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Abstract 

 

This study utilizes an interactive Fuzzy Linear Programming (FLP) model for solving the Aggregate Production 

Planning (APP) problem in an uncertain environment. The uncertain conditions include uncertainties of 

customer demand, operation time, operation cost, and machine capacity. The proposed model tries to minimize 

the total costs of the APP plan. Through the concept of obtaining an optimal solution in different levels of the 

feasible degree (α), decision-makers can interact with the given goal until achieving an efficient compromised 

solution that presents the overall satisfaction level of Decision-Makers (DMs) based on the given goal values. 

The outcome of this approach provides more flexibility for DMs to achieve a satisfactory solution. Finally, the 

proposed approach is compared with other traditional approaches and the results are analyzed.  

 

Keywords: Aggregate production planning, Possibilistic linear programming, Interactive fuzzy linear  

programming, Fuzzy set theory, Decision making 

 

1. Introduction 

 

 Aggregate Production Planning (APP) is the intermediate-time capacity plan that identifies the cost 

minimization of production plans and human resources to fulfill market needs in the most effective way. Its 

purpose is to determine a suitable amount of production and the level of inventory in terms of aggregation. The 

time period ranging of APP is from 2 to 12, or even 18 months [1]. APP brings a connection between strategic 

management and operations management. In addition, APP operating strategies play a significant role in 

organizational integration and enterprise resource planning. The target making APP in manufacturing enterprise 

is to acquire the minimum cost and maximum profit by determining the quantity of produced products, the 

quantity of subcontracting products, levels of labor, etc., to fulfill the market demand [2].  

 In practice, some input data for APP problems are regularly imprecise owing to some information is 

incomplete or cannot be accurately obtained. In these circumstances, fuzzy logic can provide a form of 

reasoning that allows approximate human inference skills to be used as knowledge-based systems. Zadeh [3] 

developed the fuzzy logic theory. It brings a mathematical framework to apprehend the uncertainty related to the 

processes of human perception, such as reasoning and thinking. The theory of fuzzy sets has been extensively 

adopted in many fields (i.e. operations research, management science, artificial intelligence and control theory). 

By applying the theory of fuzzy sets, Fuzzy Mathematical Programming (FMP) is a well-known decision-

making approach. Zimmermann [4] first proposed the theory of fuzzy sets into typical Linear Programming (LP) 

model that has both fuzzy objective and fuzzy constraints. An equivalent single-goal linear programming model 

by combining a linear membership function and the fuzzy decision-making method of Bellman & Zadeh [5] that 

is introduced in this study. Subsequently, some of fuzzy optimization approaches for handling APP problems in 

an ambiguous condition has been developed based on FMP. Moreover, Zadeh [3] introduced the possibility 

theory, which is in relation to the fuzzy set theory. The possibility distribution concept is defined as a vague 

limitation, which can work as a flexible constraint on the values that may be allocated to a variable.  
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 The research also shows the significance of the possibility theory because most of the information about 

human decisions is understood to be possibilistic instead of being probabilistic as in nature. Uncertainties are 

common in aggregate production planning such as imprecise capacities, imprecise demands, imprecise operating 

times, imprecise costs, etc. The uncertainties of these types of data are not able to be completely depicted by 

frequency-based probability distributions. Thus, it is extremely necessary to use the theory of fuzzy sets and 

fuzzy optimization approaches for formulating APP problems. 

 Possibilistic Linear Programming (PLP) is a fuzzy optimization approach that could be modeled based on 

possibility distributions (triangular or trapezoidal distribution). Tang et al. [6] introduced two kinds of PLP with 

common possibilistic distribution, which are Linear Programming (LP) problems with common possibilistic 

resources and common possibilistic objective coefficients by applying the concepts of the biggest and smallest 

of most likely value, the most pessimistic value and the most optimistic value. Hsu & Wang [7] used the PLP 

approach that are developed by Lai & Hwang [8] to deal with vague and imprecise data in APP problems in an 

Assemble-To-Order (ATO) system. Wang & Liang [9] studied APP problem in an uncertain environment. By 

using PLP to formulate for APP problem, which brings an efficient compromised solution of APP plan and 

overall satisfaction level of Decision-Maker (DM) with identified goal values. Liang [10] presented an 

interactive Possibilistic Linear Programming (i-PLP) approach to handle multiple imprecise objective and cost 

coefficients in an APP problem that considers multiple product and multiple time period based on triangular 

possibility distributions. The proposed i-PLP approach can provide a systematic framework that supports the 

process of decision-making for solving fuzzy multiple objective APP problems. This enables a Decision-Maker 

(DM) to interactively adjust fuzzy parameters as far as a set of satisfactory solutions is obtained. Sutthibutr & 

Chiadamrong [11] integrated a weighted additive method into PLP to solve an APP problem in an uncertain 

environment. They proposed a hybrid approach that is applied for solving most practical planning problems that 

are related to fuzzy parameters through an interactive process in making decisions. The results of the 

investigation can provide different compromise solutions which help the DM to select an efficient one based on 

their preferences with the highest satisfaction. 

 Fuzzy Linear Programming (FLP) is another fuzzy optimization approach that could be formulated by using 

subjective preference-based membership functions. Wang & Fang [12] studied an APP problem with some fuzzy 

parameters that consist of the product price, subcontracted cost, production quantity, workforce level, market 

demand, and the fuzzy satisfaction levels of objective functions. The proposed approach provided a systematic 

framework to interactively support DMs until satisfactory results are achieved. An aggregation operator was 

deployed at the final step to acquire the compromise solution of the proposed system. Madadi & Wong [13] 

extended the multiple objective fuzzy APP model to best serve businesses that aim to make the best utilization of 

their resources in an ambiguous condition whilst attempting to maintain an acceptable level of quality and 

customer service level at the same time. Iris & Cevikcan [2] presented a structure of mathematical programming 

for APP problems in an ambiguous data environment. After giving background information about Fuzzy Linear 

Programming (FLP) and the APP problem, the formulated FLP model for an APP problem that is solved on an 

illustrative example with the various values of α-cut. Chen & Huang [14] proposed a novel methodology for 

solving the APP problem in uncertain condition. After constructing the membership function by applying Zadeh’s 

extension principle and fuzzy solutions, an equivalent mathematical parametric programming is formed to identify 

the lower and upper bound of the total cost with the different levels of α. Since the objective value is represented 

based on a membership function. Thus, the achieved solutions can be more information with more accuracy, which 

provides more opportunities to gain the optimal solution on the disaggregate plan. 

 The process of decision making can be better expressed based on the theory of fuzzy sets instead of using 

precise methods. Nevertheless, a person in charge of making decisions called the Decision-Maker (DM) does 

play a critical role in using the theory of fuzzy sets. Thus, an interactive process between DM and the processes 

of decision making is significant for dealing with practical issues [15]. The interactive Fuzzy Linear 

Programming (i-FLP) is considered as a problem-oriented and user-dependent method. This approach is a 

systematic and effective method to deal with linear problems because the feasible results will be provided for 

DM. The problem will be solved if the DM is satisfied with the obtained result. In contrast, if the DM is still not 

satisfied, an interactive process will continue until the DM can find a satisfactory solution [16]. 

 Generally, the uncertainty of parameters imposes two key problems in the solving process of possibilistic 

fuzzy programming: handling the relationship between the fuzzy left-hand side as well as the right-hand side of 

constraints and finding the optimal value for the fuzzy objective function. These problems are associated with 

the process of ranking fuzzy numbers based on the interactive resolution method that is proposed by Jimenez et 

al. [17]. The method utilizes two primary ideas, which are optimality and feasibility for handling with ranking 

fuzzy objective functions and inequality relations in constraints, correspondingly. In addition, it also provides 

some benefits as follows: 

 The method is computationally efficient for solving LP model since the linearity is maintained and does not 

raise the number of objective functions as well as inequality constraints. Thus, it can be applied to solve large 

scope FLP models.  
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 The method relies on a fuzzy relation to compare fuzzy numbers, while the other relevant methods just use 

comparison relations that commonly described as a fuzzy number that is larger or smaller than others. These relations 

do not provide any information about a likely violation of constraints (the concept of feasibility degree). 

 This method could be applied for different kinds of fuzzy numbers (i.e. triangular, trapezoidal), and it also 

could be applied easily for linear or even nonlinear forms.  

 The concepts of feasibility and optimality of this method permit DM to interactively make a compromise 

between the risk of constraints (feasibility degree) and the degree of achievement of DM’s aspiration level.  

     The interactive method of Jimenez et al. [17] subjects to the definition of the expected interval and the 

expected value of fuzzy numbers, which are considered as strong mathematical concepts. These concepts were 

first developed by Arenas et al. [18], followed by Heilpern [19] and Jimenez [20].  

 

Table 1 Summary of related studies on solving fuzzy APP models. 

Articles Place of fuzzy parameters Defuzzification method Type of 

Model 

Solution 

technique 

Iris & Cevikcan (2014) 

[2] 

Objective function  

RHS of constraints 

Zimmerman Method FMILP FLP 

Hsu & Wang (2001) [11] Objective function Zimmerman Method FMILP PLP 

Wang & Liang (2005) 

[13] 

Objective function 

Both sides of constraints 

RHS of constraints 

LHS of constraints 

Zimmerman Method 

Fuzzy ranking method  

Weighted average method 

FMILP PLP 

Liang (2007) [14] Objective function 

Both sides of constraints 

RHS of constraints 

LHS of constraints 

Zimmerman Method 

Fuzzy ranking method 

Weighted average method 

FMOMILP PLP 

Sutthibutr & 

Chiadamrong (2020) [15] 

Objective function 

Both side of constraints 

RHS of constraints 

LHS of constraints 

Zimmerman Method 

Fuzzy ranking method 

Weighted average method 

FMILP PLP 

Wang & Fang (2001) [16] Objective function 

RHS of constraints 

Both sides of constraints 

Zimmerman Method 

 

FMOMILP FLP 

Madadi & Wong (2014) 

[17] 

Objective function 

RHS of constraints 

Expected interval value 

α-Level of fuzzy sets 

FMOMILP FLP 

Chen & Huang (2010) [18] RHS of constraints α-Level of fuzzy sets FMILP FLP 

This study Objective function 

Both side of constraints 

RHS of constraints 

LHS of constraints 

Expected value  

Hybrid fuzzy ranking 

method (feasibility 

concept-violation of 

constraints) 

FMOMILP Interactive 

FLP 

RHS: right-hand side, LHS: left-hand side, FMILP: Fuzzy mixed-integer linear programming, FMOMILP: Fuzzy multi-objective mixed-

integer linear programming, FLP: Fuzzy linear programming, PLP: Possibilistic linear programming. 

 

     Most of the reviewed papers have studied on uncertainties in APP models. This has led us to pursue further 

approaches that can yield better solutions as well as can handle with the uncertainty more efficiently. Several 

approaches have been summarized in Table 1, and it can be seen that the feasibility concept (violation of 

constraints) of model is not considered in most studies. Taking the advantages of Jimenez’s method that 

mentioned earlier, we propose Jimenez’s method for solving the fuzzy APP model in this study. Noteworthy, 

Jimenez’s method has recently been utilized as an efficient method to defuzzify imprecise data [21,22]. 

     This study thus presents a form of the Fuzzy Linear Programming (FLP) model to cope with Aggregate 

Production Planning (APP) problems where these parameters such as production times and costs, machine 

capacity, and customer demand are considered as fuzzy numbers with triangular possibility distribution, which 

could represent the uncertainty of these parameters in practical production planning systems. By applying an 

interactive resolution method of Jimenez et al. [17]. It yields a systematic framework to assist in the process of 

decision-making, thereby allowing a DM to interactively adjust the membership functions of the objectives and 

constraints until the DM satisfies with the achieved solution. Then, the achieved result of the i-FLP model is 

compared to the results of the ideal optimal LP model and the typical PLP model, and its advantages are 

identified. 

     The remainder of this paper is arranged as follows. Fuzzy Linear Programming (FLP) model for an APP 

problem, a methodology for solving the fuzzy APP model with two-phase approach including the Possibilistic 
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Linear programming (PLP) approach and the interactive Fuzzy Linear Programming (i-FLP) approach, and a 

case study to validate the feasibility of using the i-FLP approach to practical APP problem are presented in 

Section 2. Subsequently, the results of each approach and a comparison between its solution are shown in 

Section 3. Lastly, the conclusion of the study is drawn in Section 4. 

 

2. Materials and methods 

 

2.1 Mathematical model 

 

     In this study, the Aggregate Production Planning (APP) problem is described. A company manufactures P 

types of products to satisfy the customer requirement during a medium-term planning period T. The APP 

problem is considered in an uncertain environment. Therefore, operation costs, labor level, machine capacity, 

and customer demand can vary for each planning period. 

Indices: 

p  Types of product, p = 1, …, P 

t  Planning periods, t = 1, …, T 

Parameters: 

𝐷̃𝑝𝑡  Fuzzy forecasted demand of product p in period t (units) 

𝑟̃𝑝𝑡  Fuzzy cost of regular–time production for a unit of product p in period t ($/unit) 

𝑜̃𝑝𝑡   Fuzzy cost of overtime production for a unit of product p in period t ($/unit) 

𝑠̃𝑝𝑡  Fuzzy cost of subcontracting for a unit of product p in period t ($/unit) 

𝑖̃𝑝𝑡   Fuzzy cost of inventory for a unit of  product p in period t ($/unit) 

𝑏̃𝑝𝑡   Fuzzy cost of backordering for a unit of product p in period t ($/unit) 

ℎ̃𝑝𝑡  Fuzzy cost of hiring for one worker in period t ($/person-hour) 

𝑓𝑡  Fuzzy cost of firing for one worker in period t ($/person-hour) 

𝑀𝑎𝑥𝐿̃𝑡 Fuzzy maximum available level of labor in period t (person-hours) 

𝑀𝑎𝑥𝑀̃𝑡  Fuzzy maximum available capacity of machine in period t (machine-hours) 

𝑀𝐻̃𝑝𝑡 Fuzzy machine hour usage for a unit of product p in period t (machine-hours/unit) 

𝐿𝐻𝑝𝑡  Labor hour usage for a unit of product p in period t (person-hours/unit) 

𝑀𝑎𝑥𝑊𝑡  Maximum warehouse space available in period t (ft2/unit) 

𝑊𝑆𝑝𝑡  Warehouse spaces for a unit of product p in period t (ft2/unit) 

 

Decision variables: 

𝑅𝑄𝑝𝑡  Quantity of regular-time production product p in period t (units) 

𝑂𝑄𝑝𝑡  Quantity of overtime production product p in period t (units) 

𝑆𝑄𝑝𝑡  Quantity of subcontracted product p in period t (units) 

𝐼𝑄𝑝𝑡   Quantity of inventory product p in period t (units) 

𝐵𝑄𝑝𝑡   Quantity of backorder product p in period t (units) 

𝐻𝑡   Number of workers hired in period t (person-hours) 

𝐹𝑡  Number of workers fired in period t (person-hours) 

𝑍̃  Total costs 

Objective Function  

     The common objective function of an APP problem is to minimize the total costs. The total costs are the sum of 

the manufacturing cost, inventory cost, backordering cost, and costs of changing workforce levels over a period T. 

However, the coefficients of costs in the objective function can be imprecise due to some information being 

estimated, unobtainable or incomplete. Accordingly, the objective function is formulated in the following equation: 

 

𝑀𝑖𝑛 𝑍 = ∑  𝑃
𝑝=1 ∑  𝑇

𝑡=1 (𝑟̃𝑝𝑡𝑅𝑄𝑝𝑡 + 𝑜̃𝑝𝑡𝑂𝑄𝑝𝑡 + 𝑠̃𝑝𝑡𝑆𝑄𝑝𝑡 + 𝑖̃𝑝𝑡𝐼𝑄𝑝𝑡 + 𝑏̃𝑝𝑡𝐵𝑄𝑝𝑡)  

             + ∑  𝑇
𝑡=1 (ℎ̃𝑡𝐻𝑡 + 𝑓𝑡𝐹𝑡)  

(1)  

     The production cost is shown in the first five terms. The production costs consist of regular-time production, 

overtime production, subcontracting, inventory, and backorder. The remaining portion indicates the costs of 

changing workforce levels, which are the costs of hiring and firing workers, where 𝑟̃𝑝𝑡, 𝑜̃𝑝𝑡, 𝑠̃𝑝𝑡, 𝑖𝑝̃𝑡, 𝑏̃𝑝𝑡, ℎ̃𝑡, and 

𝑓𝑡 are uncertain parameters with the triangular possibility distribution. 

Constraints 

     The minimization of the objective function is subject to the following constraints:  

     Carrying Inventory Constraint:  

𝐷̃𝑝𝑡 = 𝐼𝑄𝑝𝑡−1 + 𝐵𝑄𝑝𝑡−1 + 𝑅𝑄𝑝𝑡 + 𝑂𝑄𝑝𝑡 + 𝑆𝑄𝑝𝑡 − 𝐼𝑄𝑝𝑡 + 𝐵𝑄𝑝𝑡                                    ∀𝑃, ∀𝑇 (2)  
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The forecasted demand of a customer cannot be obtained exactly in the real-world. Therefore, 𝐷̃𝑝𝑡  denotes for 

fuzzy estimated demand of product p in period t. Equation (2) shows that the summation of amounts of regular 

and overtime production, inventory quantities, subcontracting quantities, and backordering quantities primarily 

must meet the amount of forecasted demand. The demand can be either met or backordered in a specific period, 

but a backorder in the following period must be fulfilled. 

Labor Level Constraints: 

∑  𝑃
𝑝=1 𝐿𝐻𝑝𝑡−1(𝑅𝑄𝑝𝑡−1 + 𝑂𝑄𝑝𝑡−1) + 𝐻𝑡 − 𝐹𝑡 − ∑  𝑃

𝑝=1 𝐿𝐻𝑝𝑡(𝑅𝑄𝑝𝑡 + 𝑂𝑄𝑝𝑡) = 0                ∀𝑇  (3)  

∑  𝑃
𝑝=1 𝐿𝐻𝑝𝑡(𝑅𝑄𝑝𝑡 + 𝑂𝑄𝑝𝑡) ≤  𝑀𝑎𝑥𝐿̃𝑡                                                                                             ∀𝑇  (4)  

where Equation (3) ensures that the labor level at the end of period t-1 plus newly a number of hired workers, 

and minus a number of fired workers in period t must equal to the labor level in period t. Equation (4) shows 

that the levels of actual labor are limited by the maximum available labor level in period t. The maximum 

available labor levels can be inaccurate because of the uncertain conditions of supply, demand, and labor skills 

in the market. 

 Machine Capacity Constraint: 

∑  𝑃
𝑝=1 𝑀𝐻̃𝑝𝑡(𝑅𝑄𝑝𝑡 + 𝑂𝑄𝑝𝑡) ≤  𝑀𝑎𝑥𝑀̃𝑡                                                                                           ∀𝑇  (5)  

where 𝑀𝐻̃𝑝𝑡 and 𝑀𝑎𝑥𝑀̃𝑡   are imprecise data of the machine hour usage for a unit of product p, and the 

maximum capacity of available machine in period t, respectively. Equation (5) is about the limitation of the 

machine capacity, where the machine hour usage for producing all the products in period t must not exceed the 

maximum capacity of available machine. Similarly, the maximum capacity of available machine can be fuzzy 

(in reality) as the available machine hours could be affected by the availability and working conditions of 

machines at each moment. 

  Warehouse Capacity Constraint: 

∑  𝑃
𝑝=1 𝑊𝑆𝑝𝑡𝐼𝑄𝑝𝑡 ≤ 𝑀𝑎𝑥𝑊𝑡                                                                                                                ∀𝑇  (6)  

     Equation (6) presents the limit of actual warehouse capacity in period t. The warehouse space for storing all 

the products in each period t must not surpass their respective maximum available warehouse space.  

     Non-negativity Constraint: 

𝑅𝑄𝑝𝑡 , 𝑂𝑄𝑝𝑡 , 𝑆𝑄𝑝𝑡 , 𝐼𝑄𝑝𝑡 , 𝐵𝑄𝑝𝑡 , 𝐻𝑡 , 𝐹𝑡   ≥ 0                                                                                ∀𝑃, ∀𝑇  (7)  

 

2.2 Solution approaches 

 
 The APP model aforementioned is considered in an uncertain environment, some parameters in the APP 

model (i.e. operation times and costs, labor level, machine capacity, and customer demand) are described by 

fuzzy numbers, which can imitate the real-life. To cope with this problem, a given Fuzzy Linear Programming 

(FLP) model need to be transformed into a crisp Linear Programming (LP) model. To do that, a proposed 

methodology with the two-phase approach is implemented. In the first phase, Possibilistic Linear Programming 

(PLP) is used as a benchmark for comparison. The fuzzy APP model is then transformed into an equivalent 

auxiliary crisp model by applying the PLP approach that is introduced by Lai and Hwang [8]. In the second 

phase, an interactive fuzzy method is applied. There are two steps to implement this approach. The first step is 

to convert the fuzzy APP model into an equivalent auxiliary crisp model. The second step is to find a preferred 

compromise solution with the maximization of the DM’s satisfaction by applying the interactive fuzzy 

methodology of Jimenez et al. [17]. Finally, a comparison between these two solution approaches is made. 

 

2.2.1 Possibilistic linear programming (PLP) approach 

 

 The PLP can be applied to obtain the optimal solution in each scenario, subject to imprecise operation times 

and costs which are represented by the possibility distribution (triangular distribution). 

 

2.2.1.1 Triangular possibility distribution of imprecise data 

 

 As shown in Figure 1 (A), the triangular (possibility) distribution of imprecise number  𝑐𝑝𝑡̃  is described by 

three prominent data points, which are the most optimistic point (𝑐𝑝𝑡
𝑜 ), the most likely point (𝑐𝑝𝑡

𝑚), and the most 

pessimistic point (𝑐𝑝𝑡
𝑝
). 

    The optimistic value (the lower bound value) is the value that can provide the best situation. It is an 

immensely      low likelihood of belonging to the set of available values (at the point of possibility level = 0 if 

normalized).  
 The most likely value (the modal value) is a value that provides the normal or general situation. It certainly is 

in the set of available values (at the point of possibility level = 1 if normalized). 

 The pessimistic value (the upper bound value) is the value that can provide the worst situation. It is an 
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𝑐𝑝𝑡
𝑜  𝑐𝑝𝑡

𝑚  

 

0 

1 

 

𝑐𝑝𝑡
𝑝

 

 

𝑧𝑜  𝑧𝑚  

0 

1 

𝑧𝑝  

immensely low likelihood of belonging to the set of available values (at the point of possibility level = 0 if 

normalized).  

 

2.2.1.2 Solving strategy for the imprecise objective function 

 

 All the given parameters of the objective function in the PLP model are based on the triangular possibility 

distribution. Geometrically, the imprecise objective function 𝑧̃ can be completely characterized by three 

prominent points; (𝑧𝑜, 0), (𝑧𝑚 , 1) and (𝑧𝑝, 0). Because the critical point of the vertical coordinates is fixed at 

either 0 or 1, the only item that should be considered is the horizontal coordinates. Therefore, the solving 

strategy for the imprecise objective functions aims to simultaneously minimize the most likely value of total 

costs, 𝑧𝑚, maximize the possibility of getting lower total costs, (𝑧𝑚 − 𝑧𝑜), and minimize the possibility of 

getting higher total costs, (𝑧𝑝 − 𝑧𝑚). These three objective functions guarantee that these three values are 

pushed toward the left, as seen in Figure 1 (B). 

 

 

 

 

 

 

 

 

 

 

Figure 1 Triangular (possibility) distribution of  𝑐𝑝𝑡̃ (A) and strategy of cost minimization (B). 

 

2.2.1.3 Handling the imprecise objective functions 

 

 As shown in Figure 1 (B), relied on the triangular (possibility) distribution, the original imprecise objective is 

replaced by three new crisps of multiple objective functions as follows: 

 Minimizing the most likely value of total costs 

𝑀𝑖𝑛 𝑧1 = 𝑧
𝑚 

= ∑  𝑃
𝑝=1 ∑  𝑇

𝑡=1 (𝑟𝑝𝑡
𝑚𝑅𝑄𝑝𝑡 + 𝑜𝑝𝑡

𝑚𝑂𝑄𝑝𝑡 + 𝑠𝑝𝑡
𝑚𝑆𝑄𝑝𝑡 + 𝑖𝑝𝑡

𝑚𝐼𝑄𝑝𝑡 + 𝑏𝑝𝑡
𝑚𝐵𝑄𝑝𝑡)  

+ ∑  𝑇
𝑡=1 (ℎ𝑡

𝑚𝐻𝑡 + 𝑓𝑡
𝑚
𝑡
𝐹𝑡)  

(8)  

     Maximizing the possibility of getting lower total costs 

 

𝑀𝑎𝑥 𝑧2 = (𝑧𝑚 − 𝑧𝑜) 

= ∑  𝑃
𝑝=1 ∑  𝑇

𝑡=1 [(𝑟𝑝𝑡
𝑚 − 𝑟𝑝𝑡

𝑜 )𝑅𝑄𝑝𝑡 + (𝑜𝑝𝑡
𝑚 − 𝑜𝑝𝑡

𝑜 )𝑂𝑄𝑝𝑡 + (𝑠𝑝𝑡
𝑚 − 𝑠𝑝𝑡

𝑜 )𝑆𝑄𝑝𝑡  

+ (𝑖𝑝𝑡
𝑚 − 𝑖𝑝𝑡

𝑜 )𝐼𝑄𝑝𝑡 + (𝑏𝑝𝑡
𝑚 − 𝑏𝑝𝑡

𝑜 )𝐵𝑄𝑝𝑡 + ∑  𝑇
𝑡=1 [(ℎ𝑡

𝑚 − ℎ𝑡
𝑜)𝐻𝑡 + (𝑓𝑡

𝑚 − 𝑓𝑡
𝑜)𝐹𝑡)]  

(9)  

     Minimizing the possibility of getting higher total costs 

𝑀𝑖𝑛 𝑧3 = (𝑧
𝑝 − 𝑧𝑚) 

                             = ∑  𝑃
𝑝=1 ∑  𝑇

𝑡=1 [(𝑟𝑝𝑡
𝑝
− 𝑟𝑝𝑡

𝑚)𝑅𝑄𝑝𝑡 + (𝑜𝑝𝑡
𝑝
− 𝑜𝑝𝑡

𝑚)𝑂𝑄𝑝𝑡 + (𝑠𝑝𝑡
𝑝
− 𝑠𝑝𝑡

𝑚)𝑆𝑄𝑝𝑡   

+ (𝑖𝑝𝑡
𝑝
− 𝑖𝑝𝑡

𝑚)𝐼𝑄𝑝𝑡 + (𝑏𝑝𝑡
𝑝
− 𝑏𝑝𝑡

𝑚)𝐵𝑄𝑝𝑡] + ∑  𝑇
𝑡=1 [(ℎ𝑡

𝑝
− ℎ𝑡

𝑚)𝐻𝑡 + (𝑓𝑡
𝑝
− 𝑓𝑡

𝑚)𝐹𝑡)]   

(10)  

 

2.2.1.4 Handling the imprecise constraints 

 

 Two sorts of constraints are presented in the model. These are fuzzy constraints (or soft constraints) and crisp 

constraints. Equation (3) and Equation (6) are crisp constraints that have no uncertainty related to limitation 

settings. The remaining constraints (Equation (2), Equation (4), and Equation (5)) are fuzzy constraints which 

have a specific degree of uncertainty. It is required to be converted into crisp constraints by using the 

defuzzification methods. Defuzzification is defined as a transformation process for converting imprecise data 

into crisp data. In this study, the fuzzy ranking method and weighted average method are used. The carrying 

inventory constraint (Equation (2)) and labor level constraint (Equation (4)) are defuzzified by the weighted 

average method. In contrast, the machine capacity constraint (Equation (5)) is defuzzified by the fuzzy ranking 

method. The weighted average method can defuzzify fuzzy number with the triangular distribution by assigning 

weights to the possible values (optimistic value, most likely value, and optimistic value). Here, customer 

demand is estimated by the knowledge and experience of the DMs. Thus, more crucial values will be assigned 

to higher weights. 

Possible crisp values of 𝑐𝑝𝑡̃ Possible crisp values of 𝑍̃ 

(A) (B) 
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 (
𝜋
𝑐 𝑛
𝑡
) 

S
at

is
fa

ct
io

n
 l

ev
el

 

  
(𝜋

𝑡
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 Recalling Equation (2) of the original Fuzzy Linear Programming (FLP) model, consider the case in which 

the available resource (the right-hand side of constraint). The weighted average method is used for Equation (2) 

to convert imprecise demand (𝐷̃𝑝𝑡) into crisp demands, presented as follows. 

𝑤1
𝑝
𝐷𝑝𝑡
𝑝
+ 𝑤1

𝑚𝐷𝑝𝑡
𝑚 +𝑤1

𝑜𝐷𝑝𝑡
𝑜 = 𝐼𝑄𝑝𝑡−1 + 𝐵𝑄𝑝𝑡−1 + 𝑅𝑄𝑝𝑡 + 𝑂𝑄𝑝𝑡 + 𝑆𝑄𝑝𝑡 − 𝐼𝑄𝑝𝑡 + 𝐵𝑄𝑝𝑡  (11)  

where 𝑤1
𝑝

 + 𝑤2
𝑚 + 𝑤3

𝑜 = 1 and 𝑤1
𝑝

, 𝑤2
𝑚, and 𝑤3

𝑜 denote the weights of the most pessimistic, the most likely, and the 

most optimistic values of the imprecise demand, respectively. A suitable value of weights 𝑤1
𝑝

, 𝑤2
𝑚and 𝑤3

𝑜 can be 

specified subjectively by the knowledge and experience of DMs. In this study, 𝑤1
𝑝

, 𝑤2
𝑚, and 𝑤3

𝑜  are each set 33%. 

 Similarly, the imprecise maximum available labor level (𝑀𝑎𝑥𝐿̃𝑡) in Equation 4, which is presented as follows: 

∑  𝑃
𝑝=1 𝐿𝐻𝑝𝑡(𝑅𝑄𝑝𝑡 + 𝑂𝑄𝑝𝑡) ≤  𝑤1

𝑝
𝑀𝑎𝑥𝐿𝑡

𝑝
+ 𝑤2

𝑚𝑀𝑎𝑥𝐿𝑡
𝑝
+ 𝑤3

𝑜𝑀𝑎𝑥𝐿𝑡
𝑝
   (12)  

 In addition, for the soft constraint that has fuzzy parameters both on the right-hand side and left-hand side, 

the fuzzy ranking method is used to defuzzify imprecise data. Equation (5) with machine hour usage per product 

(𝑀𝐻̃𝑝𝑡) on the right-hand side and maximum machine capacity available (𝑀𝑎𝑥𝑀̃𝑝𝑡) on the left-hand side, which 

is replaced with the three following equivalent auxiliary equations: 

∑  𝑃
𝑝=1 𝑀𝐻𝑡

𝑝
(𝑅𝑄𝑝𝑡 + 𝑂𝑄𝑝𝑡) ≤  𝑀𝑎𝑥𝑀𝑡

𝑝
                                                                                        ∀𝑇  (13)  

∑  𝑃
𝑝=1 𝑀𝐻𝑡

𝑚(𝑅𝑄𝑝𝑡 + 𝑂𝑄𝑝𝑡) ≤  𝑀𝑎𝑥𝑀𝑡
𝑚                                                                                       ∀𝑇  (14)  

∑  𝑃
𝑝=1 𝑀𝐻𝑡

𝑜(𝑅𝑄𝑝𝑡 + 𝑂𝑄𝑝𝑡) ≤  𝑀𝑎𝑥𝑀𝑡
𝑜                                                                                         ∀𝑇  (15)  

 

2.2.1.5 Solving the auxiliary multiple objective linear programming (MOLP) model 

 
 Furthermore, the auxiliary MOLP model could be transformed into an equivalent single-objective LP model 

from applying the fuzzy decision-making concept of Bellman and Zadeh [5], along with Zimmermann’s linear 

programming [23]. The corresponding Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS) of each 

objective function are determined as follows, respectively. 

𝑧1
𝑃𝐼𝑆 = 𝑀𝑖𝑛 𝑧𝑚                                           𝑧1

𝑁𝐼𝑆 = 𝑀𝑎𝑥 𝑧𝑚 

𝑧2
𝑃𝐼𝑆 = 𝑀𝑎𝑥 𝑧𝑚 − 𝑧𝑜                               𝑧2

𝑁𝐼𝑆 = 𝑀𝑖𝑛 𝑧𝑚 − 𝑧𝑜 

𝑧3
𝑃𝐼𝑆 = 𝑀𝑖𝑛 𝑧𝑝 − 𝑧𝑚                                𝑧3

𝑁𝐼𝑆 = 𝑀𝑎𝑥 𝑧𝑝 − 𝑧𝑚 

(16)  

 The values of PIS and NIS criteria can be obtained by using linear programming to solve the minimum and 

maximum solutions of each objective. Furthermore, the respective linear membership functions of each 

objective function are specified by: 

𝑓1(𝑧1) = {

1
𝑧1
𝑁𝐼𝑆 − 𝑧1

𝑧1
𝑁𝐼𝑆 − 𝑧1

𝑃𝐼𝑆

           0           

           

, 𝑧1 < 𝑧1
𝑃𝐼𝑆

              , 𝑧1
𝑃𝐼𝑆 ≤ 𝑧1 ≤ 𝑧1

𝑁𝐼𝑆

           , 𝑧1 > 𝑧1
𝑁𝐼𝑆           

 (17)  

𝑓1(𝑧2) = {

1
𝑧2 − 𝑧2

𝑁𝐼𝑆

𝑧2
𝑃𝐼𝑆 − 𝑧2

𝑁𝐼𝑆

           0           

           

, 𝑧2 < 𝑧2
𝑃𝐼𝑆

              , 𝑧2
𝑁𝐼𝑆 ≤ 𝑧2 ≤ 𝑧2

𝑃𝐼𝑆

           , 𝑧2 > 𝑧2
𝑁𝐼𝑆           

 (18)  

𝑓1(𝑧3) = {

1
𝑧3
𝑁𝐼𝑆 − 𝑧3

𝑧3
𝑁𝐼𝑆 − 𝑧3

𝑃𝐼𝑆

           0           

           

, 𝑧3 < 𝑧3
𝑃𝐼𝑆

              , 𝑧3
𝑃𝐼𝑆 ≤ 𝑧3 ≤ 𝑧3

𝑁𝐼𝑆

           , 𝑧3 > 𝑧3
𝑁𝐼𝑆           

 (19)  

 
2.2.1.6 Solving for the overall satisfaction by PLP 

 

 Lastly, aggregate fuzzy sets using the minimum operator of the fuzzy decision-making concepts, the final 

equivalent single-objective LP model for solving the APP problem is derived as follows: 

𝑀𝑎𝑥 𝐿 

Subject to: 𝐿 ≤  𝑓𝑗(𝑧𝑗);  𝑗 = 1, 2, 3  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (3), (6), (11)  −  (15) 
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (7); 0 ≤ 𝐿 ≤ 1. 

(20)  

     where the auxiliary variable L denotes the overall satisfaction level of the decision-makers. 

 

2.2.2 Interactive fuzzy linear programming (i-FLP) 

 
 The proposed APP model in this study considers these parameters to be imprecise numbers that can mimic 

the practical environment. By applying an interactive method [17], the FLP is able to be effectively transformed 

into an equivalent auxiliary crisp model. This approach allows the decision-makers (DMs) to use the optimal 

solution with several different degrees of feasibility. 
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  (28) 

2.2.2.1 Transforming the fuzzy linear programming model into the equivalent auxiliary crisp model 

 

     It is required to transform the FLP model into an equivalent auxiliary model to interpret the imprecise 

numbers in the fuzzy model. As a first step, a triangular fuzzy number 𝑐̃  = (𝑐o, 𝑐m, 𝑐p) is defined by the DM, 

whereby 𝑐o, 𝑐m, 𝑐p represent the optimistic, the most likely, and the pessimistic values of the triangular fuzzy 

number, correspondingly. The membership function 𝜇𝑐̃(𝑥) of 𝑐̃  is defined in the following equations: 

𝜇𝑐̃(𝑥) =

{
 
 

 
 𝑓𝑐(𝑥) =

𝑥 − 𝑐𝑜

𝑐𝑚 − 𝑐𝑜
, 𝑖𝑓 𝑐𝑜 ≤ 𝑥 ≤ 𝑐𝑚

1       𝑖𝑓 𝑥 = 𝑐𝑚

𝑔𝑐(𝑥) =
𝑐𝑝 − 𝑥

𝑐𝑝 − 𝑐𝑚
 𝑖𝑓 𝑐𝑚 ≤ 𝑥 ≤ 𝑐𝑝

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (21)  

 According to Heilpern [19], the expected interval of fuzzy number 𝑐̃, denoted 𝐸𝐼(𝑐̃), and the expected value 

of fuzzy number 𝑐̃, denoted 𝐸𝑉(𝑐̃) are defined as follows: 

𝐸𝐼(𝑐̃) = [𝐸1
𝑐 , 𝐸2

𝑐] = [∫ 𝑓𝑐
−1(𝑥)𝑑𝑥, ∫ 𝑔𝑐

−1(𝑥)𝑑𝑥
1

0

1

0
] = [

1

2
(𝑐𝑜 + 𝑐𝑚),

1

2
(𝑐𝑚 + 𝑐𝑝)]  (22)  

𝐸𝑉(𝑐̃) =
𝐸1
𝑐 + 𝐸2 

𝑐

2
=
𝑐𝑜 + 2𝑐𝑚 + 𝑐𝑝

4
 (23)  

     Based on Jimenez et al. [17], if there are two fuzzy numbers 𝑎̃ and 𝑏̃, the degree in which 𝑎̃ is larger than 𝑏̃ is 

given by: 

𝜇𝑀(𝑎̃, 𝑏̃) =

{
 
 

 
 0                      if 𝐸2

𝑎 − 𝐸1
𝑏  < 0

𝐸2
𝑎 − 𝐸1

𝑏

𝐸2
𝑎 − 𝐸1

𝑏 − (𝐸1
𝑎 − 𝐸2

𝑏)
  if 0 ∈ [𝐸1

𝑎 − 𝐸2
𝑏 , 𝐸2

𝑎 − 𝐸1
𝑏]

1                       if 𝐸1
𝑎 − 𝐸2

𝑏 > 0

 (24)  

 For 𝜇𝑀(𝑎̃, 𝑏̃)  ≥  𝛼,  𝑎̃ is greater than, or equal to 𝑏̃ at least in a degree of . When 𝑎̃ is indifferent to (equal 

to) 𝑏 ̃ in the degree of , it is denoted  
𝛼

2
≤ 𝜇𝑀(𝑎̃ ,  𝑏̃ ) ≤ 1 −

𝛼

2
  (Arenas et al. [18]). Hence, the following fuzzy 

mathematical programming model with the form: 
Min 𝑧 = 𝑐̃𝑇𝑥 

s.t.   𝑎̃𝑖𝑥 ≥ 𝑏̃𝑖 , 𝑖 = 1,… , 𝑙                                                               

𝑎̃𝑖𝑥 = 𝑏̃𝑖  , 𝑖 = 𝑘 + 1,… ,𝑚  
𝑥 ≥ 0 

(25)  

 where 𝑐̃𝑇 is a fuzzy vector, as mentioned by Arenas et al. [18]. With respect to Equations (24) - (25), 

constraints 𝑎̃𝑖𝑥 ≥ 𝑏̃𝑖  and 𝑎̃𝑖𝑥 = 𝑏̃𝑖  are equivalent to the following formulations, respectively: 

𝐸2
𝑎𝑖𝑥 − 𝐸1

𝑏𝑖

𝐸2
𝑎𝑖𝑥 − 𝐸1

𝑎𝑖𝑥 + 𝐸2
𝑏𝑖 − 𝐸1

𝑏𝑖
≥ 𝛼, 𝑖 = 1,… , 𝑙 (26)  

𝛼

2
≤

𝐸2
𝑎𝑖𝑥

𝐸2
𝑎𝑖𝑥 − 𝐸1

𝑎𝑖𝑥 + 𝐸2
𝑏𝑖 − 𝐸1

𝑏𝑖
≤ 1 −

𝛼

2
, 𝑖 = 𝑙 + 1,… ,𝑚 (27)  

 Similarly, it can be proved that feasible solution 𝑥0 among the feasible decision vector x is an -acceptable 

optimal solution of Equation (25) just in case Equation (28) is satisfied:  
 

𝑐̃𝑇𝑥 ≥  1
2
𝑐̃𝑇𝑥0 (28)  

 Finally, the complete equivalent crisp -parametric model of Equation (25) can be derived by using expected 

value and hybrid fuzzy ranking method as follows: 

Min 𝐸𝑉(𝑐̃)𝑇𝑥 

[(1 − 𝛼)𝐸2
𝑎𝑖 + 𝛼𝐸1

𝑎𝑖]𝑥 ≥ 𝛼𝐸2
𝑏𝑖 + (1 − 𝛼)𝐸1

𝑏𝑖 , 𝑖 = 1, … , 𝑘 

[(1 −
𝛼

2
)𝐸2

𝑎𝑖 +
𝛼

2
𝐸1
𝑎𝑖] 𝑥 ≥

𝛼

2
𝐸2
𝑏𝑖 + (1 −

𝛼

2
)𝐸1

𝑏𝑖 , 𝑖 = 𝑘 + 1,… , 𝑛  

[
𝛼

2
𝐸2
𝑎𝑖 + (1 −

𝛼

2
)𝐸1

𝑎𝑖] 𝑥 ≤  (1 −
𝛼

2
)𝐸2

𝑏𝑖 +
𝛼

2
𝐸1
𝑏𝑖 , 𝑖 = 𝑘 + 1,… , 𝑛 

(29)  

 An interactive procedure is presented in the next section to handle the equivalent crisp -parametric model. 

 

2.2.2.2 Interactive resolution approach 

 

    To obtain an optimal result that satisfies the aspirations of the DM, the DM has to compromise the two 

conflicting objectives, which is descending the value of objective function and improving the satisfaction degree 

of constraints. To deal with this problem, Jimenez et al. [17] proposed an interactive approach to obtain the 
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𝐺 𝐺 

1 

𝐺̃ 

𝜇𝑧̃0(𝛼)(𝑧) 

0 

𝜇𝐺(𝑧) 
𝑧̃0(𝛼) 

optimal solution, to balance the two conflicting objectives. Let 𝑥0(𝛼𝑘) be the 𝛼𝑘-acceptable optimal solution, 

where 𝛼 = 𝛼𝑘. Based on Equation (29), the respective fuzzy numbers of the objective value are calculated by 

𝑧̃0(𝛼𝑘) = 𝑐̃𝑇𝑥0(𝛼𝑘). The discrete values of 𝛼𝑘 in the set M are determined as follows: 

𝑀 = {𝛼𝑘 = 𝛼0 + 0.1𝑘|𝑘 = 0,1, … ,
1 − 𝛼0
0.1

}  ⊂ [0,1] (30)  

     where 𝛼0 is the minimum degree of the feasibility of the constraint that the DM can accept, and   is an optional 

value which is decided by the DM, 𝛼0 ≤ 𝛼 ≤ 1. Following Jindal & Sangwan [24], eleven scales of  are utilized 

to differentiate the number of linguistic labels of the decision maker in the fuzziness process as follows: ( = 0) 

unacceptable solution; ( = 0.1) basically unacceptable solution; ( = 0.2) mostly unacceptable solution; ( = 0.3) 

very unacceptable solution; ( = 0.4) quite unacceptable solution; ( = 0.5) neither acceptable solution nor 

unacceptable solution; ( = 0.6) quite acceptable solution; ( = 0.7) very acceptable solution; ( = 0.8) mostly 

acceptable solution; ( = 0.9) basically acceptable solution; ( = 1) absolutely acceptable solution. After observing 

all the different values of 𝑧̃0(𝛼𝑘), the DM decides a goal value 𝐺 (the minimum value) and its tolerance threshold 

𝐺 (the maximum value), which are used to formulate the membership function of 𝐺̃ to assess the satisfaction level 

of DM for the value of objective function. The DM is satisfied if 𝑧 ≤ 𝐺  while the DM is unsatisfied if 𝑧 ≥ 𝐺. The 

membership function of 𝐺̃, and the satisfaction level of the fuzzy goal 𝐺̃ by each 𝑧̃0(𝛼𝑘) are, respectively, as 

follows: 

𝜇𝐺̃(𝑧) =

{
 
 

 
 
1   𝑧 ≤ 𝐺

𝐺 − 𝑧

𝐺 − 𝐺

0  𝑧 ≥ 𝐺

 𝐺  < 𝑧 < 𝐺 (31)  

𝐾𝐺̃(𝑧̃
0(𝛼)) =

∫ 𝜇𝑧0(𝛼) (𝑧). 𝜇𝐺̃(𝑧)𝑑𝑧
+∞

−∞

∫ 𝜇𝑧0(𝛼) (𝑧)
+∞

−∞
𝑑𝑧

 (32)  

     where the denominator refers to the part under 𝜇𝑧0(𝛼). The numerator represents the possibility occurrence 

𝜇𝑧0(𝛼) of each crisp objective value of 𝑧, which is weighted by its satisfaction level 𝜇𝐺̃(𝑧) of the goal value 𝐺̃. 

(as shown in Figure 2). 

 

 

 

 

 

 

 

 

Figure 2 Occurrence possibility of crisp objective value z and its goal satisfaction level. 

 

 Finally, the balance level (or compromise) of each solution that respects to 𝛼𝑘, is calculated by: 

𝜇𝐷̃(𝑥
0(𝛼𝑘)) = 𝛼𝑘 ∗ 𝐾𝐺̃ (𝑧̃

0(𝛼𝑘 )) (33)  

     where * represents a t-norm that such as the algebraic product, the minimum, etc. The optimal solution 𝑥∗ is 

the solution with the highest balancing level: 

𝜇𝐷̃(𝑥
∗) = max

𝛼𝑘∈𝑀
{𝛼𝑘 ∗ 𝐾𝐺̃(𝑧̃

0(𝛼𝑘))} (34)  

 Following Equations (22) – (29), the proposed aggregate production planning model can be transformed 

entirely into an auxiliary crisp - parametric model and then effectively solved as a LP problem. 

 

2.3 Case study 

 

 The Aggregate Production Planning (APP) decision problem for a ball screw manufacturing plant is 

presented. The planning horizon of the APP decision is 4 months long, including January, February, March, and 

April. Two types of standard ball screws that are planned to be produced in the manufacturing plant, which are 

namely external recirculation (product 1) and internal recirculation (Product 2). Tables 2-3 are the production 

costs, forecast demand, and capacity data used in the model. The forecast demand, maximum workforce levels, 

maximum machine capacities, and production costs are presented as fuzzy numbers with the triangular 

possibility distribution from period to period. Other relevant data are described next: 

 The initial carrying inventory level in the first month is 400 units of product 1 and 200 units of product 2. The 

ending carrying inventory level in the fourth month is 300 units of product 1 and 200 units of product 2. 

Possible crisp values of 𝑍̃ 
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 The initial labor level is 300 person/h. The fuzzy cost of hiring and firing are ($8, $10, $11) and ($2.0, $2.5, 

$3.2) per worker per hour, respectively. 

 Hours of labor per unit for any months are fixed to 0.05 person–hours for Product 1 and 0.07 person/h for 

Product 2. Hours of machine usage per unit for any months are fuzzy with (0.09, 0.10, 0.11) and (0.07, 0.08, 

0.09) machine–hours for Product 1 and Product 2, respectively. The required warehouse space per a unit of 

product is 2 ft2 for Product 1 and 3 ft2 for product 2. 

 
Table 2 Related operating cost of both products. 

Product 𝑟̃𝑝𝑡 ($/unit) 𝑜̃𝑝𝑡 ($/unit) 𝑠̃𝑝𝑡 ($/unit) 𝑖̃𝑝𝑡 ($/unit) 𝑏̃𝑝𝑡 ($/unit) 

1 (17, 20, 22) (26, 30, 33) (22, 25, 27) (0.27, 0.30, 0.32) (35, 40, 44) 

2 (8, 10, 11) (12, 15, 17) (10, 12, 13) (0.13, 0.15, 0.16) (16, 20, 23) 

 
Table 3 Forecast demand of products, maximum labor, maximum machine, and warehouse space data. 

Month 𝐷̃1𝑡 (units) 𝐷̃2𝑡 (units) 𝑀𝑎𝑥𝐿̃𝑡 (person-h) 𝑀𝑎𝑥𝑀̃𝑡 (machine-h) 𝑀𝑎𝑥𝑊𝑡 (ft
2) 

1 (900, 1000, 

1080) 

(900, 1000, 

1080) 

(175, 300, 320) (360, 400, 430) 10,000 

2 (2750, 3000, 

3200) 

(450, 500, 540) (175, 300, 320) (450, 500, 540) 10,000 

3 (4600, 5000, 

5300) 

(2750, 3000, 

3200) 

(175, 300, 320) (540, 600, 650) 10,000 

4 (1850, 2000, 

2100) 

(2300, 2500, 

2650) 

(175, 300, 320) (450, 500, 540) 10,000 

 
3. Results and discussion 

 

3.1 Linear programming (LP) results 

 

 As aforementioned, the LP model can be used for finding the ideal solutions (i.e. maximizing the profit, 

minimizing the total costs) of the APP plan in specified conditions for every case. Here, the LP is also used to 

obtain the value of Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS) of three objective function 

(Z1, Z2, and Z3). The most likely value of the possibility distribution of each fuzzy number is considered as an 

accurate number. Therefore, the results of the APP plan for the most likely case are described in Table 4. 

 

Table 4 APP plan of LP results of most likely case. 

Items Month 

1 2 3 4 

Product 1 Regular–time production_𝑅𝑄1𝑡 (units) 600 3,000 5,000 2,300 

 Overtime production_𝑂𝑄1𝑡  (units) 0 0 0 0 

 Subcontracted_𝑆𝑄1𝑡 (units) 0 0 0 0 

 Inventory_𝐼𝑄1𝑡  (units) 0 0 0 300 

 Backordered_𝐵𝑄1𝑡 (units) 0 0 0 0 

Product 2 Regular–time production_𝑅𝑄2𝑡 (units) 3,174 1,460 220 2,148 

 Overtime production_𝑂𝑄2𝑡  (units) 0 0 0 0 

 Subcontracted_𝑆𝑄2𝑡 (units) 0 0 0 0 

 Inventory_𝐼𝑄2𝑡  (units) 2,374 3,333 552 200 

 Backordered_𝐵𝑄2𝑡 (units) 0 0 0 0 

Total hired workers_𝐻𝑡  (persons) 0 0 14 0 

Total fired workers_𝐹𝑡 (persons) 48 0 0 0 

Machine capacity (machine-hours) 314 417 518 402 

Warehouse space (ft2) 7,122 10,000 1,658 1,200 

𝑍1 = 𝑍
𝑚 $289,310.18 

𝑍2 = 𝑍
𝑚 − 𝑍𝑜 $46,888.44 

𝑍3 = 𝑍
𝑝 − 𝑍𝑚 $28,853.15 

Total cost (𝑍𝑚) $289,310.18 

 

     Based on Table 4, it is found that the quantities of regular-time production of Product 1 from the first month 

to the fourth month are 600, 300, 5000 and 2300 units respectively. It can be seen that product 1 has 300 units of 

ending inventory with no subcontracting units. In comparison with product 1, the quantities of ending inventory 
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of products 2 have substantially raised, and subcontracting is also not required. Only fourteen new workers are 

employed in the third month, but the number of dismissed workers is 48 in the first month. It is required 7,122, 

10,000, 1,658 and 1,200 ft2 of warehouse space to keep product 1 and product 2 from the first month to the 

fourth month. The total costs of this aggregate production planning are $289,310.18.  

     The Negative Ideal Solution (PIS) of the three new objective functions is ($265,219.3; $49,883.47; 

$26,449.56) and the Positive Ideal Solution (NIS) is ($307,681.64; $42,970.07; $30,687.37). The corresponding 

membership function of the three new objective functions are identified following to Eqs. (17), (18), and (19).  

Table 5 lists the multiple objective values for the three cases (optimistic, most likely, and pessimistic).  

 

Table 5 Imprecise objective function values for three cases. 
Imprecise objectives Optimistic case Most likely case Pessimistic case 

𝑍1 = 𝑍
𝑚  $265,219.3 $289,310.18 $307,681.64 

𝑍2 = 𝑍
𝑚 − 𝑍𝑜  $42,970.07 $46,888.44 $49,883.47 

𝑍3 = 𝑍
𝑝 − 𝑍𝑚  $26,449.56 $28,853.15 $30,687.37 

Total costs  $222,249.2 $289,310.18 $338,431.36 

 
3.2 Possibilistic linear programming (PLP) results  

 

 The PLP approach can be used for practical APP in an uncertain environment. The PLP approach is 

employed to handle the simplified triangular possibility distribution for representing the imprecise objectives 

and related imprecise numbers. In this study, PLP is used to solve general imprecise APP problems through an 

interactive process with the DM. The PLP yields the overall satisfaction level of DM under the strategy of 

minimizing the most likely values, minimizing the possibility of achieving higher objective values, and 

maximizing the possibility of achieving lower objective values simultaneously. The PLP approach provides an 

efficient compromise solution. Table 6 presents the entire APP plan that is solved by the PLP approach. 

 According to Table 6, the produced quantities of product 1 in the regular-time production from the first 

month to the fourth month are 577, 2,985, 4,885, and 2,259 units, respectively. It can be seen that the quantities 

of ending inventory of product 1 are 31 and 300 units in the second and the fourth month, respectively. Product 

1 also requires subcontracting with 6, 1, 5 units in the first, second, and fourth month, respectively. Product 2 

shows 3,145, 1,425, 225, and 2,115 units of regular-time production from the first month to the fourth month. 

Product 2 also indicates that a higher level of ending inventory with 2,362, 3,295, 568, and 340 units from the 

first month to the fourth month, respectively. Subcontracting for product 2 is 2 and 116 units in the third month 

and the fourth month. The number of dismissed workers is 51 in the first month. Eleven new workers are 

employed in the third month and one is hired in the fourth month. It is required is 7,086, 9,947, 1,704, and 1,620 

ft2 of warehouse space to keep product 1 and product 2 from the first month to the fourth month, respectively. 

The results of maximizing the lower total costs, minimizing the most likely total costs, and minimizing the 

higher total costs are $241,325.56, $287,700.95, and $316,317.35, respectively. The overall satisfaction level of 

DM is 49.35%. 
 

Table 6 PLP results. 
Items Month 

1 2 3 4 

Product 1 Regular–time production_𝑅𝑄1𝑡 (units) 577 2,985 4,885 2,259 

 Overtime production_𝑂𝑄1𝑡 (units) 0 0 0 0 

 Subcontracted_𝑆𝑄1𝑡 (units) 6 0 1 5 

 Inventory_𝐼𝑄1𝑡 (units) 0 31 0 300 

 Backordered_𝐵𝑄1𝑡 (units) 0 0 0 0 

Product 2 Regular–time production_𝑅𝑄2𝑡 (units) 3,145 1,425 225 2,115 

 Overtime production_𝑂𝑄2𝑡 (units) 0 0 0 0 

 Subcontracted_𝑆𝑄2𝑡 (units) 0 0 2 116 

 Inventory_𝐼𝑄2𝑡 (units) 2,362 3,295 568 340 

 Backordered_𝐵𝑄2𝑡 (units) 0 0 0 0 

Total hired workers_𝐻𝑡 (persons) 0 0 11 1 

Total fired workers_𝐹𝑡 (persons) 51 0 0 0 

Machine capacity (machine-hours) 309 413 507 395 

Warehouse space (ft2) 7,086 9,947 1,704 1,620 

Overall satisfaction (L) 49.35% 

𝑍1 = 𝑍
𝑚 $287,700.95 

𝑍2 = 𝑍
𝑚 − 𝑍𝑜 $46,375.39 

𝑍3 = 𝑍
𝑝 − 𝑍𝑚 $28,616.40 

Minimization of the most likely total costs                                                                                        $287,700.95 

Maximization of the lower total costs                                                                                                $241,325.56 

Minimization of the higher total costs                                                                                               $316,317.35 
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3.3 Interactive resolution results 

 

 The possibility distributions of objective function are evaluated for each discrete value of 𝛼𝑘 in the set M = 

{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. The DM chooses α-acceptable optimal solutions (α = 0.2 as a minimum 

value). After calculating the different values of Z(α), the DM determines the value of 𝐺 = 234,159.17 (the 

minimum value), which implies that the DM is satisfied with the objective value. In contrast, the DM specifies 

the value of  𝐺 = 318,830.52 (the maximum value), which is the maximum possible cost that the DM can accept. 

The results are shown in Table 7.  

 

Table 7 Optimal solutions with various values of 𝛼. 
Feasibility 

degree (𝛼) 
Possibility distribution of objective value Z 

𝑍𝑃                         𝑍𝑚                      𝑍𝑜 

The compatibility index of 

each solution 𝐾𝐺̃ (𝑧̃
0(𝛼𝑘 )) 

The degree of balance of 

each solution 

𝜇𝐷̃(𝑥
0(𝛼𝑘)) 

0.2 307375.12 279442.30 234159.17 0.7198 0.2 

0.3 308558.68 280519.20 235061.88 0.7050 0.3 

0.4 309693.00 281552.50 235930.86 0.6982 0.4 

0.5 310926.16 282671.15 236862.01 0.6814 0.5 

0.6 312054.72 283701.05 237730.78 0.6661 0.6 

0.7 313253.76 284790.90 238643.47 0.6496 0.6496 

0.8 314732.68 286180.20 239889.29 0.6268 0.6268 

0.9 316807.68 288145.20 241682.54 0.6075 0.6075 

1 318830.52 290063.55 243437.66 0.5698 0.5698 

 

    Based on the results in Table 7, the bold values represent for the best degree of balance (0.6496). It is found 

that the value of α = 0.7 which is chosen to compute the optimal value of the total costs. The DM can easily 

adjust the goal values of  𝐺 and its tolerance threshold 𝐺 or alter the values of different feasibility degrees if the 

DM is not satisfied with the current achieved solution.From Table 8, it is found that the quantities of regular-

time production of product 1 from the first month to the fourth month are 583, 3,180, 4,697 and 2,268 units 

respectively. It can also be seen that the quantities of ending inventory of product 1 from the first month to the 

fourth month are 1, 227, 1 and 300 units respectively, and has no subcontracting units. In comparison with 

product 1, the quantities of ending inventory units of product 2 has substantially raised and subcontracting is 

also not required. Only nine new workers are employed in the third month, but the number of discharge workers 

is 50 in the first month. It is required 7, 121, 10,000, 1,721, and 1,200 ft2 of warehouse space to keep product 1 

and product 2 from the first month to the fourth month, respectively. The total costs of this aggregate production 

planning in optimistic, most likely, and pessimistic cases are $238,643.47, $284,790.90 and $313,253.76 

respectively. 

Table 8 Implementation of proposed APP plan. 

Items Month 

1 2 3 4 

Product 1 Regular–time production_𝑅𝑄1𝑡 (units) 583 3,180 4,697 2,268 

 Overtime production_𝑂𝑄1𝑡  (units) 0 0 0 0 

 Subcontracted_𝑆𝑄1𝑡 (units) 0 0 0 0 

 Inventory_𝐼𝑄1𝑡  (units) 1 227 1 300 

 Backordered_𝐵𝑄1𝑡 (units) 0 0 0 0 

Product 2 Regular–time production_𝑅𝑄2𝑡 (units) 3,155 1,300 345 2,080 

 Overtime production_𝑂𝑄2𝑡  (units) 0 0 0 0 

 Subcontracted_𝑆𝑄2𝑡 (units) 0 0 0 9 

 Inventory_𝐼𝑄2𝑡  (units) 2,373 3,182 573 200 

 Backordered_𝐵𝑄2𝑡 (units) 0 0 0 0 

Total hired workers_𝐻𝑡  (persons) 0 0 9 0 

Total fired workers_𝐹𝑡 (persons) 50 0 0 0 

Machine capacity (machine-hours) 322 426 515 398 

Warehouse space (ft2) 7,121 10,000 1,721 1,200 

Total costs (Z) Pessimistic case $313,253.76 

 Most likely case $284,790.90 

 Optimistic case $238,643.47 
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3.4 Result comparison 

 

Table 9 Result comparison. 

Criteria Linear Programming (LP) 

model 

Possibilistic linear 

programming (PLP) 

model 

Interactive fuzzy linear 

programming (i-FLP) 

model  ZPIS  ZNIS 

Overall satisfaction 100% 0% 49.35% 53.78% 

Minimization of the most 

likely total costs 

$265,219.3  $307,681.6 $287,700.95 $284,790.90 

Maximization of the 

possibility of getting lower 

total costs 

$222,249.2 $257,798.2 $241,325.56 $238,634.47 

Minimization of the 

possibility of getting higher 

total costs 

$291,668.8 $338,369 $316,317.35 $313.253.76 

 

 Table 9 compares the i-FLP approach with the LP, and the PLP approaches. The overall results can be 

compared, with the objective values and overall satisfaction level from every single objective. From Table 10, it 

can be seen that the overall satisfaction level of the proposed approach reaches 53,78%. In comparison, the 

overall satisfaction of the typical PLP model is slightly less effective when only 49,35%. The LP model under 

the optimistic and pessimistic cases are instituted to be the PIS by 100% and the NIS by 0% overall satisfaction 

level. It means that a better result in terms of the optimal solution with reference to the overall satisfaction level 

of the proposed approach, and it is also found that the obtained results will be nearer to the ideal solutions of the 

LP model (as the ideal optimal solution does not consider any uncertainty). Additionally, the best values of the 

i-FLP method of all objective functions (the lowest cost) are able to approach or nearly approach the ideal 

optimal values (PIS) that are achieved by solving the LP model in the optimistic case (100% of the overall 

satisfaction). On the other hand, the worst values of all objective functions (the highest cost) are also better than 

the pessimistic values (NIS) that are solved by the LP model for the pessimistic case (0% of the overall 

satisfaction). This indicates that the achieved outcomes (even in an uncertain environment) nearly obtain the 

best optimistic values, and they are greater than the worst pessimistic values. Taking the advantages of the 

concepts of the i-FLP model, the proposed outcomes can easily indicate the most likely value, and the minimum 

and maximum possible values as well. From being known these values, the DMs can efficiently plan for their 

budget, taking necessary actions for any uncertainty in the future as a typical linear programming model cannot 

present such a possibility. Several significant characteristics distinguish between PLP and i-FLP, as shown in 

Table 10. Throughout the analysis and comparison, it is seen that the proposed approach (interactive fuzzy 

linear programming) produces better results compare to Possibilistic Linear Programming (PLP) approach. By 

applying the i-FLP to the Aggregate Production Planning (APP) problem, the costs of three cases (optimistic, 

most likely, and pessimistic cases) are $238,643.47, $284,790.90, $313,253.76 which are decreased compared to 

the PLP approach ($241,325.56, $287,700.95 and $316,317.35) respectively. In summary, the proposed 

approach (ì-FLP) is responsible for producing better results compared to the PLP approach. Hence, the proposed 

approach provides lower cost and provides a novel method for solving the Aggregate Production Planning 

(APP) problem in an uncertain environment. 

 

Table 10 Distinguish between PLP and i-FLP. 

Criteria Possibilistic Linear Programming Interactive Fuzzy Linear Programming 

Defuzzification of the 

objective function  

Uses the possibility and risk to obtain 

the lower and higher total costs  

Uses the expected interval value to 

defuzzify the fuzzy cost structure 

Defuzzification of the 

constraints 

Requires the weight average method, 

Fuzzy ranking method  

Requires the hybrid fuzzy ranking method 

Possible results  Provides a range of possible total costs 

(pessimistic, most likely, optimistic) 

Provides a possibility distribution of total 

costs (pessimistic, most likely, optimistic) 

Fuzzy number Uses only the triangular distribution to 

represent the fuzziness 

Can be in any form (triangular, trapezoidal, 

and linear or nonlinear problem) 

 Subject to weight allocation when 

defuzzifying fuzzy data 

Subject to the level of α (feasible degree), 

integrating the expected value (EV) and 

expected interval (EI) when defuzzifying 

fuzzy data. 
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3.5 Managerial implications 

 

     According to the obtained results and comparison in this study, the introduced approach can yield some 

advantages as follows: 

     As compared to the deterministic LP model, the approach can help the DMs to optimize and realize the results 

in three possible cases of the situation including optimistic case, most likely case, and pessimistic case. Based on 

the obtained decision variables from these three cases, the planners or managers of company can identify the 

required levels of inventory, workforce, and machine capacity. Being well aware of this obtained information, they 

can prepare and take necessary actions about the company’s budget and finance under any change in the future. 

     As compared to the PLP model with the defuzzification methods. The ranking method was used in the PLP 

model to defuzzify the fuzzy numbers by separating the constraints into different scenarios while the weighted 

average method just converts a fuzzy number to be a crisp number by assigning weights to possible values of 

fuzzy numbers. These methods do not provide any information about likely violation of constraints (feasibility 

concept). In contrast, having relied upon the fuzzy relation between fuzzy numbers, the defuzzification method 

of the proposed approach not only helps the fuzzy data to avoid being defuzzified earlier in the defuzzification 

process but also can seek the best fuzziness level of fuzzy constraints. This is one of the outstanding features of 

this proposed defuzzification method. The effectiveness of this method was also proven through obtaining better 

results for all three cases of the situation (the obtained results get closer to the ideal optimal results). In practice, 

it is difficult for the company to control the fuzziness levels of constraints such as workforce level and 

maximum machine capacity or even customer demand cannot be controlled. However, having known the 

optimal fuzziness level of these constraints will help the company in making effort to run its operation toward 

the obtained fuzziness level. For example, if the optimal fuzziness level of the maximum machine capacity is 

relatively on the right-hand side of the maximum available machine capacity. The company can spend more 

investing budget on buying more machines to enhance the machine capacity and vice versa. Thus, the 

justification of higher spending and gained benefits can be assessed by its worthiness.  

     The proposed approach could also be utilized easily for linear and nonlinear forms. Moreover, relied on 

historical data or subjective judgment, other forms of appropriate possibility distribution could also be generated 

and applied to solve the problem. 

 

4. Conclusion 

 

     This study presents interactive Fuzzy Linear Programming (i-FLP) to support the decision-making process of 

a multi-product, multi-period Aggregate Production Planning (APP) problem. It considers the effects of 

uncertainty and incompleteness of data, which are significant issues in APP problems. It also yields alternative 

information on strategies for regular-time, overtime, inventory, subcontracting, backordering, and hiring and 

firing workers to cope with variations in forecast demand. Additionally, the approach also considers the actual 

limitations in labor, machinery, and warehouse capacity. The approach assists decision-makers (DMs) in the 

trade-off between two conflicting problems: obtaining the objective value and enhancing the satisfaction level of 

constraints. Once the satisfaction level of constraints is higher, the number of feasible solutions can be smaller, 

it causes the DM’s choices to be restricted. Eventually, the optimal value of the objective can be worse. To 

validate and demonstrate the effectiveness of the proposed model and its solution, a study case is utilized to 

illustrate the feasibility of applying the proposed model. The outcomes also indicate that the proposed model can 

bring a better solution in terms of the actual total costs and the APP plan. Because both unbalanced and 

balanced efficient solutions may be obtained by this approach, DMs are given more flexibility to determine the 

most suitable plan that depends on objective conditions. 

     The limitation of this study is that there are only three fuzzy parameters (labor level, machine capacity, and 

customer demand) that are considered as uncertain or imprecise in the problem. With the proposed approach, 

more parameters could be considered to be fuzzy and in fact there is no limitation of the number of fuzzy 

parameters. Besides that, since the proposed APP model is only optimized based on the total costs of the plan, 

an APP model with multiple conflicting objectives and more constraints based on the business situations can be 

explored in further research. In addition, once APP models become very large and too complex to be solved by 

IBM ILOG CPLEX software (as it was used in this study), it is necessary to investigate the suitability of using 

metaheuristic algorithms such as Genetic Algorithm, Ant Colony, and so on for any possibility to obtain optimal 

results. 

 

5. References 

 
[1] Techawiboonwong A, Yenradee P. Aggregate production planning with workforce transferring plan for 

multiple product types. Prod Plan Control. 2003;14(5):447-458. 



15 

 

[2] Iris C, Cevikcan E. A fuzzy linear programming approach for aggregate production planning. Stud 

Fuzziness Soft Comput. 2014;313:355-374. 

[3] Zadeh LA. Fuzzy sets as a basis for a theory of possibility. Fuzzy Set Syst. 1978;1(1):3-28.  

[4] Zimmermann HJ. Description and optimization of fuzzy systems. Int J Gen Syst. 1976;2(1):209-215.  

[5] Bellman RE, Zadeh LA. Decision-making in a fuzzy environment. Manage Sci. 1970;17(4):141-164. 

[6] Tang J, Wang D, Fung RYK. Formulation of general possibilistic linear programming problems for 

complex systems. Fuzzy Sets Syst. 2001;119(1):41-48. 

[7] Hsu HM, Wang WP. Possibilistic programming in production planning of assemble-to-order 

environments. Fuzzy Sets Syst. 2001;119(1):59-70. 

[8] Lai YJ, Hwang CL. A new approach to some possibilistic linear programming problems. Fuzzy Set Syst. 

1992;49(2):121-133. 

[9] Wang RC, Liang TF. Applying possibilistic linear programming to aggregate production planning. Int J 

Prod Econ. 2005;98(3):328-341. 

[10] Liang TH. Application of interactive possibilistic linear programming to aggregate production planning 

with multiple imprecise objectives. Prod Plan Control. 2007;18(7):548-560. 

[11] Sutthibutr N, Chiadamrong N. Integrating a weighted additive multiple objective linear model with 

possibilistic linear programming for fuzzy aggregate production planning problems. Int J Fuzzy Syst 

Appl. 2020;9(2):1-20. 

[12] Wang RC, Fang HH. Aggregate production planning with multiple objectives in a fuzzy environment. 

Eur J Oper Res. 2001;133(3):521-536. 

[13] Madadi N, Wong KY. A multi-objective fuzzy aggregate production planning model considering real 

capacity and quality of products. Math Probl Eng. 2014;2014:1-15. 

[14] Chen SP, Huang WL. A membership function approach for aggregate production planning problems in 

fuzzy environments. Int J Prod Res. 2010;48(23):7003-7023. 

[15] Ertuğrul İ, Tuş A. Interactive fuzzy linear programming and an application sample at a textile firm. Fuzzy 

Optim Decis Ma. 2007;6(1):29-49. 

[16] Lai YJ, Hwang CL. Fuzzy mathematical programming, fuzzy mathematical programming: methods and 

applications. 1st ed. Berlin: Springer-Verlag;1992. 

[17] Jimenez M, Arenas M, Bilbao A, Rodrıguez MV. Linear programming with fuzzy parameters: an 

interactive method resolution. Eur J Oper Res. 2007;177(3):1599-1609. 

[18] Arenas M, Bilbao A, Pérez B, Rodrı́guez MV. Solving a multi-objective possibilistic problem through 

compromise programming. Eur J Oper Res. 2005;164(3):748-759. 

[19] Heilpern S. The expected value of a fuzzy number. Fuzzy Sets Syst. 1992;47(1):81-86. 

[20] Jimenez M. Ranking fuzzy numbers through the comparison of its expected intervals. Int J Uncertain 

Fuzz. 1996;4(4):379-388. 

[21] Darvishi F, Ghasemy YR, Sadeghi A. Integrated fabric procurement and multi-site apparel production 

planning with cross-docking: a hybrid fuzzy-robust stochastic programming approach. Appl Soft 

Comput. 2020;92:106267. 

[22] Ghasemy YR, Sarlak P, Ghareaghaji AA. Robust master planning of a socially responsible supply chain 

under fuzzy-stochastic uncertainty (A case study of clothing industry). Eng Appl Artif Intell. 

2020;94:103715. 

[23] Zimmermann HJ. Fuzzy programming and linear programming with several objective functions. Fuzzy 

Sets Syst. 1978;1(1):45-55. 

[24] Jindal A, Sangwan KS. Closed loop supply chain network design and optimization using fuzzy mixed 

integer linear programming model. Int J Prod Res. 2014;52(14):4156-4173. 


