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Abstract

Agriculture and agricultural product development are important aspects of a country's economic development.
Sugarcane is one of the key industrial crops in Thailand, Brazil, China, and India. Therefore, monitoring
sugarcane growth and harvest is important for evaluating yield, optimizing logistic operations, and forecasting
crop productivity. To monitor sugarcane growth more effectively and efficiently, this study aimed to classify the
sugarcane cultivation regions in Chuenchom District, Maha Sarakham Province, Thailand, using Landsat-8 and
Sentinel-2 satellite images. To this end, three algorithms were used for classification: support vector machine
(SVM), random forest (RF), and maximum likelihood (ML). A combination of parameter sets using four bands
(red, green, blue, and NIR) and two vegetation indices: normalized difference vegetation index (NDVI) and
enhanced vegetation index (EVI) was set up for the classification. The overall accuracy and kappa coefficient
values were computed to validate the classification results with visual interpretation of high-resolution images.
Results from the study showed that RF outperformed the SVM and ML classification techniques with overall
accuracy and kappa coefficient values of 75.93 and 0.616, respectively, for Landsat-8 images and 78.60 and
0.656, respectively, for Sentinel-2 images. Specifically, RF classification with red, green, blue, and NIR
provided the highest accuracy for the Landsat-8 images, while RF classification with red, green, blue, and NDVI
proved to be the most accurate for the Sentinel-2 images. In summary, both Landsat-8 and Sentinel-2 satellite
images have great potential for sugarcane mapping using remote sensing.
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1. Introduction

About 110 countries produce sugar from either cane or beet. Nearly 80% of the global sugar production is
via sugarcane. Recently, the top ten sugarcane producing countries, including India, Brazil, Thailand, China, the
US, Mexico, Russia, Pakistan, France, and Australia accounted for nearly 70% of the global sugar output. In
addition, sugarcane can also be used to produce livestock feed, fiber, and energy, particularly for biofuels
(sugar-based ethanol) and co-generation of electricity (cane bagasse). Sugarcane is generally regarded as one of
the most significant and efficient source of biomass for biofuel production. Given the increasing population and
global economic development, there has been an increase in the need for sugarcane-related products. Similar to
Brazil, China, and India, sugarcane is one of the key industrial crops in Thailand [1, 2]. As a result, monitoring
sugarcane growth and harvest is important for evaluating yield, optimizing logistic operations, and forecasting
crop productivity. To monitor sugarcane growth, most local industries survey manual labor to document field
properties, such as the stage of growth and location of sugarcane. Such an approach is labor intensive,
expensive, and efficient only at the field or farming enterprise level. Recently, with an unmanned aerial vehicle
(UAV) technology, a detailed map of sugarcane plantations can be appropriately constructed from higher spatial



resolution images with sub-meter resolution to monitor crops at the field or farming enterprise level [3-6].
However, it is necessary to develop more efficient techniques at the state, regional, or country level. Some
studies have reported that using remote sensing data to produce thematic maps provides effective spatial and
temporal information for crop monitoring at a regional, state, or country level [7-10]. In particular, satellite
images with medium spatial resolution (10-250 m) have proven to be efficient for sugarcane mapping [11].
Sentinel-1 and Sentinel-2 images have been widely used for remote sensing applications, especially for
sugarcane monitoring and mapping [12, 13]. To date, numerous research experiments have been conducted on
object-based image analysis (OBIA) frameworks with machine learning for crop classification techniques [14-
16]. However, both Landsat-8 and Sentinel-2 satellite images have similar characteristics (in terms of spatial and
spectral resolutions) but different revisiting times; few studies have focused on using Landsat-8 and Sentinel-2
to identify sugarcane using machine learning techniques [17-20]. Thus, it is worth investigating and comparing
the accuracy of image classification using machine learning techniques on Landsat-8 and Sentinel-2 satellite
images, especially for sugarcane cultivation.

This study focuses on exploring classification techniques for identifying sugarcane cultivation from satellite
imagery by implementing pixel-based and machine learning-based (using both RF and SVM algorithms)
classifications. The effectiveness of each technique was evaluated and compared using Landsat-8 and Sentinel-2
images in Chuenchom District, Maha Sarakham Province, Thailand. This paper is divided into the following
sections: Section 2 describes the study area, the satellite data used, the methodology and classifier description;
Sections 3 and 4 present the results with discussion and conclusion, respectively.

2. Materials and methods
2.1 Study area and data

The study area is located in Chuenchom District, which lies in the northern region of Maha Sarakham
Province, Northeast Thailand (Figure 1). It extends from 16°27'9.19” N to 16°38'36.75" N and from 103°5'6.77"
E to 103°11'45.96” E, covering an area of approximately 130.57 km?. The topography is relatively flat with
elevations ranging between 146 and 248 m above mean sea level. Based on the average climate statistics using
the data from 1981 to 2010 [21], it was established that Maha Sarakham Province is characterized by a wet and
dry climate. Its average annual rainfall is 1000-1200 mm, with an average temperature of 27.1 °C. In 2017, its
land use was classified, as follows: agricultural area (82.46%), forest area (9.13%), community and building
area (4.76%), waterbody area (1.93%), and miscellaneous area (1.72%) [22].
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Figure 1 Location of the study area.

To identify sugarcane fields in the study area, Landsat-8 and Sentinel-2 satellite images were collected and
downloaded from the U.S. Geological Survey website (https://earth explorer.usgs.gov). According to the
sugarcane crop calendar in northeast Thailand, which was obtained from the Office of the Cane and Sugar



Board (OCSB), the harvesting period occurs from November to December every year. During the period before
harvesting, sugarcane fields have highly condensed leaves, which provide high spectral reflectance and help
differentiate the sugarcane plant from bare soil or crop residue. To minimize errors during the classification
process, images were selected at a time when there was no cloud or minimal cloud cover. For these reasons,
Landsat-8 satellite images (Path 128 Row 49 on December 23, 2018) along with four Sentinel-2 satellite images
(48PTC, 48PUC, 48QTD, and 48QUD on December 20, 2018) were downloaded from the website via an online
system. All the images had top of atmosphere (TOA) reflectance, which were rectified through radiometric and
geometric corrections, including ortho-rectification and spatial registration on a Universal Transverse Mercator
(UTM) grid coordinate system. Furthermore, World Geodetic System 1984 (WGS84) with grid arca 48 N (zone
48 N) was applied during this pre-processing process. Once pre-processing was completed, subsets of images
within the study area were selected from both Landsat-8 and Sentinel-2 before the classification process. Details
of the band name, spatial resolution, and corresponding wavelengths of Landsat-8 and Sentinel-2 satellite data
are shown in Tables 1 and 2, respectively. To evaluate the effectiveness of the classification techniques,
referenced data were acquired by visual interpretation of Landsat-8 and Sentinel-2 images with high spatial
resolution images from Google Earth to assess their accuracy.

Table 1 Details of Landsat-8 multispectral bands.

Band Wavelength (nm) Spatial resolution (m)
1 430-450 (Coastal Aerosol) 30
2 450-510 (Blue) 30
3 530-590 (Green) 30
4 640-670 (Red) 30
5 850-880 (NIR) 30
6;7 1570-1650 (SWIR 1); 2110-2290 (SWIR 2) 30
8 500-680 (Panchromatic) 15
9 1,360-1,380 (Cirrus) 30
10 10,600-11,190 (TIRS 1) 100
11 11,500-12,510 (TIRS 2) 100

Table 2 Details of Sentinel-2 multispectral bands.

Band Wavelength (nm) Spatial resolution (m)
1 443 (Coastal Aerosol) 60
2 490 (Blue) 10
3 560 (Green) 10
4 665 (Red) 10
5;6;7 705; 740; 783 (Vegetation Red Edge) 20
8 842 (NIR) 10
8A 865 (Narrow NIR) 20
9 945 (Water vapour) 60
10 1375 (SWIR Cirrus) 60
11;12 1610; 2190 (SWIR) 20

Figure 2 illustrates the proposed methodology for sugarcane classification. Initially, Landsat-8 and Sentinel-
2 satellite images were downloaded and pre-processed, such that they were pan-sharpened at 15 m and 10 m,



respectively, within the study area along with the referenced images using visual interpretation. Before the
classification process, groups of spectral features called “parameter sets,” including original satellite image band
values (red, blue, green, and NIR) and vegetation indices in spectral enhancement were prepared. Vegetation
indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI)
were calculated using equations (1) and (2), respectively. Although NDVI is the most popular and is widely
used in remote sensing studies [23-27], the EVI was developed to emphasize the leaf surface [28, 29]. The
NDVI values, which range between -1 and 1, represent the abundance and density of the vegetation. A value
closer to 1 indicates an area with rich vegetation, high density, or high plant chlorophyll. Table 3 summarizes
the spectral features and vegetation indices for each parameter set. To classify sugarcane, machine learning
classification using random forest (RF), support vector machine (SVM) techniques, and pixel-based with
maximum likelihood classification (MLC) were performed against three parameter sets, as follows: 1) red,
green, blue, and NIR; 2) red, green, blue, and NDVT; and 3) red, green, blue, and EVI. Training areas included
residential areas, community areas (U), water areas (W), open land areas, soil without cover (So), forestry area
or forestry plantation (F), sugarcane planting area (Sg), and others such as cloud area (O). Landsat-8 satellite
images had six classification categories (U, W, So, F, Sg, and O), whereas Sentinel-2 satellite images had only
five classification categories (U, W, So, F, and Sg), as there was no cloud cover in the region.

2.2 Support Vector Machine (SVM)

SVM is a supervised, non-parametric statistical learning technique that can be used to solve a variety of
remote sensing classification problems [30-34]. The popularity of SVM has grown in the last decade [35]. The
SVM algorithm transforms training data into a higher-dimensional space and chooses the best hyperplane to
distinguish between different classes or categories. The data in this algorithm are partitioned using full
separation margins [36]. This machine learning algorithm employs support vectors, which are training data
samples that fall on the edges of the class distribution and the kernel trick (center of the margin) [37]. The SVM
model can be implemented using a variety of kernels [38], each of which has its own set of user-defined
parameters [37]. The radial basis function kernel is used to implement the SVM model for multiclass
classification using two parameters: a regularization parameter and a kernel bandwidth parameter. The SVM
classifier requires determining the maximum number of samples to be used for defining each class. In this study,
a value of 500 was set because the image data used for classification did not pre-segment the image as the
default.

2.3 Random Forest (RF)

RF is a non-parametric machine learning algorithm based on the learning strategy principle that calculates
the value of variables to achieve high classification accuracy [39]. It is an ensemble method that has shown
excellent results in a variety of remote sensing applications [32, 40, 41]. Moreover, RF combines the responses
of many classifiers to produce a final prediction and employs a replacement strategy to create new training
datasets. This strategy decreases the variance and increases the classification accuracy. At each break, the RF
algorithm selects a random subset of variables or predictors [42]. The performance of the classification process
is determined using a majority voting scheme. The two tuning parameters for the RF algorithm include number
of trees used to form an ensemble (ntree) and the number of variables/predictors used to separate the nodes
(mtry). On the other hand, the best split for a node is critical for increasing classification accuracy [32, 43, 44].
The RF classification requires determining the maximum number of trees, maximum tree depth, and maximum
number of samples used to define each classification type. In this study, the aforementioned parameters were set
to 100, 30, and 1000, respectively. The image data used for classification have not been previously segmented.

2.4 Maximum Likelihood (ML)

ML is a supervised classification method derived from the Bayes theorem, which measures the probability
that a given pixel belongs to a particular class based on the statistics for each class in each band being normally
distributed. All pixels are labeled unless a probability threshold is set [45]. The class with the highest likelihood
is assigned to each pixel (i.e., maximum likelihood). The pixel remains unclassified if the highest likelihood is
less than the specified threshold. As mentioned at the beginning of the Section 2, six and five signature classes
were selected for Landsat-8 and Sentinel-2 ML classifications, respectively. For each class, the training pixels
provide values, which can be used to estimate the mean and covariances from the parameter sets. This
information is used by the ML classifier to assign pixels to a particular class.
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Figure 2 Framework of sugarcane classification and validation processes.

Table 3 Summary of spectral features and vegetation index for each parameter set.

Parameter Set

Bands and Index

1
2
3

Red, Green, Blue, and NIR
Red, Green, Blue and NDVI
Red, Green, Blue and EVI




2.5 Accuracy assessment

To evaluate the effectiveness of the SVM, RF, and ML techniques, sugarcane areas classified from the
Landsat-8 and Sentinel-2 satellite images were overlaid and compared to the reference data. The overall
accuracy assessment and kappa coefficient were calculated. The kappa coefficient [46] is an estimation of the
error using KHAT statistical values to describe the degree of consistency of the two datasets using equation (3).

Ranking of kappa coefficient values is shown in Table 4 [47].

NDVI = NIR — Red
NIR + Red
EVI = G * NIR — Red

NIR + (C1 * Red — C2 * Blue) + L’

Where L =1; C1=6; C2=7.5; and G = 2.5

T T
k= NXiz1Xii = Xi=1%Xi+ * X4i
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N2-371_ g Xig* X4

Where, r = sum across all rows in matrix; x;; = diagonal; x; ,= marginal row total (row ).
x4; = marginal column total (column i); N = observations.

Table 4 Degree of consistency for kappa coefficient values.

Q)

2

G)

Kappa Value Interpretation

<0.21 Very Low Coherency
0.21-0.40 Low Coherency
0.41-0.60 Moderate Coherency
0.61-0.80 High Coherency
>0.80 Very High Coherency

3. Results and discussion

In this study, Landsat-8 and Sentinel-2 images were acquired during the growing season, four bands at 15 m
and 10 m resolution were stacked, and the resulting images were used for sugarcane classification. The random
sampling method was adopted to select training locations in both Landsat-8 and Sentinel-2 images (Figure 3).
Each training location was buffered at 20 m. This was done to create training areas on different land uses, where
the numbers of sampling locations on the Landsat-8§ and Sentinel-2 images were 493 and 445 positions,
respectively, with an approximate total area of 61.6 and 55.6 hectares, respectively (Table 5).
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Table 5 Training areas in each land use categories in both Landsat-8 and Sentinel-2 images.

Land use Landsat-8 Sentinel-2

Number of sampling  Area Number of sampling  Area

locations (km?)  locations (km?)
1) Residential area, community (U) 30 0.037 30 0.037
2) Water area (W) 79 0.099 79 0.099
3) Open land area soil without cover (So) 128 0.160 128 0.160
4) Forestry area, forestry plantation (F) 62 0.077 62 0.077
5) Sugarcane planting area (Sg) 146 0.18.2 146 0.18.2
6) Others such as cloud area (O) 48 0.060 - -
Total 493 0.616 445 0.556

In this study, land use maps were created by visual interpretation of sugarcane (Sg) and other land areas (F,
So, U, W, and O) based on Landsat-8, Sentinel-2, and high-resolution satellite images obtained from Google
Earth in December 2018, as shown in Figure 4 and Table 6.
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Figure 4 Map of land uses from visual interpretation.

Table 6 Summary of land use areas from visual interpretation.

Satellite Land uses
Sg F So U \ O Total
Landsat-8 Area (km?) 32.341 14.762 73.111 6.269 1.625 2.464 130.572
% 25 11 56 5 1 2 100
Sentinel-2 Area (km?) 32.610 16.240 73.748 6.337 1.637 0 130.572
% 25 12 57 5 1 0 100

To examine the performance of SVM, RF, and ML classification techniques in each parameter set in
Landsat-8 and Sentinel-2 satellite images, a simple accuracy assessment was computed using the percentage of
the total overlapped sugarcane areas between classification results and visual interpretation. The total
overlapped area demonstrated that the classification techniques were aligned with the visual interpretation. The
assessment results are listed in Table 7. The overall accuracy of Landsat-8 ranged from 77.56 to 85.86%.
Furthermore, the SVM and ML provide the highest accuracy of 85.86% and 83.15%, respectively, for parameter
set 1 (red, green, blue, and NIR). On the other hand, RF (77.56%) showed the lowest accuracy for parameter set
1. Overall, SVM performed better with respect to Landsat-8 images for all three parameter sets by providing
higher overlapped areas, as compared to the RF and ML techniques. In Sentinel-2, SVM performed better in
three parameter sets, as compared to RF and ML techniques. SVM accuracy ranged from 85.48% to 86.02%.
Therefore, RF performed better than ML on Sentinel-2 images for all parameter sets, whereas ML performed
better on Landsat-8 images.



Table 7 Summary of total overlapped sugarcane areas between SVM, RF, and ML from classifications and
referenced data.

Satellite Parameter Sets
1 2 3
(Red, Green, Blue and NIR) (Red, Green, Blue and NDVI) (Red, Green, Blue and EVI)
Area (km?) % Area (km?) % Area (km?) %
SVM
Landsat-8 27.769 85.86 27.509 85.06 27.482 84.97
Sentinel-2 28.050 86.02 27.875 85.48 27.880 85.50
RF
Landsat-8 25.084 77.56 25.664 79.36 25.655 79.33
Sentinel-2 27.083 83.05 26.434 81.06 26.394 80.94
ML
Landsat-8 26.892 83.15 26.308 81.35 26.224 81.09
Sentinel-2 23.844 73.12 23.944 73.43 23.902 73.30

To assess the accuracy of SVM, RF, and ML classification on sugarcane areas, the overall accuracy and
kappa coefficient were calculated. Table 8 shows the overall accuracy of SVM, RF, and ML classification on
both Landsat-8 and Sentinel-2 images. Table 9 shows the kappa coefficient for Landsat-8 and Sentinel-2 images.

Table 8 Overall accuracy of SVM, RF, and ML classifications for sugarcane.

Parameter Set Landsat-8 Sentinel-2

SVM RF ML SVM RF ML
1. Red, Green, Blue, and NIR 73.45 75.93 73.71 76.52 77.13 78.01
2. Red, Green, Blue, and NDVI 73.52 74.98 73.14 78.12 78.60 76.81
3. Red, Green, Blue, and EVI 73.38 74.95 73.21 77.93 78.39 77.91

Table 9 Kappa Coefficient of SVM, RF, and ML classifications for sugarcane.

Parameter Set Landsat-8 Sentinel-2

SVM RF ML SVM RF ML
1. Red, Green, Blue, and NIR 0.587 0.616 0.579 0.635 0.637 0.643
2. Red, Green, Blue, and NDVI 0.595 0.607 0.579 0.656 0.656 0.630
3. Red, Green, Blue, and EVI 0.593 0.607 0.579 0.653 0.654 0.642

As indicated in Tables 8 and 9, RF was ideal for parameter set 1 (red, green, blue, and NIR) in Landsat-8
sugarcane classification with an overall accuracy and kappa coefficient of 75.93% and 0.616, respectively.
Similarly, the performance of RF was the best for parameter set 2 (red, green, blue, and NDVI) in Sentinel-2
sugarcane classification, with an overall accuracy and kappa coefficient of 78.60% and 0.656, respectively.
Overall, RF performed better than SVM and ML for both Landsat-8 and Sentinel-2 images. Classification
results for Sentinel-2 provided higher values of accuracy than Landsat-8, which could be because spatial
resolution is an important factor for image classification. For instance, Landsat-8 has a spatial resolution of 15
m, whereas Sentinel-2 has a spatial resolution of 10 m. Furthermore, SVM, RF, and ML classifications were
performed using three parameter sets based on red, green, blue, NIR, NDVI, and EVI as classifiers, where
NDVI was derived from red and NIR, and EVI was derived from red, blue, and NIR. Both NDVI and EVI are
common indices used to estimate crop conditions. According to Saini and Ghosh (2018), NIR is the most
important classifier for crop classification, followed by red and blue; green is not significant [48]. This explains
why parameter sets 1 and 2 performed better than parameter set 3. Sugarcane areas classified by RF using
Landsat-8 images with parameter set 1 and Sentinel-2 with parameter set 2 are shown in Figure 5.



Figure 5 Total classified sugarcane area by RF; Landsat-8 with parameter set 1 (A), and Sentinel-2 with
parameter set 2 (B).

4. Conclusion

This study aimed to classify sugarcane areas in Chuenchom District, Maha Sarakham Province, Northeast
Thailand using Landsat-8 and Sentinel-2 satellite images for December 2018 using SVM, RF, and ML
classification techniques. Three parameter sets, including combinations of red, green, blue, NIR, NDVI, and
EVI were considered as classifiers. Accuracy assessment in terms of overall accuracy and kappa coefficient was
computed and compared for these classifiers. The results of the study illustrated that RF outperformed the SVM
and ML classification techniques with overall accuracy and kappa coefficient values of 75.93 and 0.616,
respectively, for Landsat-8 images and 78.60 and 0.656, respectively, for Sentinel-2 images. Specifically, RF
classification with red, green, blue, and NIR provided the highest accuracy value for Landsat-8 images, while
RF classification with red, green, blue, and NDVI provided the highest accuracy value for Sentinel-2 images. In
summary, the results demonstrate that both Landsat-8 and Sentinel-2 satellite images have the potential to
classify sugarcane cultivation; however, more accurate results can be achieved using RF classifiers.
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