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Abstract

The use of pesticides in agriculture is critical to maintaining the quality of agricultural production. Farmers are
required to finish their spraying with high efficiency due to constraints in cost and time. Nevertheless, farmers
need more knowledge and information required for managing Unmanned Aerial vehicles (UAV) spraying and
providing the conditions of their fields because both data (management and field conditions) affect capacity. The
field capacitance model was generated from UAV spraying (Tiger Drone) on a sugarcane field. Consequently, this
research intended to discover the prediction model for effective field capacity for UAV spraying (Tiger Drone) in
the sugarcane field. The procedure began by collecting the data of nine UAVs spraying in the sugarcane fields, for
example, field, crop, UAV condition, and working times, to develop the prediction model for the UAV spraying
in the sugarcane field. The prediction model was then validated using nine sugarcane fields collected
correspondingly to the model’s output. The conclusion presented was that the model’s root mean square error
(RMSE) was 0.14 m?%s. Farmers and providers can apply a predictive model to manage the spraying process and
provide their field conditions.
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1. Introduction

Many pests infest agricultural products and contribute to low yields [1]. Pesticides are recommended for
controlling pests. Pest control must be completed in a short time because if these pests are not eliminated promptly,
they can grow and become stronger. As a result, this can affect agricultural productivity and is hard to eliminate
[2] if not controlled in time [3]. When the pest damage becomes more challenging to eliminate, farmers need to
use more significant amounts of pesticide, which causes chemical residue and affects production costs. Weed
population causes a 34% yield loss in arable crops worldwide [4]. Therefore, two million tons of pesticides are
utilized annually worldwide, which is increasing rapidly. In 2020, global pesticide usage was estimated to increase
by up to 3.5 million tons [5]. In order to avoid such problems, effective weed management planning is necessary.

Many countries have started using Unmanned Aerial vehicles (UAVs) in precision agriculture [6,7]. It is
speedy and can reduce the workload of a farmer and the risk of exposure to dangerous chemicals during the
spraying process [8]. UAVs are used with many agricultural plants, such as sugarcane [9], kale, onion, celery [10],
paddy [11], cotton [12], olives, and citrus [13], which can get rid of weeds, protect plants from insects, and provide
plants with medicine and fertilizer. However, the appropriate amount of time for spraying pesticide and herbicide
is approximately 4-5 h, which can be applied during the low-temperature period of the day, such as the early
morning or evening. Midday heat causes plant growth to slow down, and the herbicides quickly dry out on the



leaves, which reduces the amount of herbicide that the weeds absorb [14]. The timing of the first spraying of the
season is, therefore, challenging because the proper spraying intervals are not continuous except at midday and
are limited each day. If unable to spray on time in the season or in a manner suitable for eliminating weeds and
insects, this problem will result in reduced production volumes. Farmers must work under exigency to finish
spraying before pest growth and agricultural product damage. Poor spraying management causes increased
spraying time, which is the main problem [15].

However, Thai farmers still need to gain the knowledge, information, and technology to manage the spraying
process in their field conditions. Knowledge of time and UAVSs’ spraying capacity prior to spraying is essential.
This information can be used to improve the management of UAV spraying, which will support planning and
estimate the effective field capacity. This knowledge can then be used to prioritize spraying in his plot with the
least amount of wasted time. The optimal spraying usually is in the morning and evening. Because it is the time
when the stomata of the plant are open to allow the plant to absorb fertilizer or herbicide better, it will be the time
when the calm wind ensures that the drone spray does not spread the mist to other areas. During the day, extreme
heat closes the stomata and causes evaporation and a decrease in the number of chemicals. If they cannot spray at
the right time, it will make the spraying of chemicals inefficient. The chemicals spread to other areas and include
hazards for operators. All of them will result in farmers having more costs of using chemicals. Therefore, spraying
at the right time is as crucial as spraying on time in each season. If not, older weeds or insects will grow too big.
This model can help with the planning of spraying. On the same day, spraying will be completed promptly and
work at full efficiency. At the right time of spraying (4-5 h) with the least wasted time for rework. When it can be
planned to work well, there is no need to save much battery as well. During the midday, it is not suitable for
spraying, and it will be able to recharge the battery for the next spraying period. Farmers can spray the chemicals
at the planned time or at the right time to get rid of the weeds effectively if they have good estimation and
management. This model will help farmers reduce costs and choose the right spraying interval for their fields. In
addition, the contractor spraying chemicals with the hit will be able to plan the time of work and estimate the price
of the notification more accurately. To the best of the author’s observation, there are presently no articles about
developing the effective field capacity (EFC) as a predictive device for UAV spraying in sugarcane fields.

For instance, various researchers who developed the spraying technique have studied a related topic. Koondee,
et al. [16] studied the field capacity and variables of UAV operation time while spraying hormone fertilizer in a
variable field plot design of a sugarcane field, and the results showed an average field capacity of 3.36 ha/hr and
the longest plot could increase the working efficiency. The most time consumed was for the flight planning step
[16]. Yousaf et al. [17] studied the field performance of the boom sprayer. The result indicated that for the same
width of fields, the longer the field, the more productive time. Therefore, more will be the field efficiency of the
sprayer. Because more time was required for turning at field ends due to less tractor maneuverability, the operator
might have found difficulty controlling the tractor [17]. Wang et al. [ 18] conducted research to compare the droplet
deposition, control efficacy, and working efficiency of a six-rotor UAV with a self-propelled boom sprayer and
two conventional knapsack sprayers on the wheat crop. The working efficiency of the UAV was 4.11 ha/h, which
was roughly 1.7-20.0 times higher than the three other sprayers [18]. Basso et al. [19] designed an embedded real-
time UAV spraying control system supported by onboard image processing. The proposal used a normalized
difference vegetation index (NDVI) algorithm to detect the exact locations where the chemicals are needed. The
automated spraying control system used this information to perform punctual applications while the UAV
navigated over the crops. This innovation reduces the cost of spraying chemicals because it uses fewer chemicals.
Moreover, refilling the agrochemicals fewer times can reduce lost time and improve working efficiency [19].
Doungpueng et al. [8] developed an effective field capacity prediction model for selecting well-combined
harvesters to field conditions. This research determines the prediction model from the conceptual model
(physically-based and empirical models) by collecting data from 15 combined harvesters. The result showed that
the RMSE of the model was 0.24 m?/s [8]. This apprehension can be used to select the appropriately combined
harvesters, plan the harvest, and estimate the effective field capacity. So, this research has the creative concept of
combining the prediction model with the physically-based model and the empirical model for the accuracy of field
conditions. In other words, farmers and providers can choose to use the proper UAV for their plots. It will help
plan for spraying and estimate the effective field capacity.

These studies developed the UAV spraying technology and increased its performance. The UAV spraying can
work quickly with high performance. In order to use drones for spraying in a large area, it is crucial to have proper
management for the best performance. Proper management is essential to improving drone performance because
the working time can be predicted precisely based on each field condition. Moreover, proper management can
increase the performance of the battery’s usage. This reduces the time to charge the battery and the time of
transportation and can precisely calculate the fair cost for the customers, resulting in a reduction in the cost of a
sprayed operation. Hence, there has to be a study about the active and passive working times at every step. The
area, field shape, field length, and UAVs’ condition can affect the working time [16], such as when creating the
flight mission time, chemical mixing time, headland turning time, field boundary spraying time, traveling time,
battery changing time and chemical filling and spraying time. If drone users have an equation model to predict



the effective field capacity, there can be an increase in service performance. However, there needs to be research

about the function of the estimated time in each crop field or the method for predicting the precise usage time.
Hence, the model will provide helpful guidance for the user in planning spraying management. It benefits the

user through shorter spraying time and reduces the time lost in the spraying process. It can also be adapted into

an application for agriculture management. Thus, the main contributions of this paper aim to;

* Develop an effective field capacity model for predicting the field capacity of UAV spraying in the sugarcane

field.

* Evaluate the effective field capacity prediction model’s performance.

* Determine the lost time of the UAV spraying to develop a method to reduce the lost time.

2. Materials and methods

The working procedure (Figure. 1) began by collecting the log data of nine service UAVs spraying in the
sugarcane fields, such as field, crop, UAV condition, and working times, to develop the UAV spraying prediction
model in the sugarcane field. The model was then validated using log data from nine service UAVs spraying in
sugarcane fields corresponding to the model’s creation.
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Figure 1 Working procedure in this research.
2.1 Instrument

Field size and field shape can affect the EFC of the UAV spraying [16]. This research assumes that most
sugarcane fields are rectangular. Log data was selected from the service of a UAV spraying in a sugarcane field
in Thailand. Spraying weed management in the sugarcane field was operated from the field preparation before
growing sugarcane to harvesting in 2020. The multi-rotor UAV sprayer (Tiger Drone, HG Robotic Thailand) was
selected in this study.



2.2 Theory of EFC

There are two types of field capacities for UAV spraying: theoretical field capacity (TFC) and EFC. The
equations for field capacities are presented in Equations (1) and (2), respectively.

TFC = Ztotal 0
Ttn

EFC = Atotal (2)
Ttotal

where Aqqq IS the total spraying area (m?), Ty, is the theoretical spraying field hour (s), and Tioq is the total
spraying hour (s).

The TFC can be determined from UAV spraying without any loss of time from the running time [20].
Nevertheless, in practice, there is no downtime-free UAV spraying because several factors affect the UAVs
behavior during spraying, including crop height, field conditions, and the UAV itself. These factors cause
downtimes and are reconciled with Ty, to Tyra;- All working times are shown in the flow chart in Figure 2.
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Figure 2 UAV spraying processes in practical fields.

The activities while the UAV spraying is running in the field (passive working and active working) are labeled
“total lost time” (TL). This TL is set apart into the flight mission creation time (T;), the chemical mixing and
preparation time before the flight mission starts (Ty,), the headlands turning time (T,), the traveling for battery
changing and chemical filling time (T), and the battery changing and chemical filling time when the sub-flight
mission is finished (Ty,). Moreover, the remote pilot does not create flight missions until the field’s borders because
the trees are used for rest during hard work. The UAV spraying loses time for field boundaries by manual flight,
called field boundary spraying lost time (T,). Ultimately, the EFC can be obtained from Equation (3).

A A,
EFC = total _ total (3)
T¢p+TL Tth+(Te+Tm+Tp+Te+Tp+Te)

2.3 Improvement of the predictive model for EFC
The elementary predictive model for the EFC is presented in Equation (3). Nonetheless, differences in the

physical characteristics of each UAV spraying can affect EFC. Therefore, the Tiger Drone was selected for this
study. The research began by collecting information, including field, crop, and spraying conditions from nine



randomly chosen sugarcane fields in 2020 for use in developing the prediction model. This research has the
creative concept of combining the prediction model with the physically-based and empirical models. This study
makes the equations accurate and changes according to field conditions. The physically-based model analyzes
physical theories such as the velocity equation (v=s/t) and geometric equations. Empirical models are constructed
by correlating variables from actual performance in each field condition to improve the model. The selected
sample data (9 sugarcane fields) is a feasibility study of this model.

The time parameters of the actualization (Ty,, T¢, Ty, Tn, Ty, Tr, and Te) work in the field for spraying
herbicides or fertilizers, as shown in Figure 3. They were found by log data in the UAVs. The first flight of a UAV
without spraying in the field creates flight mission time and gap time. After the first flight and starting the second
flight, the chemical mixing time starts. When the UAV opens, the nozzle pump is the theoretical time, and the
UAV closed nozzle pump is turning the headland time. The working of the battery changing and then the chemical
filling time are the time that finishes the spraying flight for landing. During sub-flight missions, the gap time is
the battery changing and the chemical filling time.

Furthermore, the field boundary spraying time has been after a flight mission without a planning path. All data
and time parameters are used in the calculation of the relative equation and coefficient, for example, kg, k,, ky,,
km, and k¢, by simple linear regression and multilinear regression (MLR) analysis. Eventually, the prediction
model of the EFC for the Tiger Drone UAVs is shown in Equation (22).

2.3.1 Improvement of the predictive model for the theoretical spraying field time (Typ)

If a UAV spraying has an actual spraying speed (S;) same as its setting spraying speed (S) and sprays with a
constant sprayer width (W), then the spraying is done without TL. The TFC and Ty, can be obtained from
Equations (4) and (5), respectively [21,22]. Nevertheless, the actual spraying speed is not constant and is not equal
to the set speed because UAVs need to accelerate from the starting position (start flight mission and turning), and
the wind also affects the spraying speed.

TFC = W x § = Ztotal (4)
Ttn
_ Atotal
Ten = Wx(Sks+2) ®)

where W is the sprayer width (m), S is the setting spraying speed (m/s), k is the amount of spraying speed, and
z is the intercept.

2.3.2 Improvement of the predictive model for the create flight mission time (T,)

To create a flight mission, the remote pilot will visually assess the overall plot and use manual drones to
explore the plot while also marking the edge of the plot and the risk points that may harm the spraying drones
(trees, poles). Create flight mission time is related to the area and obstacle. Therefore, T, can be solved via
Equation (6).

Te = Atotaka + Ngky, + ¢ (6)

where Ng is the number of barriers in the field, k, is the coefficient of the area, ky, is the coefficient of the number
of barriers in the field, and c is the intercept.

2.3.3 Improvement of the predictive model for the chemical mixing time (T,,)

Most of the chemicals can be used for spraying after they are mixed with water or specific chemicals, and they
can then be used for spraying plants. As such, there is a mixing process before spraying. Typically, the volume of
the water and the chemicals have a relationship with the area (A¢ota), and the chemical mixing time has a
relationship with the volume of water and chemicals [16], which causes the chemical mixing lost time (Ty,) to
have a relationship with the area, as shown in Equation (7).

Tm = Atotalkm +d @)

where k, is the coefficient of the chemical mixing time, and d is the intercept.



2.3.4 Improvement of the predictive model for the headland turning time (T,)

Normally, the remote pilot will create spraying path plans that spray along a longitudinal path of the field. Due
to the least number of headlands turning, it will reduce the lost time. Therefore, this section describes the
development of a loss time prediction model during headland turning.

The UAV spraying works with the UAV at the starting point (camp, take-off, and landing point). Following
this, the UAV travels to the starting mission point. Next, it travels and sprays until its headlands. After that, the
UAV stops spraying and turns to the next row. Thus, the number of field rows equals the number of headlands
turning. Then, the number of headlands turning (N;) can be calculated as Equation (8). When the UAV has reached
the last point of a sub-flight mission, it will not turn back but will continue traveling to the camp. Consequently,
the sub-flight mission will not have headlands turning in the last row. Thus, it is vital to know the number of sub-
flight missions (N¢). Usually, the remote pilot will create a sub-flight mission with an area of 4800 m?, which is
normally appropriate for the battery capacity and the container’s volume of the Tiger Drone. When there is a wind
flow or the wind direction is not appropriate, it may change the plan of the UAV spraying, which can result in an
improper N¢. Thus, the coefficient of k¢ was used to adjust the N¢ with greater accuracy, as found in Equation
(9). When using N, combined with the turning time, it will be headland turning lost time (T, ), as found in Equation
(10). The coefficient of the number of sub-flight missions (k) if the field is a non-rectangle (rectangle, k= 1)
is in Equation (11).

Ne=o 8)
Np = o ©)
Ty =t X (= joenaal) (10)
Ko = el (1n)

where B is the field width (m), W is the sprayer width (m), t,, is the time of the headland turning once times (s),
and k¢ is the coefficient of the number of sub-flight missions.

2.3.5 Improvement of the predictive model for battery changing and chemical filling time (Ty)

Before starting each sub-flight mission, one must change the battery and fill the chemical for every mission.
Therefore, the number of battery changes and chemical fills will equal the number of sub-flight missions found in
equation (9). However, there has to be more than one times to it, because after finishing the flight mission, there
will be spraying for the field boundary of the area with one flight. The battery changing and chemical filling lost
time (T,) can be found in Equation (12).

= _ Atotal
To =toe X Ggorrey T D (12)

where ty, is the time of battery changing and chemical filling once (s).
2.3.6 Improvement of the predictive model for traveling to field time (T¢)

When UAVs have a depleted battery or a chemical or finish a sub-flight mission in the field, they cannot
continue to spray and need battery changing and chemical filling first. Mileage is not specified and revolves
around the tank’s capacity. Therefore, the approximate distance traveled can be determined by applying the
average length between the field hub and the camp (the launch and landing points) (L,), given in Equation (13).
T; can be determined by the proportion of all lengths that remain between the distance traveled from the hub of
the field to the camp (Ly.,) and the velocity of travel for battery changing and chemical filling (S¢), shown in
Equation (14). However, there are two round-trip flights at every start and end of a sub-flight mission, so the
number of sub-flight missions combined with traveling speed and distances are calculated as Ty in Equation (15).

Lavg? B2
Lira = \/% +; (13)
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T = Sfx\/ > +2 (14)
_ 2y [lave® [ BE A

Tr= sfx\/ 2 T3 x(4800><knf+1) (15)

where Ly, is the average field length (m), B is the field width (m), and S; is the traveling speed for battery
changing and chemical filling (m/s).

2.3.7 Improvement of the predictive model for field boundary spraying time (T,)

Field boundary spraying is used in at-risk areas that can damage the drone or in areas that are not on the
spraying plan. The manual control by the remote pilot at every site after finishing the spraying follows the spraying
plan. Normally, there will be a field boundary spraying process. Then, one has to calculate the length of the area’s
circumference (L), found in Equation (16). However, a sugarcane field can be something other than a
rectangular area, as always: it may not be a symmetrical area or even have a concave one. Thus, the spraying
speed of field boundary spraying used to adjust the T, for greater accuracy can be found in Equation (17).

Ler = 2 X (Lavg +B) (16)

2 x (Layg+B)

T, =
e Se

a7
where S, is the spraying speed for field boundary spraying (m/s).
2.3.8 Elementary predictive model of the EFC for the Tiger Drone

By conjugating all the predictive models of Ty, T¢, Ty, Ty, Ty, T, and T, the elementary predictive model for
the EFC of the UAV spraying is shown in Equation (18).

EFC = Atotal

Atotal B __ Atotal
(m)+(Atotalka+NBkb+C)+(Atotalkm+d)+ tnt X (W_4800 X knf)

(18)

Atotal 2 Lanz EZ Atotal 2 X (Lavg+B)
(tbt * (G500 x knf+1))+<sf X J 2z T2 X Ggoox k' D s )
2.4 Validation of the predictive model for the sugarcane

Confirmation of the model mentioned above should be rehearsed to validate and appraise the model. First, the
information from nine sugarcane fields in October 2020 (different location and time of training data) were
collected. The root mean square error (RMSE) is a method used to expedient the contrast in the EFC between
predicted and observed EFC [23], as given in Equation (19) underneath:

RMSE = JE—(EFC“’S;EFC‘"U‘)Z (19)
where EFCops is the observed EFC (m?/s), EFCp,q is the predicted EFC (m?/s), n is the total number of spraying
fields.

The R? presents the ratio of the deviation in the independent variable that can be elucidated by the deviation
in the surveyed information, as presented in Equation (20).

_ Z(E:]:‘Cobs_EFC}er)2

R? =
Z(EFcobs_EFCObs)2

(20)

where EFC,,, is the mean of the measured values (observed data).



The bias, which is the average divergence between the surveyed information and the information predicted by
the EFC model and represents the overall accuracy of the calibration Equation, is given by Equation (21).

Z(EFCobs_EFCprd)z
n

bias =

ey
3. Results and discussion
3.1 Improvement of the predictive model for EFC

Equation (3) presents the equation for the EFC formula, including Aotal, Tin, and the six lost times
(Te, T, Ty, T, Ty, and Te). This section presents methods developed for a predictive model for Ty,
Te, Tm, Tn, Tg, Ty, and T, will be conveyed in this part. Table 1 exposes field and UAV condition data collected
from the nine sugarcane fields. The averages of the field parameters (Field total area (A1), Field Width (B),
Field average length (L,yg), and the Number of barriers in the field (Ny,) are 8,826 m?, 62.9 m, 142.1 m, and 0.44
points, respectively. Moreover, the averages of the UAV parameters (Working width (W), Setting spraying speed
(S), Actual spraying speed (Ss), Time of headland turning once times (t,;), Time of battery changing, and
Chemical filling once times (ty,;), Traveling speed (S¢), Spraying speed for field boundary spraying (S,), and the
Number of sub-flight missions (N¢)) are 4.00 m, 3.67 m/s, 2.90 m/s, 5.93 s, 162.2 s, 1.95 m/s, 2.34 m/s, and 2.2
flights, respectively. Table 2 exposes the observed data for sugarcane fields. The Ty, and lost time through
spraying (T, Ty, Ty, Ty, Tf, and Te) expose that the average Ty, was 624.6 s, and the averages of T¢, Ty, Ty, Ty,
Ty, and T, were 385.0s, 719.4 s, 134.5 s, 402.3 s, 267.1 s, and 179.6 s, respectively. Thus, the calculation from
the relative of an actual spraying speed and setting spraying speed is in Figure 3. The coefficient and intercept of
kg and z are 0.65 and 0.51 from Figure 3, used to adjust the Ty, for better accuracy. Create flight mission time is
related to the area and obstacle, as shown in Figure 4. When correlated with maximum residue limits (MRL), the
coefficient and intercept of k,, k;,, and c are 0.005, 278.2, and 214.9, respectively. Which causes the chemical
mixing lost time (Ty,) to have a relationship with the area (Figure 5). From Figure 5, the coefficient and intercept
of k;, and d are .0 and -10.65, respectively. The coefficients of ks were 0.72 (if the field shape is a non-
rectangle) and t,; was 5.93 s, calculated using the area N¢ and t,; in Table 1. In summary, the predictive model
of the effective field capacity of UAVs while spraying the sugarcane fields is given by Equation (22).

Table 1 Parameters of field and conditions of UAV for the advancement of the elementary predictive model.

No. _ Field UAV

A B Lavg N,  Shape W S Ss toe toe Se Se Ny

(m?) (m) (m) (m s (ms) () (5 (m/s)  (m/s)
P1 4,203 48.6 83.3 0 Rec 4 3 251 374 105.2 1.00  1.53 1
P2 4,663 57.5 812 0 Rec 4 3 2.66 4.09 108.8 1.51  1.83 1
P3 10,583 71.4 1482 1 Rec 4 4 293 576 2703 253 1.57 2
P4 9,861 35.9 2746 0 Rec 4 4 335 830 121.5 230 246 2
P5 17,377 103.5 173.8 0 Non-rec 4 4 3.08 5.19 145.7 294  3.39 5
P6 7,076 52.8 134.1 0 Rec 4 4 2.80 5.12 152.1 .76 2.57 2
P7 7,815 59.1 132.5 1 Rec 4 5 394 7.69 124.0 1.99 3.5 2
P8 4,684 61.7 759 0 Rec 4 3 238 599 149.9 1.59 1.87 2
P9 13,176 752 1753 2 Rec 4 3 249 745 282.5 1.97 273 3
Avg 8,826 62.9 142.1 0.44 4.0 3.67 290 593 162.2 195 234 2.2

Table 2 Observed working times for the advancement of the elementary predictive model.

No. Tin () Tc (s) T (8) Ty () Ty (s) T¢ (s) Te (s)
P1 413.8 278.0 224.7 59.8 315.7 167.1 159.5
P2 406.9 181.9 492.5 45.0 217.6 229.7 163.5
P3 676.1 507.2 746.0 198.5 540.6 382.8 150.5
P4 554.9 234.7 731.0 91.3 2429 92.9 147.7
P5 1,135.0 320.1 1,381.0 212.1 728.4 413.2 221.0
P6 538.0 247.0 677.4 133.1 304.2 183.2 170.0
P7 449.7 453.0 633.0 174.0 124.0 257.8 223.0
P8 569.2 341.1 348.1 126.1 299.9 2422 161.7
P9 877.7 902.0 1,240.7 170.8 847.6 435.1 219.7

Avg 624.6 385.0 719.4 134.5 402.3 267.1 179.6
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Figure 6 shows the working time analysis of the nine sugarcane fields used to develop the prediction model.
The UAV spraying spent sequentially 23% and 77% of its time for Ty, and TL. Nevertheless, the EFC of the UAV
spraying reduces due to the response of the TL. The TL was synthesized by six loss times (T, Ty, Ty, Ty, T, and
Te). The TL can be divided into two types: the major effects of lost time and the minor effects of lost time. The
T and T, formed a main-effect group, contributing 27% and 18% of the lost time, individually, and therefore
have a large impact on the EFC. These lost times were affected by worker experiences and chemical properties.
On the other hand, the proportions of the less effective group were T, Ty, Tf, and T,, which were discretely 13%,
3%, 10%, and 6% of the lost time. These lost times were determined by field conditions, such as the shape of the
field and the number of obstacles [16]. However, they did not have a strong effect on the EFC. Finally, further
study should focus on reducing lost time, for example, Ty, and T}, can be decreased by the chemical mixer machine
and developing the new battery. If it takes time to mix chemicals faster than people can discharge them into the
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drone tank with an automatic system, the new battery can be replaced more easily. So, it will reduce the lost time.
Additionally, the model performance of other UAVs and plant cultivars should be investigated.

18%

3%

6

27%

23%

Tth =Tc

Tm < Tn
=Tb ' Tf
~Te

uTL @Tth

77%

Figure 6 Working times of the 9 sugarcanes field used to develop a predictive model.

3.2 Validation of the predictive model of EFC for UAV spraying

Table 3 presents data on field and UAV conditions from the nine sugarcane fields in October 2020, and Table
4 presents observed and predicted operational times. The TFC (existing method) was calculated accepting
Equation (1), and the observed EFC of the nine UAVs spraying in the sugarcane fields (EFC,,s) was determined
by applying Equation (3); the results are presented in Table 4. The range of EFCgps 2.71 m?/s to 3.70 m?/s.
Moreover, the parameters in Table 3 were inserted in Equation (22) and used to find EFCp,4, as presented in Table
4. The EFCp4 ranged from 2.40 m? /s to 3.61 m?/s. Eventually, the EFCpq and the EFC,p,g were validated with
an RMSE of 0.14 m?/s, an R? of 0.91, and a bias of 0.02 m? /s, as presented in Figure 7.

Table 3 Parameters of field and conditions of UAV for validation of the predictive model.

No. _ Field conditions UAV
A B Lavg N Shape w S Se(m/s)  tye  tpe Se Se N¢
(m?) (m) (m) (m)  (m/s) (ORENO) (m/s) (n)]/s
N 13,321  83.6 1594 1 Rec. 4 3 2.61 434 1429 101 274 6
V2 7,301 425 173.1 0 Rec. 4 4 2.93 419 2179 1.30 2.68 2
V3 6,015 432 136.8 1 Non- 4 3 2.45 443 2819 0.62 2.55 3
rec.
V4 19,356 79.1 247.1 0 Rec. 4 4 343 427 1842 1.38 3.25 4
V5 11,722 101.0 115.0 0 Rec. 4 4 3.08 441 2073 0.83 2.24 3
V6 6,440 56.7 122.4 0 Rec. 4 5 3.99 4.04 3844 1.62 335 2
V7 6,508 60.6 113.9 0 Rec. 4 4 3.16 494 2497 1.56 4.15 2
V8 4,977 52.1 98.9 0 Rec. 4 4 3.05 496 263.8 1.24 1.98 2
V9 8413 53.1 164.8 0 Rec. 4 4 3.12 423 2044 149 256 3
Avg 9,339 63.54 147.9 22 4 3.8 3.09 4.42 2374 1.23 2.83  3.00
Table 4 Observed and predicted working times for the validation of the predictive model.
No. Tun (5) T. (s) T, (5) T, (s) Ty (5) Tr(s)  Te(s) EFC TFC
(m?/s) (m?/s)
V1 Observed 1,263.5 833.5 1,147.7 104.1 857.1 550.8 159.7 2.71 12.00
Predicted 1,348.4 563.8 1,091.0 112.1 787.6 5279 177.3 2.89
V2 Observed 469.2 267.5 5379 58.4 435.8 309.8 232.0 3.16 16.00
Predicted 584.6 253.7 593.2 53.9 409.0 271.5 160.9 3.14
V3 Observed 662.9 467.9 419.7 62.0 845.8 186.7 215.4 2.10 12.00
Predicted 608.9 525.0 486.8 58.7 444.6 237.6 141.2 2.40
V4 Observed 1,288.6 285.1 2,049.6 92.6 736.8 493.9 290.4 3.70 16.00
Predicted 1,550.0 317.6 1,590.2 933 816.5 789.1 200.7 3.61
\'Al Observed 730.0 358.4 881.3 83.7 622.0 500.3 214.8 3.46 16.00
Predicted 938.7 277.1 958.8 135.3 558.4 318.4 192.9 347
A% Observed 352.5 294.1 597.2 76.8 384.4 93.2 145.3 331 20.00
Predicted 426.6 249.1 522.0 76.1 379.9 190.9 106.9 3.30
v7 Observed 549.3 285.6 674.3 59.3 249.7 52.8 81.5 333 16.00
Predicted 521.1 249.5 527.6 81.8 382.2 183.7 84.1 321
V8 Observed 389.9 305.5 378.8 124.1 263.8 270.1 95.2 2.72 16.00
Predicted 398.6 241.4 401.0 71.1 330.4 137.6 152.5 2.87
\%4 Observed 537.0 379.8 487.5 75.4 613.1 3279 204.4 3.20 16.00
Predicted 673.7 259.6 685.1 68.3 446.6 288.0 170.2 3.25
S.D. Observed 351.0 179.2 528.5 22.1 234.0 179.7 67.5 0.48 2.40
Predicted 411.9 126.1 385.0 26.3 179.3 206.6 38.4 0.36
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Figure 7 Relationship of the observed and predicted effective field capacity.
4. Conclusion

Farmers and providers could use the effective field capacity prediction model for estimating their UAV field
capacity. This model was flexible to change the average and coefficient to CO-insigne for use with other
converters or drones, such as W, Ss, t;,. Users of the equation would be able to modify these parameters for future
use with their plots and drones.

The model predicting effective field capacity was validated using nine sugarcane fields; therefore, it was
validated using nine UA Vs spraying in the sugarcane field to confirm the predictive accuracy. Finally, the results
presented the RMSE between the observed and the predicted EFC; the RMSE was 0.14 m?/s i.e., nearly zero,
indicating that the referred prediction model for the UAV spraying in the sugarcane field could be used to estimate
effective field capacity. By using this model, the field conditions can control the spraying process to shorten the
spraying time and reach production capacity.

Finally, further study should focus on developing an effective field capacity prediction model and reducing
lost time. Future research may explore the relationship between tank capacity, area, and flow rate as a function to
represent this number so that the EFC model can be used with varying drone sizes. Moreover, the design of the
automatic agrochemical mixer will reduce the major lost time.
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