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Abstract 
 
The use of pesticides in agriculture is critical to maintaining the quality of agricultural production. Farmers are 
required to finish their spraying with high efficiency due to constraints in cost and time. Nevertheless, farmers 
need more knowledge and information required for managing Unmanned Aerial vehicles (UAV) spraying and 
providing the conditions of their fields because both data (management and field conditions) affect capacity. The 
field capacitance model was generated from UAV spraying (Tiger Drone) on a sugarcane field. Consequently, this 
research intended to discover the prediction model for effective field capacity for UAV spraying (Tiger Drone) in 
the sugarcane field. The procedure began by collecting the data of nine UAVs spraying in the sugarcane fields, for 
example, field, crop, UAV condition, and working times, to develop the prediction model for the UAV spraying 
in the sugarcane field. The prediction model was then validated using nine sugarcane fields collected 
correspondingly to the model’s output. The conclusion presented was that the model’s root mean square error 
(RMSE) was 0.14 m²/s. Farmers and providers can apply a predictive model to manage the spraying process and 
provide their field conditions. 
 
Keywords: UAV, Sprayer, Effective field capacity, Predictive model, Management 
 
1. Introduction 

 
Many pests infest agricultural products and contribute to low yields [1]. Pesticides are recommended for 

controlling pests. Pest control must be completed in a short time because if these pests are not eliminated promptly, 
they can grow and become stronger. As a result, this can affect agricultural productivity and is hard to eliminate 
[2] if not controlled in time [3]. When the pest damage becomes more challenging to eliminate, farmers need to 
use more significant amounts of pesticide, which causes chemical residue and affects production costs. Weed 
population causes a 34% yield loss in arable crops worldwide [4]. Therefore, two million tons of pesticides are 
utilized annually worldwide, which is increasing rapidly. In 2020, global pesticide usage was estimated to increase 
by up to 3.5 million tons [5]. In order to avoid such problems, effective weed management planning is necessary. 

Many countries have started using Unmanned Aerial vehicles (UAVs) in precision agriculture [6,7]. It is 
speedy and can reduce the workload of a farmer and the risk of exposure to dangerous chemicals during the 
spraying process [8]. UAVs are used with many agricultural plants, such as sugarcane [9], kale, onion, celery [10], 
paddy [11], cotton [12], olives, and citrus [13], which can get rid of weeds, protect plants from insects, and provide 
plants with medicine and fertilizer. However, the appropriate amount of time for spraying pesticide and herbicide 
is approximately 4-5 h, which can be applied during the low-temperature period of the day, such as the early 
morning or evening. Midday heat causes plant growth to slow down, and the herbicides quickly dry out on the 
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leaves, which reduces the amount of herbicide that the weeds absorb [14]. The timing of the first spraying of the 
season is, therefore, challenging because the proper spraying intervals are not continuous except at midday and 
are limited each day. If unable to spray on time in the season or in a manner suitable for eliminating weeds and 
insects, this problem will result in reduced production volumes. Farmers must work under exigency to finish 
spraying before pest growth and agricultural product damage. Poor spraying management causes increased 
spraying time, which is the main problem [15]. 

However, Thai farmers still need to gain the knowledge, information, and technology to manage the spraying 
process in their field conditions. Knowledge of time and UAVs’ spraying capacity prior to spraying is essential. 
This information can be used to improve the management of UAV spraying, which will support planning and 
estimate the effective field capacity. This knowledge can then be used to prioritize spraying in his plot with the 
least amount of wasted time. The optimal spraying usually is in the morning and evening. Because it is the time 
when the stomata of the plant are open to allow the plant to absorb fertilizer or herbicide better, it will be the time 
when the calm wind ensures that the drone spray does not spread the mist to other areas. During the day, extreme 
heat closes the stomata and causes evaporation and a decrease in the number of chemicals. If they cannot spray at 
the right time, it will make the spraying of chemicals inefficient. The chemicals spread to other areas and include 
hazards for operators. All of them will result in farmers having more costs of using chemicals. Therefore, spraying 
at the right time is as crucial as spraying on time in each season. If not, older weeds or insects will grow too big. 
This model can help with the planning of spraying. On the same day, spraying will be completed promptly and 
work at full efficiency. At the right time of spraying (4-5 h) with the least wasted time for rework. When it can be 
planned to work well, there is no need to save much battery as well. During the midday, it is not suitable for 
spraying, and it will be able to recharge the battery for the next spraying period. Farmers can spray the chemicals 
at the planned time or at the right time to get rid of the weeds effectively if they have good estimation and 
management. This model will help farmers reduce costs and choose the right spraying interval for their fields. In 
addition, the contractor spraying chemicals with the hit will be able to plan the time of work and estimate the price 
of the notification more accurately. To the best of the author’s observation, there are presently no articles about 
developing the effective field capacity (EFC) as a predictive device for UAV spraying in sugarcane fields. 

For instance, various researchers who developed the spraying technique have studied a related topic. Koondee, 
et al. [16] studied the field capacity and variables of UAV operation time while spraying hormone fertilizer in a 
variable field plot design of a sugarcane field, and the results showed an average field capacity of 3.36 ha/hr and 
the longest plot could increase the working efficiency. The most time consumed was for the flight planning step 
[16]. Yousaf et al. [17] studied the field performance of the boom sprayer. The result indicated that for the same 
width of fields, the longer the field, the more productive time. Therefore, more will be the field efficiency of the 
sprayer. Because more time was required for turning at field ends due to less tractor maneuverability, the operator 
might have found difficulty controlling the tractor [17]. Wang et al. [18] conducted research to compare the droplet 
deposition, control efficacy, and working efficiency of a six-rotor UAV with a self-propelled boom sprayer and 
two conventional knapsack sprayers on the wheat crop. The working efficiency of the UAV was 4.11 ha/h, which 
was roughly 1.7-20.0 times higher than the three other sprayers [18]. Basso et al. [19] designed an embedded real-
time UAV spraying control system supported by onboard image processing. The proposal used a normalized 
difference vegetation index (NDVI) algorithm to detect the exact locations where the chemicals are needed. The 
automated spraying control system used this information to perform punctual applications while the UAV 
navigated over the crops. This innovation reduces the cost of spraying chemicals because it uses fewer chemicals. 
Moreover, refilling the agrochemicals fewer times can reduce lost time and improve working efficiency [19]. 
Doungpueng et al. [8] developed an effective field capacity prediction model for selecting well-combined 
harvesters to field conditions. This research determines the prediction model from the conceptual model 
(physically-based and empirical models) by collecting data from 15 combined harvesters. The result showed that 
the RMSE of the model was 0.24 m²/s [8]. This apprehension can be used to select the appropriately combined 
harvesters, plan the harvest, and estimate the effective field capacity. So, this research has the creative concept of 
combining the prediction model with the physically-based model and the empirical model for the accuracy of field 
conditions. In other words, farmers and providers can choose to use the proper UAV for their plots. It will help 
plan for spraying and estimate the effective field capacity. 

These studies developed the UAV spraying technology and increased its performance. The UAV spraying can 
work quickly with high performance. In order to use drones for spraying in a large area, it is crucial to have proper 
management for the best performance. Proper management is essential to improving drone performance because 
the working time can be predicted precisely based on each field condition. Moreover, proper management can 
increase the performance of the battery’s usage. This reduces the time to charge the battery and the time of 
transportation and can precisely calculate the fair cost for the customers, resulting in a reduction in the cost of a 
sprayed operation. Hence, there has to be a study about the active and passive working times at every step. The 
area, field shape, field length, and UAVs’ condition can affect the working time [16], such as when creating the 
flight mission time, chemical mixing time, headland turning time, field boundary spraying time, traveling time, 
battery changing time and chemical filling and spraying time. If drone users have an equation model to predict 
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the effective field capacity, there can be an increase in service performance. However, there needs to be research 
about the function of the estimated time in each crop field or the method for predicting the precise usage time. 

Hence, the model will provide helpful guidance for the user in planning spraying management. It benefits the 
user through shorter spraying time and reduces the time lost in the spraying process. It can also be adapted into 
an application for agriculture management. Thus, the main contributions of this paper aim to; 
• Develop an effective field capacity model for predicting the field capacity of UAV spraying in the sugarcane 
field. 
• Evaluate the effective field capacity prediction model’s performance. 
• Determine the lost time of the UAV spraying to develop a method to reduce the lost time. 
 

2. Materials and methods 
 

The working procedure (Figure. 1) began by collecting the log data of nine service UAVs spraying in the 
sugarcane fields, such as field, crop, UAV condition, and working times, to develop the UAV spraying prediction 
model in the sugarcane field. The model was then validated using log data from nine service UAVs spraying in 
sugarcane fields corresponding to the model’s creation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Working procedure in this research. 
 
2.1 Instrument 
 

Field size and field shape can affect the EFC of the UAV spraying [16]. This research assumes that most 
sugarcane fields are rectangular. Log data was selected from the service of a UAV spraying in a sugarcane field 
in Thailand. Spraying weed management in the sugarcane field was operated from the field preparation before 
growing sugarcane to harvesting in 2020. The multi-rotor UAV sprayer (Tiger Drone, HG Robotic Thailand) was 
selected in this study. 
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2.2 Theory of EFC 
 

There are two types of field capacities for UAV spraying: theoretical field capacity (TFC) and EFC. The 
equations for field capacities are presented in Equations (1) and (2), respectively. 

 

                                                                                     TFC =  
୅౪౥౪౗ౢ

୘౪౞
                                                                           (1) 

 

                                                                                    EFC =  
୅౪౥౪౗ౢ

୘౪౥౪౗ౢ
                                                                           (2) 

 
where A୲୭୲ୟ୪ is the total spraying area (mଶ), T୲୦ is the theoretical spraying field hour (s), and T୲୭୲ୟ୪ is the total 
spraying hour (s). 
 

The TFC can be determined from UAV spraying without any loss of time from the running time [20]. 
Nevertheless, in practice, there is no downtime-free UAV spraying because several factors affect the UAVs 
behavior during spraying, including crop height, field conditions, and the UAV itself. These factors cause 
downtimes and are reconciled with T୲୦ to T୲୭୲ୟ୪. All working times are shown in the flow chart in Figure 2. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 UAV spraying processes in practical fields. 
 

The activities while the UAV spraying is running in the field (passive working and active working) are labeled 
“total lost time” (TL). This TL is set apart into the flight mission creation time (Tୡ), the chemical mixing and 
preparation time before the flight mission starts (T୫), the headlands turning time (T୬), the traveling for battery 
changing and chemical filling time (T୤), and the battery changing and chemical filling time when the sub-flight 
mission is finished (Tୠ). Moreover, the remote pilot does not create flight missions until the field’s borders because 
the trees are used for rest during hard work. The UAV spraying loses time for field boundaries  by manual flight, 
called field boundary spraying lost time (Tୣ ). Ultimately, the EFC can be obtained from Equation (3). 

 

                                                                   EFC =  
୅౪౥౪౗ౢ

୘౪౞ା୘୐
=  

୅౪౥౪౗ౢ

୘౪౞ା(୘ౙା୘ౣା୘౤ା୘౜ା୘ౘା୘౛)
                                 (3) 

 
2.3 Improvement of the predictive model for EFC 
 

The elementary predictive model for the EFC is presented in Equation (3). Nonetheless, differences in the 
physical characteristics of each UAV spraying can affect EFC. Therefore, the Tiger Drone was selected for this 
study. The research began by collecting information, including field, crop, and spraying conditions from nine 
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randomly chosen sugarcane fields in 2020 for use in developing the prediction model. This research has the 
creative concept of combining the prediction model with the physically-based and empirical models. This study 
makes the equations accurate and changes according to field conditions. The physically-based model analyzes 
physical theories such as the velocity equation (v=s/t) and geometric equations. Empirical models are constructed 
by correlating variables from actual performance in each field condition to improve the model. The selected 
sample data (9 sugarcane fields) is a feasibility study of this model. 

The time parameters of the actualization (T୲୦ ,  Tୡ , T୫ , T୬ , Tୠ , T୤ , and Tୣ ) work in the field for spraying 
herbicides or fertilizers, as shown in Figure 3. They were found by log data in the UAVs. The first flight of a UAV 
without spraying in the field creates flight mission time and gap time. After the first flight and starting the second 
flight, the chemical mixing time starts. When the UAV opens, the nozzle pump is the theoretical time, and the 
UAV closed nozzle pump is turning the headland time. The working of the battery changing and then the chemical 
filling time are the time that finishes the spraying flight for landing. During sub-flight missions, the gap time is 
the battery changing and the chemical filling time. 

Furthermore, the field boundary spraying time has been after a flight mission without a planning path. All data 
and time parameters are used in the calculation of the relative equation and coefficient, for example, kୱ, kୟ, kୠ, 
k୫, and k୬୤, by simple linear regression and multilinear regression (MLR) analysis. Eventually, the prediction 
model of the EFC for the Tiger Drone UAVs is shown in Equation (22). 
 
2.3.1 Improvement of the predictive model for the theoretical spraying field time (𝑇௧௛) 
 

If a UAV spraying has an actual spraying speed (𝑆௦) same as its setting spraying speed (S) and sprays with a 
constant sprayer width (W), then the spraying is done without TL. The TFC and T୲୦  can be obtained from 
Equations (4) and (5), respectively [21,22]. Nevertheless, the actual spraying speed is not constant and is not equal 
to the set speed because UAVs need to accelerate from the starting position (start flight mission and turning), and 
the wind also affects the spraying speed. 

 

                                                                         TFC = W × S =  
୅౪౥౪౗ౢ

୘౪౞
                    (4) 

 

                                                                         T୲୦ =  
୅౪౥౪౗ౢ

୛×(ୗ୩౩ା୸)
                                  (5) 

 
where W is the sprayer width (m), S is the setting spraying speed (m/s), 𝑘௦ is the amount of spraying speed, and 
z is the intercept. 

 
2.3.2 Improvement of the predictive model for the create flight mission time (𝑇௖) 

 
To create a flight mission, the remote pilot will visually assess the overall plot and use manual drones to 

explore the plot while also marking the edge of the plot and the risk points that may harm the spraying drones 
(trees, poles). Create flight mission time is related to the area and obstacle. Therefore, Tୡ  can be solved via 
Equation (6). 

                                                                       Tୡ = A୲୭୲ୟ୪kୟ + N୆kୠ + c                                 (6) 
 

where N୆ is the number of barriers in the field, kୟ is the coefficient of the area, kୠ is the coefficient of the number 
of barriers in the field, and c is the intercept. 

 
2.3.3 Improvement of the predictive model for the chemical mixing time (𝑇௠) 
 

Most of the chemicals can be used for spraying after they are mixed with water or specific chemicals, and they 
can then be used for spraying plants. As such, there is a mixing process before spraying. Typically, the volume of 
the water and the chemicals have a relationship with the area (A୲୭୲ୟ୪), and the chemical mixing time has a 
relationship with the volume of water and chemicals [16], which causes the chemical mixing lost time (T୫) to 
have a relationship with the area, as shown in Equation (7). 

 
                                                                    T୫ = A୲୭୲ୟ୪k୫ + d                     (7) 

 
where k୫ is the coefficient of the chemical mixing time, and d is the intercept. 
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2.3.4 Improvement of the predictive model for the headland turning time (𝑇௡) 
 

Normally, the remote pilot will create spraying path plans that spray along a longitudinal path of the field. Due 
to the least number of headlands turning, it will reduce the lost time. Therefore, this section describes the 
development of a loss time prediction model during headland turning. 

The UAV spraying works with the UAV at the starting point (camp, take-off, and landing point). Following 
this, the UAV travels to the starting mission point. Next, it travels and sprays until its headlands. After that, the 
UAV stops spraying and turns to the next row. Thus, the number of field rows equals the number of headlands 
turning. Then, the number of headlands turning (N୲) can be calculated as Equation (8). When the UAV has reached 
the last point of a sub-flight mission, it will not turn back but will continue traveling to the camp. Consequently, 
the sub-flight mission will not have headlands turning in the last row. Thus, it is vital to know the number of sub-
flight missions (N୤). Usually, the remote pilot will create a sub-flight mission with an area of 4800 m², which is 
normally appropriate for the battery capacity and the container’s volume of the Tiger Drone. When there is a wind 
flow or the wind direction is not appropriate, it may change the plan of the UAV spraying, which can result in an 
improper N୤. Thus, the coefficient of k୬୤ was used to adjust the N୤ with greater accuracy, as found in Equation 
(9). When using N୲ combined with the turning time, it will be headland turning lost time (T୬), as found in Equation 
(10). The coefficient of the number of sub-flight missions (k୬୤) if the field is a non-rectangle (rectangle, k୬୤= 1) 
is in Equation (11). 

 

                                                                    N୲ =
୆

୛
                       (8) 

 

                                                                   N୤ =  
୅౪౥౪౗ౢ

ସ଼଴଴ × ୩౤౜
         (9) 

 

                                                                   T୬ =  t୬୲  ×  (
୆

୛
−

୅౪౥౪౗ౢ

ସ଼଴଴ × ୩౤౜
)     (10) 

 

                                                                   k୬୤ =  
୅౪౥౪౗ౢ

ସ଼଴଴ × ୒౜
       (11) 

 
where B is the field width (m), W is the sprayer width (m), t୬୲ is the time of the headland turning once times (s), 
and k୬୤ is the coefficient of the number of sub-flight missions. 
 

2.3.5 Improvement of the predictive model for battery changing and chemical filling time (𝑇௕) 
 

Before starting each sub-flight mission, one must change the battery and fill the chemical for every mission. 
Therefore, the number of battery changes and chemical fills will equal the number of sub-flight missions found in 
equation (9). However, there has to be more than one times to it, because after finishing the flight mission, there 
will be spraying for the field boundary of the area with one flight. The battery changing and chemical filling lost 
time (Tୠ) can be found in Equation (12). 

 

                                                                   Tୠ = tୠ୲  × (
୅౪౥౪౗ౢ

ସ଼଴଴ × ୩౤౜
+ 1)     (12) 

 
where tୠ୲ is the time of battery changing and chemical filling once (s). 
 
2.3.6 Improvement of the predictive model for traveling to field time (𝑇௙) 
 

When UAVs have a depleted battery or a chemical or finish a sub-flight mission in the field, they cannot 
continue to spray and need battery changing and chemical filling first. Mileage is not specified and revolves 
around the tank’s capacity. Therefore, the approximate distance traveled can be determined by applying the 
average length between the field hub and the camp (the launch and landing points) (L୲୰ୟ), given in Equation (13). 
T୤ can be determined by the proportion of all lengths that remain between the distance traveled from the hub of 
the field to the camp (L୲୰ୟ) and the velocity of travel for battery changing and chemical filling (S୤), shown in 
Equation (14). However, there are two round-trip flights at every start and end of a sub-flight mission, so the 
number of sub-flight missions combined with traveling speed and distances are calculated as T୤ in Equation (15). 

 

                                                                   L୲୰ୟ =  ට
୐౗౬ౝ

ଶ

ଶ

+
୆

ଶ

ଶ
       (13) 
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                                                                    T୤ =  
ଵ

ୗ୤
× ට

୐౗౬ౝ

ଶ

ଶ

+
୆

ଶ

ଶ
      (14) 

 
 

                                                                   T୤ =  
ଶ

ୗ౜
× ට

୐౗౬ౝ

ଶ

ଶ

+
୆

ଶ

ଶ
× (

୅

ସ଼଴଴ × ୩౤౜
+ 1)    (15) 

 
where Lୟ୴୥  is the average field length (m), B is the field width (m), and Sf is the traveling speed for battery 
changing and chemical filling (m/s). 
 
2.3.7 Improvement of the predictive model for field boundary spraying time (𝑇௘) 
 

Field boundary spraying is used in at-risk areas that can damage the drone or in areas that are not on the 
spraying plan. The manual control by the remote pilot at every site after finishing the spraying follows the spraying 
plan. Normally, there will be a field boundary spraying process. Then, one has to calculate the length of the area’s 
circumference ( Lୡ୧୰ ), found in Equation (16). However, a sugarcane field can be something other than a 
rectangular area, as always: it may not be a symmetrical area or even have a concave one. Thus, the spraying 
speed of field boundary spraying used to adjust the Tୣ  for greater accuracy can be found in Equation (17). 

 
                                                                       Lୡ୧୰ =  2 ×  (Lୟ୴୥ + B)      (16) 
 

                                                                          Tୣ =  
ଶ × (୐౗౬ౝା୆)

ୗ౛
                    (17) 

 
where Sୣ is the spraying speed for field boundary spraying (m/s). 
 
2.3.8 Elementary predictive model of the EFC for the Tiger Drone 
 

By conjugating all the predictive models of T୲୦, Tୡ, T୫, T୬, Tୠ, T୤, and Tୣ , the elementary predictive model for 
the EFC of the UAV spraying is shown in Equation (18). 

 

                                EFC = 
୅౪౥౪౗ౢ

ቀ
ఽ౪౥౪౗ౢ

౓×(౏ౡ౩శ౰)
ቁା(୅౪౥౪౗ౢ୩౗ା୒ా୩ౘାୡ)ା(୅౪౥౪౗ౢ୩ౣାୢ)ାቆ୲౤౪ × ൬

ా

౓
ି

ఽ౪౥౪౗ౢ
రఴబబ × ౡ౤౜

൰ቇ

  

                                           

൬୲ౘ౪ × (
ఽ౪౥౪౗ౢ

రఴబబ × ౡ౤౜
ାଵ)൰ାቌ

మ

౏౜
 × ඨ

ై౗౬ౝ

మ

మ

ା
ా

మ

మ
× (

ఽ౪౥౪౗ౢ
రఴబబ × ౡ౤౜

ାଵ) ቍା(
మ × (ై౗౬ౝశా)

౏౛
 )

   (18) 

 
2.4 Validation of the predictive model for the sugarcane 
 

Confirmation of the model mentioned above should be rehearsed to validate and appraise the model. First, the 
information from nine sugarcane fields in October 2020 (different location and time of training data) were 
collected. The root mean square error (RMSE) is a method used to expedient the contrast in the EFC between 
predicted and observed EFC [23], as given in Equation (19) underneath:  

 

                                                                   RMSE =  ට
∑(୉୊େ౥ౘ౩ି୉୊େ౦౨ౚ)మ

୬
     (19) 

 
where EFC୭ୠୱ is the observed EFC (mଶ/s), EFC୮୰ୢ is the predicted EFC (mଶ/s), n is the total number of spraying 
fields. 

 
The Rଶ presents the ratio of the deviation in the independent variable that can be elucidated by the deviation 

in the surveyed information, as presented in Equation (20). 
 
 

                                                                     Rଶ = 1 −
∑(୉୊େ౥ౘ౩ି୉୊େ౦౨ౚ)మ

∑(୉୊େ౥ౘ౩ି୉୊େതതതതതത
౥ౘ౩)మ     (20) 

 
where EFCതതതതത

୭ୠୱ is the mean of the measured values (observed data).  
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The bias, which is the average divergence between the surveyed information and the information predicted by 
the EFC model and represents the overall accuracy of the calibration Equation, is given by Equation (21). 

 

                                                                       bias =  
∑(୉୊େ౥ౘ౩ି୉୊େ౦౨ౚ)మ

୬
                  (21) 

 
3. Results and discussion 
 
3.1 Improvement of the predictive model for EFC 
 

Equation (3) presents the equation for the EFC formula, including A୲୭୲ୟ୪, T୲୦, and the six lost times 
(Tୡ, T୫, T୬ , T୤, Tୠ, and Tୣ ).  This section presents methods developed for a predictive model for T୲୦, 
Tୡ, T୫, T୬ , T୤, Tୠ, and Tୣ  will be conveyed in this part. Table 1 exposes field and UAV condition data collected 
from the nine sugarcane fields. The averages of the field parameters (Field total area (A୲୭୲ୟ୪), Field Width (B), 
Field average length (Lୟ୴୥), and the Number of barriers in the field (Nୠ) are 8,826 mଶ, 62.9 m, 142.1 m, and 0.44 
points, respectively. Moreover, the averages of the UAV parameters (Working width (W), Setting spraying speed 
(S), Actual spraying speed (Ss), Time of headland turning once times (t୬୲), Time of battery changing, and 
Chemical filling once times (tୠ୲), Traveling speed (S୤), Spraying speed for field boundary spraying (Sୣ), and the 
Number of sub-flight missions (N୤)) are 4.00 m, 3.67 m/s, 2.90 m/s, 5.93 s, 162.2 s, 1.95 m/s, 2.34 m/s, and 2.2 
flights, respectively. Table 2 exposes the observed data for sugarcane fields. The T୲୦ and lost time through 
spraying (Tୡ, T୫, T୬, T୬, T୤, and Tୣ ) expose that the average T୲୦ was 624.6 s, and the averages of Tୡ, T୫, T୬, T୬, 
T୤, and Tୣ  were 385.0 s, 719.4 s, 134.5 s, 402.3 s, 267.1 s, and 179.6 s, respectively.  Thus, the calculation from 
the relative of an actual spraying speed and setting spraying speed is in Figure 3. The coefficient and intercept of 
kୱ and z are 0.65 and 0.51 from Figure 3, used to adjust the T୲୦ for better accuracy. Create flight mission time is 
related to the area and obstacle, as shown in Figure 4. When correlated with maximum residue limits (MRL), the 
coefficient and intercept of kୟ, kୠ, and c are 0.005, 278.2, and 214.9, respectively. Which causes the chemical 
mixing lost time (T୫) to have a relationship with the area (Figure 5).  From Figure 5,  the coefficient and intercept 
of k୫ and d are 0 .  and -10.65, respectively. The coefficients of k୬୤ were 0.72 (if the field shape is a non-
rectangle) and t୬୲ was 5.93 s, calculated using the area N୤ and t୬୲ in Table 1. In summary, the predictive model 
of the effective field capacity of UAVs while spraying the sugarcane fields is given by Equation (22). 

 
Table 1 Parameters of field and conditions of UAV for the advancement of the elementary predictive model. 

No. Field    UAV  
A 
(mଶ) 

B 
(m) 

Lୟ୴୥ 
(m) 

Nୠ Shape   W 
(m) 

S 
(m/s) 

Ss 
(m/s) 

t୬୲ 
(s) 

tୠ୲ 
(s) 

S୤ 
(m/s) 

Sୣ 
(m/s) 

N୤ 

P1   4,203   48.6   83.3 0 Rec. 
 

4 3 2.51 3.74 105.2 1.00 1.53 1 

P2   4,663   57.5   81.2 0 Rec. 
 

4 3 2.66 4.09 108.8 1.51 1.83 1 

P3 10,583   71.4 148.2 1 Rec. 
 

4 4 2.93 5.76 270.3 2.53 1.57 2 

P4    9,861   35.9 274.6 0 Rec. 
 

4 4 3.35 8.30 121.5 2.30 2.46 2 

P5 17,377 103.5 173.8 0 Non-rec 
 

4 4 3.08 5.19 145.7 2.94 3.39 5 

P6   7,076   52.8 134.1 0 Rec. 
 

4 4 2.80 5.12 152.1 1.76 2.57 2 

P7   7,815   59.1 132.5 1 Rec. 
 

4 5 3.94 7.69 124.0 1.99 3.15 2 

P8   4,684   61.7   75.9 0 Rec. 
 

4 3 2.38 5.99 149.9 1.59 1.87 2 

P9 13,176   75.2 175.3 2 Rec. 
 

4 3 2.49 7.45 282.5 1.97 2.73 3 

Avg   8,826   62.9 142.1 0.44  
 

4.0 3.67 2.90 5.93 162.2 1.95 2.34 2.2 

 
Table 2 Observed working times for the advancement of the elementary predictive model. 

No. T୲୦ (s) Tୡ (s) T୫ (s) T୬ (s) Tୠ (s) T୤ (s) Tୣ (s) 
P1 413.8 278.0 224.7 59.8 315.7 167.1 159.5 

P2 406.9 181.9 492.5 45.0 217.6 229.7 163.5 

P3 676.1 507.2 746.0 198.5 540.6 382.8 150.5 

P4 554.9 234.7 731.0 91.3 242.9 92.9 147.7 

P5 1,135.0 320.1 1,381.0 212.1 728.4 413.2 221.0 

P6 538.0 247.0 677.4 133.1 304.2 183.2 170.0 

P7 449.7 453.0 633.0 174.0 124.0 257.8 223.0 

P8 569.2 341.1 348.1 126.1 299.9 242.2 161.7 

P9 877.7 902.0 1,240.7 170.8 847.6 435.1 219.7 

Avg 624.6 385.0 719.4 134.5 402.3 267.1 179.6 
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Figure 3 Relationship of the setting speed and effective speed for T୲୦. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 Relationship of the create flight mission time, Area and Obstacle level for 𝑇௖. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Relationship of the area and chemical mixing time for T୫. 
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  (22) 

 
Figure 6 shows the working time analysis of the nine sugarcane fields used to develop the prediction model. 

The UAV spraying spent sequentially 23% and 77% of its time for T୲୦ and TL. Nevertheless, the EFC of the UAV 
spraying reduces due to the response of the TL. The TL was synthesized by six loss times (Tୡ, T୫, T୬, Tୠ, T୤, and 
Tୣ ). The TL can be divided into two types: the major effects of lost time and the minor effects of lost time. The 
T୫ and Tୠ formed a main-effect group, contributing 27% and 18% of the lost time, individually, and therefore 
have a large impact on the EFC. These lost times were affected by worker experiences and chemical properties. 
On the other hand, the proportions of the less effective group were Tୡ, T୬, T୤, and Tୣ , which were discretely 13%, 
3%, 10%, and 6% of the lost time. These lost times were determined by field conditions, such as the shape of the 
field and the number of obstacles [16]. However, they did not have a strong effect on the EFC. Finally, further 
study should focus on reducing lost time, for example, T୫ and Tୠ can be decreased by the chemical mixer machine 
and developing the new battery. If it takes time to mix chemicals faster than people can discharge them into the 
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drone tank with an automatic system, the new battery can be replaced more easily. So, it will reduce the lost time. 
Additionally, the model performance of other UAVs and plant cultivars should be investigated. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Working times of the 9 sugarcanes field used to develop a predictive model. 
 
3.2 Validation of the predictive model of EFC for UAV spraying 
 

Table 3 presents data on field and UAV conditions from the nine sugarcane fields in October 2020, and Table 
4 presents observed and predicted operational times. The TFC (existing method) was calculated accepting 
Equation (1), and the observed EFC of the nine UAVs spraying in the sugarcane fields (EFC୭ୠୱ) was determined 
by applying Equation (3); the results are presented in Table 4. The range of EFC୭ୠୱ 2.71 mଶ/s to 3.70 mଶ/s. 
Moreover, the parameters in Table 3 were inserted in Equation (22) and used to find EFC୮୰ୢ, as presented in Table 
4. The EFC୮୰ୢ ranged from 2.40 mଶ/s to 3.61 mଶ/s. Eventually, the EFC୮୰ୢ and the EFC୭ୠୱ were validated with 
an RMSE of 0.14 mଶ/s, an Rଶ of 0.91, and a bias of 0.02 mଶ/s, as presented in Figure 7. 
 
Table 3 Parameters of field and conditions of UAV for validation of the predictive model. 

No. Field conditions   UAV  
A 

(m²) 
B 

(m) 
Lୟ୴୥ 
(m) 

Nୠ Shape   W 
(m) 

S 
(m/s) 

Sୱ (m/s) t୬୲ 
 (s) 

tୠ୲ 
(s) 

S୤ 
 (m/s) 

Sୣ 
(m/s

) 

N୤ 

V1 13,321 83.6 159.4 1 Rec.  4 3 2.61 4.34 142.9 1.01 2.74 6 
V2 7,301 42.5 173.1 0 Rec.  4 4 2.93 4.19 217.9 1.30 2.68 2 
V3 6,015 43.2 136.8 1 Non-

rec. 
 4 3 2.45 4.43 281.9 0.62 2.55 3 

V4 19,356 79.1 247.1 0 Rec.  4 4 3.43 4.27 184.2 1.38 3.25 4 
V5 11,722 101.0 115.0 0 Rec.  4 4 3.08 4.41 207.3 0.83 2.24 3 
V6 6,440 56.7 122.4 0 Rec.  4 5 3.99 4.04 384.4 1.62 3.35 2 
V7 6,508 60.6 113.9 0 Rec.  4 4 3.16 4.94 249.7 1.56 4.15 2 
V8 4,977 52.1 98.9 0 Rec.  4 4 3.05 4.96 263.8 1.24 1.98 2 
V9 8,413 53.1 164.8 0 Rec.  4 4 3.12 4.23 204.4 1.49 2.56 3 

Avg 9,339 63.54 147.9 0.22   4 3.89 3.09 4.42 237.4 1.23 2.83 3.00 

 
Table 4 Observed and predicted working times for the validation of the predictive model. 

No.  T୲୦ (s) Tୡ (s) T୫ (s) T୬ (s) Tୠ (s) T୤ (s) Tୣ (s) EFC 
(m²/s) 

TFC 
(m²/s) 

V1 Observed 1,263.5 833.5 1,147.7 104.1 857.1 550.8 159.7 2.71 12.00 
Predicted 1,348.4 563.8 1,091.0 112.1 787.6 527.9 177.3 2.89 

V2 Observed 469.2 267.5 537.9 58.4 435.8 309.8 232.0 3.16 16.00 
Predicted 584.6 253.7 593.2 53.9 409.0 271.5 160.9 3.14 

V3 Observed 662.9 467.9 419.7 62.0 845.8 186.7 215.4 2.10 12.00 
Predicted 608.9 525.0 486.8 58.7 444.6 237.6 141.2 2.40 

V4 Observed 1,288.6 285.1 2,049.6 92.6 736.8 493.9 290.4 3.70 16.00 
Predicted 1,550.0 317.6 1,590.2 93.3 816.5 789.1 200.7 3.61 

V5 Observed 730.0 358.4 881.3 83.7 622.0 500.3 214.8 3.46 16.00 
Predicted 938.7 277.1 958.8 135.3 558.4 318.4 192.9 3.47 

V6 Observed 352.5 294.1 597.2 76.8 384.4 93.2 145.3 3.31 20.00 
Predicted 426.6 249.1 522.0 76.1 379.9 190.9 106.9 3.30 

V7 Observed 549.3 285.6 674.3 59.3 249.7 52.8 81.5 3.33 16.00 
Predicted 521.1 249.5 527.6 81.8 382.2 183.7 84.1 3.21 

V8 Observed 389.9 305.5 378.8 124.1 263.8 270.1 95.2 2.72 16.00 
Predicted 398.6 241.4 401.0 71.1 330.4 137.6 152.5 2.87 

V9 Observed 537.0 379.8 487.5 75.4 613.1 327.9 204.4 3.20 16.00 

Predicted 673.7 259.6 685.1 68.3 446.6 288.0 170.2 3.25 
S.D. Observed 351.0 179.2 528.5 22.1 234.0 179.7 67.5 0.48 2.40 

Predicted 411.9 126.1 385.0 26.3 179.3 206.6 38.4 0.36 
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Figure 7 Relationship of the observed and predicted effective field capacity. 
 
4. Conclusion 
 

Farmers and providers could use the effective field capacity prediction model for estimating their UAV field 
capacity. This model was flexible to change the average and coefficient to CO-insigne for use with other 
converters or drones, such as W, Ss, 𝑡௕௧. Users of the equation would be able to modify these parameters for future 
use with their plots and drones. 

The model predicting effective field capacity was validated using nine sugarcane fields; therefore, it was 
validated using nine UAVs spraying in the sugarcane field to confirm the predictive accuracy. Finally, the results 
presented the RMSE between the observed and the predicted EFC; the RMSE was 0.14 mଶ/s i.e., nearly zero, 
indicating that the referred prediction model for the UAV spraying in the sugarcane field could be used to estimate 
effective field capacity. By using this model, the field conditions can control the spraying process to shorten the 
spraying time and reach production capacity. 

Finally, further study should focus on developing an effective field capacity prediction model and reducing 
lost time. Future research may explore the relationship between tank capacity, area, and flow rate as a function to 
represent this number so that the EFC model can be used with varying drone sizes. Moreover, the design of the 
automatic agrochemical mixer will reduce the major lost time. 
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