMOMILP Interactive
Both side of constraints ~ Hybrid fuzzy ranking FLP

RHS of constraints
LHS of constraints

method (feasibility
concept-violation of
constraints)

RHS: right-hand side, LHS: left-hand side, FMILP: Fuzzy mixed-integer linear programming, FMOMILP: Fuzzy multi-objective mixed-
integer linear programming, FLP: Fuzzy linear programming, PLP: Possibilistic linear programming.

Most of the reviewed papers have studied on uncertainties in APP models. This has led us to pursue further
approaches that can yield better solutions as well as can handle with the uncertainty more efficiently. Several
approaches have been summarized in Table 1, and it can be seen that the feasibility concept (violation of
constraints) of model is not considered in most studies. Taking the advantages of Jimenez’s method that
mentioned earlier, we propose Jimenez’s method for solving the fuzzy APP model in this study. Noteworthy,
Jimenez’s method has recently been utilized as an efficient method to defuzzify imprecise data [21,22].

This study thus presents a form of the Fuzzy Linear Programming (FLP) model to cope with Aggregate
Production Planning (APP) problems where these parameters such as production times and costs, machine
capacity, and customer demand are considered as fuzzy numbers with triangular possibility distribution, which
could represent the uncertainty of these parameters in practical production planning systems. By applying an
interactive resolution method of Jimenez et al. [17]. It yields a systematic framework to assist in the process of
decision-making, thereby allowing a DM to interactively adjust the membership functions of the objectives and
constraints until the DM satisfies with the achieved solution. Then, the achieved result of the i-FLP model is
compared to the results of the ideal optimal LP model and the typical PLP model, and its advantages are
identified.

The remainder of this paper is arranged as follows. Fuzzy Linear Programming (FLP) model for an APP
problem, a methodology for solving the fuzzy APP model with two-phase approach including the Possibilistic



Linear programming (PLP) approach and the interactive Fuzzy Linear Programming (i-FLP) approach, and a
case study to validate the feasibility of using the i-FLP approach to practical APP problem are presented in
Section 2. Subsequently, the results of each approach and a comparison between its solution are shown in
Section 3. Lastly, the conclusion of the study is drawn in Section 4.

2. Materials and methods
2.1 Mathematical model

In this study, the Aggregate Production Planning (APP) problem is described. A company manufactures P
types of products to satisfy the customer requirement during a medium-term planning period T. The APP

problem is considered in an uncertain environment. Therefore, operation costs, labor level, machine capacity,
and customer demand can vary for each planning period.

Indices:

p Types of product,p=1, ...,P

t Planning periods, t=1, ..., T

Parameters:

Ept Fuzzy forecasted demand of product p in period t (units)

Tt Fuzzy cost of regular—time production for a unit of product p in period t ($/unit)
Opt Fuzzy cost of overtime production for a unit of product p in period t ($/unit)
Spt Fuzzy cost of subcontracting for a unit of product p in period t ($/unit)

[ Fuzzy cost of inventory for a unit of product p in period t ($/unit)

Bpt Fuzzy cost of backordering for a unit of product p in period t ($/unit)

- Fuzzy cost of hiring for one worker in period t ($/person-hour)

fe Fuzzy cost of firing for one worker in period t ($/person-hour)

MaxL, Fuzzy maximum available level of labor in period t (person-hours)

MaxM, Fuzzy maximum available capacity of machine in period t (machine-hours)

MT-IW Fuzzy machine hour usage for a unit of product p in period t (machine-hours/unit)
LH,.  Labor hour usage for a unit of product p in period t (person-hours/unit)

MaxW, Maximum warehouse space available in period t (ft3/unit)

WS,  Warehouse spaces for a unit of product p in period t (ft*/unit)

Decision variables:

RQ,:  Quantity of regular-time production product p in period t (units)
0Q,:  Quantity of overtime production product p in period t (units)
S$Qp:  Quantity of subcontracted product p in period t (units)

1Qp¢ Quantity of inventory product p in period t (units)

BQ,:  Quantity of backorder product p in period t (units)

H, Number of workers hired in period t (person-hours)
F; Number of workers fired in period t (person-hours)
VA Total costs

Objective Function

The common objective function of an APP problem is to minimize the total costs. The total costs are the sum of
the manufacturing cost, inventory cost, backordering cost, and costs of changing workforce levels over a period T.
However, the coefficients of costs in the objective function can be imprecise due to some information being
estimated, unobtainable or incomplete. Accordingly, the objective function is formulated in the following equation:

MinZ = ZS=1 ZZ=1 (fptRth + 5pt0th + §ptSth + iptIth + bptBth) 1)
+ Y (hth + ftFt)

The production cost is shown in the first five terms. The production costs consist of regular-time production,
overtime production, subcontracting, inventory, and backorder. The remaining portion indicates the costs of
changing workforce levels, which are the costs of hiring and firing workers, where ,;, 8¢, Spt, Tty Dy, e, and
f are uncertain parameters with the triangular possibility distribution.

Constraints

The minimization of the objective function is subject to the following constraints:

Carrying Inventory Constraint:

Ept = Ith—l + Bth—l + Rth + Oth + Sth - Ith + Bth VP' vT (2)



The forecasted demand of a customer cannot be obtained exactly in the real-world. Therefore, Ept denotes for
fuzzy estimated demand of product p in period t. Equation (2) shows that the summation of amounts of regular
and overtime production, inventory quantities, subcontracting quantities, and backordering quantities primarily
must meet the amount of forecasted demand. The demand can be either met or backordered in a specific period,
but a backorder in the following period must be fulfilled.

Labor Level Constraints:

p=1 LHpe_1(RQpe_y + OQpe_y) + Hy — F, — 351 LHp(RQpe + 0Qp) =0 vT @)
b1 LH,:(RQp + 0Qp;) < MaxL, vT (4)
where Equation (3) ensures that the labor level at the end of period t-1 plus newly a number of hired workers,
and minus a number of fired workers in period t must equal to the labor level in period t. Equation (4) shows
that the levels of actual labor are limited by the maximum available labor level in period t. The maximum
available labor levels can be inaccurate because of the uncertain conditions of supply, demand, and labor skills
in the market.
Machine Capacity Constraint:
by MH,.(RQy + 0Q,;) < MaxM, vT (5)
where MH,, and MaxM, are imprecise data of the machine hour usage for a unit of product p, and the
maximum capacity of available machine in period t, respectively. Equation (5) is about the limitation of the
machine capacity, where the machine hour usage for producing all the products in period t must not exceed the
maximum capacity of available machine. Similarly, the maximum capacity of available machine can be fuzzy
(in reality) as the available machine hours could be affected by the availability and working conditions of
machines at each moment.
Warehouse Capacity Constraint:
by WSplQpe < MaxW, vT (6)
Equation (6) presents the limit of actual warehouse capacity in period t. The warehouse space for storing all
the products in each period t must not surpass their respective maximum available warehouse space.
Non-negativity Constraint:
Rth' Oth' Sth' Ith' Bth' Ht' Ft =0 VP' vT (7)

2.2 Solution approaches

The APP model aforementioned is considered in an uncertain environment, some parameters in the APP
model (i.e. operation times and costs, labor level, machine capacity, and customer demand) are described by
fuzzy numbers, which can imitate the real-life. To cope with this problem, a given Fuzzy Linear Programming
(FLP) model need to be transformed into a crisp Linear Programming (LP) model. To do that, a proposed
methodology with the two-phase approach is implemented. In the first phase, Possibilistic Linear Programming
(PLP) is used as a benchmark for comparison. The fuzzy APP model is then transformed into an equivalent
auxiliary crisp model by applying the PLP approach that is introduced by Lai and Hwang [8]. In the second
phase, an interactive fuzzy method is applied. There are two steps to implement this approach. The first step is
to convert the fuzzy APP model into an equivalent auxiliary crisp model. The second step is to find a preferred
compromise solution with the maximization of the DM’s satisfaction by applying the interactive fuzzy
methodology of Jimenez et al. [17]. Finally, a comparison between these two solution approaches is made.

2.2.1 Possibilistic linear programming (PLP) approach

The PLP can be applied to obtain the optimal solution in each scenario, subject to imprecise operation times
and costs which are represented by the possibility distribution (triangular distribution).

2.2.1.1 Triangular possibility distribution of imprecise data

As shown in Figure 1 (A), the triangular (possibility) distribution of imprecise number ¢, is described by
three prominent data points, which are the most optimistic point (cp,), the most likely point (c,;), and the most
pessimistic point (c;,).

The optimistic value (the lower bound value) is the value that can provide the best situation. It is an
immensely  low likelihood of belonging to the set of available values (at the point of possibility level = 0 if
normalized).

e The most likely value (the modal value) is a value that provides the normal or general situation. It certainly is
in the set of available values (at the point of possibility level = 1 if normalized).
e The pessimistic value (the upper bound value) is the value that can provide the worst situation. It is an



immensely low likelihood of belonging to the set of available values (at the point of possibility level = 0 if
normalized).

2.2.1.2 Solving strategy for the imprecise objective function

All the given parameters of the objective function in the PLP model are based on the triangular possibility
distribution. Geometrically, the imprecise objective function Z can be completely characterized by three
prominent points; (z°,0), (z™,1) and (z?,0). Because the critical point of the vertical coordinates is fixed at
either 0 or 1, the only item that should be considered is the horizontal coordinates. Therefore, the solving
strategy for the imprecise objective functions aims to simultaneously minimize the most likely value of total
costs, z™, maximize the possibility of getting lower total costs, (z™ — z°), and minimize the possibility of
getting higher total costs, (zP —z™). These three objective functions guarantee that these three values are
pushed toward the left, as seen in Figure 1 (B).
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Figure 1 Triangular (possibility) distribution of ¢,; (A) and strategy of cost minimization (B).
2.2.1.3 Handling the imprecise objective functions

As shown in Figure 1 (B), relied on the triangular (possibility) distribution, the original imprecise objective is
replaced by three new crisps of multiple objective functions as follows:
Minimizing the most likely value of total costs
Min z; = z™
=Yp=1 Xi=1 (5iRQpe + 0pi0Qpe + SpiSQue + 15l Qpe + biBQp:) (8)
+ 30y (h'H + f°F)
Maximizing the possibility of getting lower total costs

Max z, = (z™ — z°)
= Z§=1 ZZ=1 [(T;;rtl - T;t)Rth + (Ozrnré - Ogt)Oth + (5173 - Sgt)Sth 9)
+ (l-;nt - igt)Ith + (b{,'% - b{;’r)Bth + Z’{=1 [(h?l - hg)Ht + (ftm - fto)Ft)]
Minimizing the possibility of getting higher total costs
Min z; = (z°P — z™)
= Yp=1 Xio1 [(15r = 9E)RQpe + (0f, — 052)0Qpe + (Spe = 5p)SQye (10)
+ (ip, = ipt)1Qpe + (b, — bp)BQpe] + X1=y [(AY — h{DH, + (f7 — fIFL)]

2.2.1.4 Handling the imprecise constraints

Two sorts of constraints are presented in the model. These are fuzzy constraints (or soft constraints) and crisp
constraints. Equation (3) and Equation (6) are crisp constraints that have no uncertainty related to limitation
settings. The remaining constraints (Equation (2), Equation (4), and Equation (5)) are fuzzy constraints which
have a specific degree of uncertainty. It is required to be converted into crisp constraints by using the
defuzzification methods. Defuzzification is defined as a transformation process for converting imprecise data
into crisp data. In this study, the fuzzy ranking method and weighted average method are used. The carrying
inventory constraint (Equation (2)) and labor level constraint (Equation (4)) are defuzzified by the weighted
average method. In contrast, the machine capacity constraint (Equation (5)) is defuzzified by the fuzzy ranking
method. The weighted average method can defuzzify fuzzy number with the triangular distribution by assigning
weights to the possible values (optimistic value, most likely value, and optimistic value). Here, customer
demand is estimated by the knowledge and experience of the DMs. Thus, more crucial values will be assigned
to higher weights.



Recalling Equation (2) of the original Fuzzy Linear Programming (FLP) model, consider the case in which
the available resource (the right-hand side of constraint). The weighted average method is used for Equation (2)
to convert imprecise demand (Ept) into crisp demands, presented as follows.

wy Dy, + wi" Dt +w{Dge = 1Qpe—1 + BQpe—y + RQpe + 0Qpc + SQpr = 1Qp: + BQpt (11)
where wP + wl* + w¢ =1 and wP, wl*, and w{ denote the weights of the most pessimistic, the most likely, and the
most optimistic values of the imprecise demand, respectively. A suitable value of weights w?’, w3*and w$ can be
specified subjectively by the knowledge and experience of DMs. In this study, w?, w3, and w are each set 33%.

Similarly, the imprecise maximum available labor level (MaxL,) in Equation 4, which is presented as follows:

Ybo1 LHy (RQp + 0Qpy) < wPMaxL] + wi*MaxL? + w§ MaxLy (12)

In addition, for the soft constraint that has fuzzy parameters both on the right-hand side and left-hand side,
the fuzzy ranking method is used to defuzzify imprecise data. Equation (5) with machine hour usage per product
(MHM) on the right-hand side and maximum machine capacity available (MYBTMW) on the left-hand side, which
is replaced with the three following equivalent auxiliary equations:

Yh_y MH?(RQy + 0Qy) < MaxM? VT (13)
Yho1 MH™(RQy + 0Qy) < MaxM{™ vT (14)
Yh_y MH?(RQ, + 0Q,,) < MaxM? vT (15)

2.2.1.5 Solving the auxiliary multiple objective linear programming (MOLP) model

Furthermore, the auxiliary MOLP model could be transformed into an equivalent single-objective LP model
from applying the fuzzy decision-making concept of Bellman and Zadeh [5], along with Zimmermann’s linear
programming [23]. The corresponding Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS) of each
objective function are determined as follows, respectively.

zPIS = Min z™ ZzNS = Max z™
zP1S = Max z™ — z° ZN1S = Min z™ — z° (16)
z815 = Min zP — z™ Z315 = Max zP — z™

The values of PIS and NIS criteria can be obtained by using linear programming to solve the minimum and
maximum solutions of each objective. Furthermore, the respective linear membership functions of each
objective function are specified by:

PIS

Z]I_WS -z 12 < Zy
fi(z1) = “NIS _ _PIS ,zP8 <z, < ZNIS a7)
z 0 g ,zy > zMS
. _1Z£VIS 2y < ZP1S
fi(z) = JPIS _ /NIS ,zMS <z, < 2P1S (18)
0 z ,Zy > zNIS
1 PIS
Zéws — 73 , Zi : Z3 s
fi(zs) = JNIS _ PIS ,23° L 23 < 73 (19)
3 0 3 ,z3 > zNIS

2.2.1.6 Solving for the overall satisfaction by PLP

Lastly, aggregate fuzzy sets using the minimum operator of the fuzzy decision-making concepts, the final
equivalent single-objective LP model for solving the APP problem is derived as follows:
Max L
Subjectto: L < fi(z); j=1,2,3
Equations (3),(6),(11) — (15)
Equations (7); 0 <L < 1.
where the auxiliary variable L denotes the overall satisfaction level of the decision-makers.

(20)

2.2.2 Interactive fuzzy linear programming (i-FLP)

The proposed APP model in this study considers these parameters to be imprecise numbers that can mimic
the practical environment. By applying an interactive method [17], the FLP is able to be effectively transformed
into an equivalent auxiliary crisp model. This approach allows the decision-makers (DMs) to use the optimal
solution with several different degrees of feasibility.



2.2.2.1 Transforming the fuzzy linear programming model into the equivalent auxiliary crisp model

It is required to transform the FLP model into an equivalent auxiliary model to interpret the imprecise
numbers in the fuzzy model. As a first step, a triangular fuzzy number ¢ = (c®,c™, cP) is defined by the DM,
whereby ¢, c™, cP represent the optimistic, the most likely, and the pessimistic values of the triangular fuzzy
number, correspondingly. The membership function ps(x) of ¢ is defined in the following equations:

o

xX—c
(00 = = if " <x < e
_ 1 ifx=cm
) = ' (21)
l‘gC(x)ch—cm ifc"<x<cP

0 otherwise
According to Heilpern [19], the expected interval of fuzzy number ¢, denoted EI(¢), and the expected value
of fuzzy number ¢, denoted EV (¢) are defined as follows:

EIE) = [ES, ES] = [f) £ (odx, [ g5 Gdx| = [5 (e + ™), 5 (™ + cP)] (22)
. Ef+ES c°4+2c™+ P
EV(é) = = 2 (23)

Based on Jimenez et al. [17], if there are two fuzzy numbers @ and b, the degree in which d is larger than b is
given by:

0 ifE$ —EP <0
un(a,B) = By — B if0 € [E¢ — E,E¢ — E?] (24)
M\ B — B — (Bf - BD) T T
1 ifEf —E2 >0

For ,uM(d,B) > @, dais greater than, or equal to b at least in a degree of o. When d is indifferent to (equal
to) b in the degree of ¢, it is denoted % < uM(d , b ) <1 —g (Arenas et al. [18]). Hence, the following fuzzy
mathematical programming model with the form:

Min z = éTx

st. @x=bh;i=1,..,1
dixz Ei,i = k+1,,m
x>0

where &7 is a fuzzy vector, as mentioned by Arenas et al. [18]. With respect to Equations (24) - (25),
constraints @;x > b; and d@;x = b; are equivalent to the following formulations, respectively:

aix _ pb;
EZ El

(25)

, , ——>qi=1,..,1 (26)
Eg¥ — B} + E)' — B}
a;x
e B % icitm (27)
2 EF —EM 4+ E) - 2

Similarly, it can be proved that feasible solution x, among the feasible decision vector x is an a-acceptable
optimal solution of Equation (25) just in case Equation (28) is satisfied:
(28)
&Tx = 18Tx, |
2
Finally, the complete equivalent crisp a-parametric model of Equation (25) can be derived by using expected

value and hybrid fuzzy ranking method as follows:

Min EV (&)Tx
[(1— @)ES + aEli]x = aE)i + (1 — @)E) i =1,k

_Npa % ra b _O\ b (29)
[€ 5)Es' + S E; Jx > B+ (1-5) B i=k+1,.n

[%E;i +(1 —%)Eff x< (1 —%)Efi +%Efi,i —k+1,..,n

An interactive procedure is presented in the next section to handle the equivalent crisp a-parametric model.
2.2.2.2 Interactive resolution approach
To obtain an optimal result that satisfies the aspirations of the DM, the DM has to compromise the two

conflicting objectives, which is descending the value of objective function and improving the satisfaction degree
of constraints. To deal with this problem, Jimenez et al. [17] proposed an interactive approach to obtain the



optimal solution, to balance the two conflicting objectives. Let x°(a;) be the a;-acceptable optimal solution,
where a = a,,. Based on Equation (29), the respective fuzzy numbers of the objective value are calculated by
7%(ay) = éTx°(ay,). The discrete values of a, in the set M are determined as follows:

M= {ak = ao+0.1klk = 0,1,..,— 1“"} c [0,1] (30)

where a, is the minimum degree of the feasibility of the constraint that the DM can accept, and « is an optional
value which is decided by the DM, a, < a < 1. Following Jindal & Sangwan [24], eleven scales of « are utilized
to differentiate the number of linguistic labels of the decision maker in the fuzziness process as follows: (« = 0)
unacceptable solution; (« = 0.1) basically unacceptable solution; (& = 0.2) mostly unacceptable solution; (a = 0.3)
very unacceptable solution; (a = 0.4) quite unacceptable solution; (¢ = 0.5) neither acceptable solution nor
unacceptable solution; (a = 0.6) quite acceptable solution; (a = 0.7) very acceptable solution; (a = 0.8) mostly
acceptable solution; (a = 0.9) basically acceptable solution; (« = 1) absolutely acceptable solution. After observing
all the different values of 2°(a,), the DM decides a goal value G (the minimum value) and its tolerance threshold
G (the maximum value), which are used to formulate the membership function of G to assess the satisfaction level
of DM for the value of objective function. The DM is satisfied if z < G while the DM is unsatisfied if z > G. The
membership function of G, and the satisfaction level of the fuzzy goal G by each z°(a,,) are, respectively, as

follows:
1 z<6
,ug(z)zjf_z G <z<G (31)
| 6-G
kO z=>2G
Ke(2() = J22 a0y (2)- 1g(2)dz 32

27 tooa) (2) dz

where the denominator refers to the part under p;o(,,. The numerator represents the possibility occurrence
304 OF each crisp objective value of z, which is weighted by its satisfaction level ugz(z) of the goal value G.
(as shown in Figure 2).

1 Hz0(a) @

(1e(@)
.
s
[

Satisfaction level

I }-

Possible crisp values of Z
Figure 2 Occurrence possibility of crisp objective value z and its goal satisfaction level.

Finally, the balance level (or compromise) of each solution that respects to «, is calculated by:
u5(x%(ar)) = ay * Kg (Z”O(ak )) (33)
where * represents a t-norm that such as the algebraic product, the minimum, etc. The optimal solution x* is
the solution with the highest balancing level:
up(x) = g;g;;{ak «Ke(2°(a)} (34)
Following Equations (22) — (29), the proposed aggregate production planning model can be transformed
entirely into an auxiliary crisp a- parametric model and then effectively solved as a LP problem.

2.3 Case study

The Aggregate Production Planning (APP) decision problem for a ball screw manufacturing plant is
presented. The planning horizon of the APP decision is 4 months long, including January, February, March, and
April. Two types of standard ball screws that are planned to be produced in the manufacturing plant, which are
namely external recirculation (product 1) and internal recirculation (Product 2). Tables 2-3 are the production
costs, forecast demand, and capacity data used in the model. The forecast demand, maximum workforce levels,
maximum machine capacities, and production costs are presented as fuzzy numbers with the triangular
possibility distribution from period to period. Other relevant data are described next:

e The initial carrying inventory level in the first month is 400 units of product 1 and 200 units of product 2. The

ending carrying inventory level in the fourth month is 300 units of product 1 and 200 units of product 2.
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o The initial labor level is 300 person/h. The fuzzy cost of hiring and firing are ($8, $10, $11) and ($2.0, $2.5,
$3.2) per worker per hour, respectively.

e Hours of labor per unit for any months are fixed to 0.05 person—hours for Product 1 and 0.07 person/h for
Product 2. Hours of machine usage per unit for any months are fuzzy with (0.09, 0.10, 0.11) and (0.07, 0.08,
0.09) machine—hours for Product 1 and Product 2, respectively. The required warehouse space per a unit of
product is 2 ft? for Product 1 and 3 ft? for product 2.

Table 2 Related operating cost of both products.

Product T ($/unit) Oy ($/unit) Spe ($/unit) Tp¢ ($/unit) Ept ($/unit)

1 (17, 20, 22) (26, 30, 33) (22, 25, 27) (0.27, 0.30, 0.32) (35, 40, 44)

2 (8,10, 11) (12, 15, 17) (10, 12, 13) (0.13, 0.15, 0.16) (16, 20, 23)

Table 3 Forecast demand of products, maximum labor, maximum machine, and warehouse space data.

Month  D,, (units) D,, (units) MaxL, (person-h)  MaxM, (machine-h)  MaxW, (ft?)

1 (900, 1000, (900, 1000, (175, 300, 320) (360, 400, 430) 10,000
1080) 1080)

2 (2750, 3000, (450, 500, 540) (175, 300, 320) (450, 500, 540) 10,000
3200)

3 (4600, 5000, (2750, 3000, (175, 300, 320) (540, 600, 650) 10,000
5300) 3200)

4 (1850, 2000, (2300, 2500, (175, 300, 320) (450, 500, 540) 10,000
2100) 2650)

3. Results and discussion
3.1 Linear programming (LP) results

As aforementioned, the LP model can be used for finding the ideal solutions (i.e. maximizing the profit,
minimizing the total costs) of the APP plan in specified conditions for every case. Here, the LP is also used to
obtain the value of Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS) of three objective function
(Z1, Z5, and Z3). The most likely value of the possibility distribution of each fuzzy number is considered as an
accurate number. Therefore, the results of the APP plan for the most likely case are described in Table 4.

Table 4 APP plan of LP results of most likely case.

Items Month
1 2 3 4

Product 1 Regular—time production_RQ,; (units) 600 3,000 5,000 2,300
Overtime production_0Q,; (units) 0 0 0 0
Subcontracted_SQ;; (units) 0 0 0 0
Inventory_1Q;, (units) 0 0 0 300
Backordered_BQ,; (units) 0 0 0 0

Product 2 Regular—time production_RQ,; (units) 3,174 1,460 220 2,148
Overtime production_0Q,; (units) 0 0 0 0
Subcontracted_SQ,; (units) 0 0 0 0
Inventory_1Q,; (units) 2,374 3,333 552 200
Backordered BQ,; (units) 0 0 0 0

Total hired workers_H; (persons) 0 0 14 0

Total fired workers_F; (persons) 48 0 0 0

Machine capacity (machine-hours) 314 417 518 402

Warehouse space (ft?) 7,122 10,000 1,658 1,200

Zy=7I™ $289,310.18

Z,=7m—-27° $46,888.44

Zy= 7P — 7™ $28,853.15

Total cost (Z™) $289,310.18

Based on Table 4, it is found that the quantities of regular-time production of Product 1 from the first month
to the fourth month are 600, 300, 5000 and 2300 units respectively. It can be seen that product 1 has 300 units of
ending inventory with no subcontracting units. In comparison with product 1, the quantities of ending inventory
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of products 2 have substantially raised, and subcontracting is also not required. Only fourteen new workers are
employed in the third month, but the number of dismissed workers is 48 in the first month. It is required 7,122,
10,000, 1,658 and 1,200 ft2 of warehouse space to keep product 1 and product 2 from the first month to the
fourth month. The total costs of this aggregate production planning are $289,310.18.

The Negative Ideal Solution (PIS) of the three new objective functions is ($265,219.3; $49,883.47;
$26,449.56) and the Positive Ideal Solution (NIS) is ($307,681.64; $42,970.07; $30,687.37). The corresponding
membership function of the three new objective functions are identified following to Egs. (17), (18), and (19).
Table 5 lists the multiple objective values for the three cases (optimistic, most likely, and pessimistic).

Table 5 Imprecise objective function values for three cases.

Imprecise objectives Optimistic case Most likely case Pessimistic case
Zy=7I™ $265,219.3 $289,310.18 $307,681.64
Z,=7m-17° $42,970.07 $46,888.44 $49,883.47
Zy= 7P —-7™ $26,449.56 $28,853.15 $30,687.37
Total costs $222,249.2 $289,310.18 $338,431.36

3.2 Possibilistic linear programming (PLP) results

The PLP approach can be used for practical APP in an uncertain environment. The PLP approach is
employed to handle the simplified triangular possibility distribution for representing the imprecise objectives
and related imprecise numbers. In this study, PLP is used to solve general imprecise APP problems through an
interactive process with the DM. The PLP yields the overall satisfaction level of DM under the strategy of
minimizing the most likely values, minimizing the possibility of achieving higher objective values, and
maximizing the possibility of achieving lower objective values simultaneously. The PLP approach provides an
efficient compromise solution. Table 6 presents the entire APP plan that is solved by the PLP approach.

According to Table 6, the produced quantities of product 1 in the regular-time production from the first
month to the fourth month are 577, 2,985, 4,885, and 2,259 units, respectively. It can be seen that the quantities
of ending inventory of product 1 are 31 and 300 units in the second and the fourth month, respectively. Product
1 also requires subcontracting with 6, 1, 5 units in the first, second, and fourth month, respectively. Product 2
shows 3,145, 1,425, 225, and 2,115 units of regular-time production from the first month to the fourth month.
Product 2 also indicates that a higher level of ending inventory with 2,362, 3,295, 568, and 340 units from the
first month to the fourth month, respectively. Subcontracting for product 2 is 2 and 116 units in the third month
and the fourth month. The number of dismissed workers is 51 in the first month. Eleven new workers are
employed in the third month and one is hired in the fourth month. It is required is 7,086, 9,947, 1,704, and 1,620
ft2 of warehouse space to keep product 1 and product 2 from the first month to the fourth month, respectively.
The results of maximizing the lower total costs, minimizing the most likely total costs, and minimizing the
higher total costs are $241,325.56, $287,700.95, and $316,317.35, respectively. The overall satisfaction level of
DM is 49.35%.

Table 6 PLP results.

Items Month
1 2 3 4

Product 1 Regular-time production_RQ,; (units) 577 2,985 4,885 2,259
Overtime production_0Q;; (units) 0 0 0 0
Subcontracted_SQ;¢ (units) 6 0 1 5
Inventory_IQ;; (units) 0 31 0 300
Backordered_BQ;; (units) 0 0 0 0

Product 2 Regular-time production_RQ,; (units) 3,145 1,425 225 2,115
Overtime production_0Q; (units) 0 0 0 0
Subcontracted_SQ,; (units) 0 0 2 116
Inventory_IQ,; (units) 2,362 3,295 568 340
Backordered BQ,; (units) 0 0 0 0

Total hired workers_H, (persons) 0 0 11 1

Total fired workers_F; (persons) 51 0 0 0

Machine capacity (machine-hours) 309 413 507 395

Warehouse space (ft?) 7,086 9,947 1,704 1,620

Overall satisfaction (L) 49.35%

Zy= 7™ $287,700.95

Zy,=27m—-1Z° $46,375.39

Zy= ZP —Z™ $28,616.40

Minimization of the most likely total costs $287,700.95

Maximization of the lower total costs $241,325.56

Minimization of the higher total costs $316,317.35
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3.3 Interactive resolution results

The possibility distributions of objective function are evaluated for each discrete value of a,, in the set M =
{0.2,0.3,0.4,0.5,0.6, 0.7, 0.8, 0.9, 1}. The DM chooses a-acceptable optimal solutions (« = 0.2 as a minimum
value). After calculating the different values of Z(a), the DM determines the value of G = 234,159.17 (the
minimum value), which implies that the DM is satisfied with the objective value. In contrast, the DM specifies
the value of G = 318,830.52 (the maximum value), which is the maximum possible cost that the DM can accept.
The results are shown in Table 7.

Table 7 Optimal solutions with various values of a.

Feasibility Possibility distribution of objective value Z The compatibility index of The degree of balance of

degree (@) 7P zm 70 each solution Kz (Zo(ak )) each solution
uﬁ(xo(ak))

0.2 307375.12 279442.30 234159.17 0.7198 0.2

0.3 308558.68 280519.20 235061.88 0.7050 0.3

0.4 309693.00 281552.50 235930.86 0.6982 0.4

0.5 310926.16 282671.15 236862.01 0.6814 0.5

0.6 312054.72 283701.05 237730.78 0.6661 0.6

0.7 313253.76 284790.90 238643.47 0.6496 0.6496

0.8 314732.68 286180.20 239889.29 0.6268 0.6268

0.9 316807.68 288145.20 241682.54 0.6075 0.6075

1 318830.52 290063.55 243437.66 0.5698 0.5698

Based on the results in Table 7, the bold values represent for the best degree of balance (0.6496). It is found
that the value of a = 0.7 which is chosen to compute the optimal value of the total costs. The DM can easily
adjust the goal values of G and its tolerance threshold G or alter the values of different feasibility degrees if the
DM is not satisfied with the current achieved solution.From Table 8, it is found that the quantities of regular-
time production of product 1 from the first month to the fourth month are 583, 3,180, 4,697 and 2,268 units
respectively. It can also be seen that the quantities of ending inventory of product 1 from the first month to the
fourth month are 1, 227, 1 and 300 units respectively, and has no subcontracting units. In comparison with
product 1, the quantities of ending inventory units of product 2 has substantially raised and subcontracting is
also not required. Only nine new workers are employed in the third month, but the number of discharge workers
is 50 in the first month. It is required 7, 121, 10,000, 1,721, and 1,200 ft2 of warehouse space to keep product 1
and product 2 from the first month to the fourth month, respectively. The total costs of this aggregate production
planning in optimistic, most likely, and pessimistic cases are $238,643.47, $284,790.90 and $313,253.76
respectively.

Table 8 Implementation of proposed APP plan.

Items Month
1 2 3 4
Product 1 Regular—time production_RQ,; (units) 583 3,180 4,697 2,268
Overtime production_0Q;; (units) 0 0 0 0
Subcontracted_SQ; . (units) 0 0 0 0
Inventory_IQ;. (units) 1 227 1 300
Backordered_BQ,; (units) 0 0 0 0
Product 2 Regular—time production_RQ,; (units) 3,155 1,300 345 2,080
Overtime production_0Q,; (units) 0 0 0 0
Subcontracted_SQ,; (units) 0 0 0 9
Inventory_IQ,; (units) 2,373 3,182 573 200
Backordered_BQ,; (units) 0 0 0 0
Total hired workers_H, (persons) 0 0 9 0
Total fired workers_F; (persons) 50 0 0 0
Machine capacity (machine-hours) 322 426 515 398
Warehouse space (ft?) 7,121 10,000 1,721 1,200
Total costs (2) Pessimistic case $313,253.76
Most likely case $284,790.90

Optimistic case $238,643.47
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3.4 Result comparison

Table 9 Result comparison.

Criteria Linear Programming (LP)  Possibilistic linear Interactive fuzzy linear

model programming (PLP) programming (i-FLP)
ZPs ZN1S model model
Overall satisfaction 100% 0% 49.35% 53.78%
Minimization of the most $265,219.3 $307,681.6  $287,700.95 $284,790.90
likely total costs
Maximization of the $222,249.2 $257,798.2  $241,325.56 $238,634.47
possibility of getting lower
total costs
Minimization of the $291,668.8 $338,369 $316,317.35 $313.253.76

possibility of getting higher
total costs

Table 9 compares the i-FLP approach with the LP, and the PLP approaches. The overall results can be
compared, with the objective values and overall satisfaction level from every single objective. From Table 10, it
can be seen that the overall satisfaction level of the proposed approach reaches 53,78%. In comparison, the
overall satisfaction of the typical PLP model is slightly less effective when only 49,35%. The LP model under
the optimistic and pessimistic cases are instituted to be the PIS by 100% and the NIS by 0% overall satisfaction
level. It means that a better result in terms of the optimal solution with reference to the overall satisfaction level
of the proposed approach, and it is also found that the obtained results will be nearer to the ideal solutions of the
LP model (as the ideal optimal solution does not consider any uncertainty). Additionally, the best values of the
i-FLP method of all objective functions (the lowest cost) are able to approach or nearly approach the ideal
optimal values (PIS) that are achieved by solving the LP model in the optimistic case (100% of the overall
satisfaction). On the other hand, the worst values of all objective functions (the highest cost) are also better than
the pessimistic values (NIS) that are solved by the LP model for the pessimistic case (0% of the overall
satisfaction). This indicates that the achieved outcomes (even in an uncertain environment) nearly obtain the
best optimistic values, and they are greater than the worst pessimistic values. Taking the advantages of the
concepts of the i-FLP model, the proposed outcomes can easily indicate the most likely value, and the minimum
and maximum possible values as well. From being known these values, the DMs can efficiently plan for their
budget, taking necessary actions for any uncertainty in the future as a typical linear programming model cannot
present such a possibility. Several significant characteristics distinguish between PLP and i-FLP, as shown in
Table 10. Throughout the analysis and comparison, it is seen that the proposed approach (interactive fuzzy
linear programming) produces better results compare to Possibilistic Linear Programming (PLP) approach. By
applying the i-FLP to the Aggregate Production Planning (APP) problem, the costs of three cases (optimistic,
most likely, and pessimistic cases) are $238,643.47, $284,790.90, $313,253.76 which are decreased compared to
the PLP approach ($241,325.56, $287,700.95 and $316,317.35) respectively. In summary, the proposed
approach (i-FLP) is responsible for producing better results compared to the PLP approach. Hence, the proposed
approach provides lower cost and provides a novel method for solving the Aggregate Production Planning
(APP) problem in an uncertain environment.

Table 10 Distinguish between PLP and i-FLP.

Criteria

Possibilistic Linear Programming

Interactive Fuzzy Linear Programming

Defuzzification of the
objective function
Defuzzification of the
constraints

Possible results

Fuzzy number

Uses the possibility and risk to obtain
the lower and higher total costs
Requires the weight average method,
Fuzzy ranking method

Provides a range of possible total costs
(pessimistic, most likely, optimistic)
Uses only the triangular distribution to
represent the fuzziness

Subject to weight allocation when
defuzzifying fuzzy data

Uses the expected interval value to
defuzzify the fuzzy cost structure
Requires the hybrid fuzzy ranking method

Provides a possibility distribution of total
costs (pessimistic, most likely, optimistic)
Can be in any form (triangular, trapezoidal,
and linear or nonlinear problem)

Subject to the level of a (feasible degree),
integrating the expected value (EV) and
expected interval (EI) when defuzzifying
fuzzy data.
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3.5 Managerial implications

According to the obtained results and comparison in this study, the introduced approach can yield some
advantages as follows:

As compared to the deterministic LP model, the approach can help the DMs to optimize and realize the results
in three possible cases of the situation including optimistic case, most likely case, and pessimistic case. Based on
the obtained decision variables from these three cases, the planners or managers of company can identify the
required levels of inventory, workforce, and machine capacity. Being well aware of this obtained information, they
can prepare and take necessary actions about the company’s budget and finance under any change in the future.

As compared to the PLP model with the defuzzification methods. The ranking method was used in the PLP
model to defuzzify the fuzzy numbers by separating the constraints into different scenarios while the weighted
average method just converts a fuzzy number to be a crisp number by assigning weights to possible values of
fuzzy numbers. These methods do not provide any information about likely violation of constraints (feasibility
concept). In contrast, having relied upon the fuzzy relation between fuzzy numbers, the defuzzification method
of the proposed approach not only helps the fuzzy data to avoid being defuzzified earlier in the defuzzification
process but also can seek the best fuzziness level of fuzzy constraints. This is one of the outstanding features of
this proposed defuzzification method. The effectiveness of this method was also proven through obtaining better
results for all three cases of the situation (the obtained results get closer to the ideal optimal results). In practice,
it is difficult for the company to control the fuzziness levels of constraints such as workforce level and
maximum machine capacity or even customer demand cannot be controlled. However, having known the
optimal fuzziness level of these constraints will help the company in making effort to run its operation toward
the obtained fuzziness level. For example, if the optimal fuzziness level of the maximum machine capacity is
relatively on the right-hand side of the maximum available machine capacity. The company can spend more
investing budget on buying more machines to enhance the machine capacity and vice versa. Thus, the
justification of higher spending and gained benefits can be assessed by its worthiness.

The proposed approach could also be utilized easily for linear and nonlinear forms. Moreover, relied on
historical data or subjective judgment, other forms of appropriate possibility distribution could also be generated
and applied to solve the problem.

4. Conclusion

This study presents interactive Fuzzy Linear Programming (i-FLP) to support the decision-making process of
a multi-product, multi-period Aggregate Production Planning (APP) problem. It considers the effects of
uncertainty and incompleteness of data, which are significant issues in APP problems. It also yields alternative
information on strategies for regular-time, overtime, inventory, subcontracting, backordering, and hiring and
firing workers to cope with variations in forecast demand. Additionally, the approach also considers the actual
limitations in labor, machinery, and warehouse capacity. The approach assists decision-makers (DMs) in the
trade-off between two conflicting problems: obtaining the objective value and enhancing the satisfaction level of
constraints. Once the satisfaction level of constraints is higher, the number of feasible solutions can be smaller,
it causes the DM’s choices to be restricted. Eventually, the optimal value of the objective can be worse. To
validate and demonstrate the effectiveness of the proposed model and its solution, a study case is utilized to
illustrate the feasibility of applying the proposed model. The outcomes also indicate that the proposed model can
bring a better solution in terms of the actual total costs and the APP plan. Because both unbalanced and
balanced efficient solutions may be obtained by this approach, DMs are given more flexibility to determine the
most suitable plan that depends on objective conditions.

The limitation of this study is that there are only three fuzzy parameters (labor level, machine capacity, and
customer demand) that are considered as uncertain or imprecise in the problem. With the proposed approach,
more parameters could be considered to be fuzzy and in fact there is no limitation of the number of fuzzy
parameters. Besides that, since the proposed APP model is only optimized based on the total costs of the plan,
an APP model with multiple conflicting objectives and more constraints based on the business situations can be
explored in further research. In addition, once APP models become very large and too complex to be solved by
IBM ILOG CPLEX software (as it was used in this study), it is necessary to investigate the suitability of using
metaheuristic algorithms such as Genetic Algorithm, Ant Colony, and so on for any possibility to obtain optimal
results.
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