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Abstract 
 
A two-level capacitated facility location problem (TCFLP) is a facility location problem that limits capacity and 
mainly considers the products shipped between two consecutive levels. Nowadays, in some situations, main 
facilities may be at risk of disruptions that affect their failure, which may lead to a higher cost of backup products 
or use of backup facilities. This situation can be prevented by fortifying the main facilities with a fixed budget. In 
this paper, we have proposed an integer nonlinear programming model for TCFLP that the main facilities were 
addressed to fortify under the risk of disruption. Furthermore, the linearization technique was used to reduce the 
algorithm’s complexity for solving it. Moreover, a numerical example was illustrated, the results of the simulated 
small problems were tested with the Gurobi optimizer, and the sensitivity analysis was also provided. 
 
Keywords: Disruption, Fortification, Integer nonlinear programming, Linearization technique, Two-level 
capacitated facility location problem 
 
1. Introduction  

 
A facility location problem (FLP) is one of the optimization problems in supply chain network design related 

to determining the best location for facilities such as warehouses, plants, and machines. The achievement of this 
objective is constrained by the requirement that the established facilities must service demands at several points. 
The objective of the FLP is to minimize total costs, specifically by choosing the facility that can reduce established 
costs and total distance from the customer to the facility. Certain facilities may or may not have limited capacities 
for services, and this classifies the problems into uncapacitated and capacitated variants. 

An uncapacitated facility location problem (UFLP) focuses on producing and distributing a single commodity 
over a single time period. It deals with finding facility sites where facilities have no capacity limit and is also 
known as the “simple” facility location problem. The objective of UFLP is to minimize the sum of the fixed setup 
costs and variable costs of serving to meet the customers’ demands. However, there are more realistic problems 
with incorporating capacity limitations on the facilities to be established. Each facility limits the number of 
customers that it can serve. This version of UFLP is called the capacitated facility location problem (CFLP). It 
deals with finding facility sites under capacity constraints to meet customers’ demands. In some situations, each 
client can be served by more than one facility, and this is called a multi-source problem [1-3]  

Although core facility location models such as the uncapacitated and capacitated facility location problems 
are a long way from approaching realistic problems in strategic supply chain planning, they have been beneficial 
for building comprehensive models that include supply chain management decisions.  In addition, many realistic 
location problems may take into account the existence of different facilities that play a specific role ( e. g. , 
production, warehousing)  and a natural material flow ( a hierarchy)  between them.  Each facility with the same 
type and role is usually denoted by a layer or echelon and is defined as a level in the hierarchy of facilities.  The 
facility location problem has two types of facilities and is called a “two-level facility location problem (TFLP).” 
TFLP can be classified by the limitation of the facility’ s capacity:  uncapacitated and capacitated variants.  If 
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facilities at each level do not have limited capacities for service, it is called a two- level uncapacitated facility 
location problem (TUFLP). Otherwise, it is called a two-level capacitated facility location problem (TCFLP). 

In 1996, Aardal et al.  [ 4]  studied TCFLPs that considered an additional facility level between the customers 
and main facilities. The main facilities were called “depots” and the lower-level facilities were called “satellites.” 
The objective of TCFLPs is to minimize the total cost; thus, we considered depots and satellites that were opened 
and the assignment of customers to depots and satellites that were established.  

Subsequently, in 1997, Tragantalerngsak et al. [5] proposed a mathematical model for TCFLP and considered 
six heuristics based on Lagrangian relaxation for a solution.  They used a subgradient optimization procedure to 
solve the dual problem and presented numerical results for many test problems. Later, in 2000, Tragantalerngsak 
et al. [6] further studied TCFLP and proposed a Lagrangian relaxation-based branch and bound algorithm to solve 
the problem.  Furthermore, numerical results were presented for a large suite of test problems of realistic and 
practical size.  

In the classical FLP and TFLP, it is assumed that the facilities are set up and are always available.  However, 
in reality, the facilities may become unavailable due to various reasons such as natural disasters ( earthquakes, 
floods, etc. )  and human actions ( terrorism, cyber- attacks, change of ownership [7] , etc.). These situations are 
called disruption, and there are two main types that are widely interesting for studying: facility disruption and 
route disruption.  A facility disruption may be caused by natural hazards and accidents that occur during the 
production in facilities and delivery of products to customers. This results in the establishment of the inability to 
provide services that the occurrence of time delays and uncertainties to transport produces. When a facility failure 
emerges, customers may need to be reallocated from their primary facilities to others which necessitates higher 
transportation costs [8-10].  

As illustrated in Figure 1, primary and backup depots are assigned to each customer.  Primary depots are the 
main service providers of products to customers and when they fail, backup depots are used to serve the customers; 
thus, this assumes that depots lose some of their available capacity when they fail.  
 

 
Figure 1 The primary and backup depots are assigned to each customer in disruption scenarios of TCFLP. 
 

The disruption of facilities has been a topic of much literature, and the probability of disruption at a facility in 
the model formulation of FLPs increases the reliability of the distribution chain. The study of a heuristic algorithm 
of the supply chain in disruption was initially considered and presented in a model by Drenzner [11] in 1987. The 
p-median and p-center problems were presented to consider the possibility that one or more of the facilities may 
become inactive.  An unreliable p- median problem was defined by introducing the probability that a facility 
becomes inactive, while a p- q center problem was defined as when p facilities need to be located but up to q of 
them may become unavailable simultaneously and computational results were provided. 

In 2019, Ramshani et al. [7] studied a single assignment with route disruption uncertainty in TUFLP. Single 
assignment constraints mentioned by Gendron et al.  [12]  are considered on TCFLP to ensure that each level of 
facility is served only by one facility at its previous level.  Each customer received the product from only one 
satellite and depot. They also examined a two-level distribution chain. The flow started from the production unit, 
went through distribution centers, and ended at the customer level.  Two formulations were developed for the 
problem: a tabu search algorithm and a problem-specific heuristic (route subset selector - RSS) were proposed.  

Later, in 2021, Afify et al. [13] proposed an integer nonlinear programming formulation for reliable capacitated 
facility location (RCFL) problems. They focused on a facility fortification within a finite budget. Moreover, they 
used the CPLEX solver to present the separation approach to solving the model proposed.  

As mentioned above, many studies on RFLP or FLP with the disruption have been popular in succeeding 
years. Table 1 summarizes the disruption studies in FLP and TFLP. 

Depots 

Satellites 

Customers 

Customer is support by primary depot 

Customer is support by backup depot 
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Table 1 A summary of interruption studies in FLP and TFLP 
Year Authors Category Disruption Model Approach 
1987 Zvi Drenzner [11] TFLP Facility 𝑝-median 

problem 
Heuristic 

1996 Aardal et al. [4] TUFLP - INLP LP-relaxation  
1997 Tragantalerngsak et 

al. [5] 
TCFLP - IP Lagrangian relaxations, 

FORTRAN 77 
2000 Tragantalerngsak et 

al. [6] 
TCFLP - IP FORTRAN, 

DEC2000 300AXP 
2009 Farahani et al. [9] FLP - BIP LINGO, CPLEX  
2010 Cui et al. [8] UFLP, disruption Facility MIP C++  
2013 Li et al. [14] FLP, disruption, 

Fortification 
Facility NLP, 

INLP 
CPLEX, C++ 

2015 Rohaninejad et al. 
[3] 

CFLP, disruption Facility MINLP Relax & Fix a 
Heuristics 

2018 Santiváñez and 
Carlo [15] 

CFLP, disruption Facility MILP LINGO 17.0 

2019 Ramshani et al. [7] TUFLP, disruption Route INLP Heuristics & Gurobi  
2021 Afify et al. [13] CFLP, disruption, 

fortification 
Facility INLP Heuristics & CPLEX 

2023 This paper TCFLP, disruption, 
fortification 

Facility INLP Linearization & Gurobi 

 
Although the literature on CFLP with disruption is presently abundant, the disruption in FLP with more than 

one level has been studied.  Some studies consider disruption in a TCFLP due to independent failures of their 
consisting levels, i.e., satellites (a lower-level facility) and depots. However, the prevention of a facility disruption, 
namely fortification, has not yet been studied in the two- level facility location problem. No previous study has 
considered fortification of depot in TCFLP when the facility had disruptions due to independent failures of the 
depot. Therefore, in this paper, we were interested in studying the fortification to protect the facility in a disruption 
scenario for the two- level capacitated facility location problems. We focused on the higher- level ( depot)  failure 
which can be fortified to protect against disruption. Consequently, we developed two reliable models of TCFLP 
through integer nonlinear programming models to minimize the facility setup and transportation costs while 
incorporating the failure probability in different levels of facilities.  

The remainder of this paper is organized as follows: The definition of the TCFLP under disruption and 
fortification and a mathematical formulation including the linearization technique for TCFLP are presented in 
Section 2. The benchmark results are presented in section 3. Finally, the conclusion and future research directions 
are summarized in Section 4. 

 
2. Materials and method 
 

In this paper, we devised the TCFLP model under disruption by accounting for the failure of a higher- level 
facility (depot) following which a specified budget would fortify the facility when it fails. Fortification can be 
achieved by increasing the cost of procurement, installation of protective measure units, purchase and storage of 
spare inventory, and hiring staff. We intended to determine the optimal locations in which to establish facilities 
and pair the depot and satellite in this problem assigned to each customer to serve their demands, as well as which 
depots should be fortified so that the total cost can be minimized. 

A model of TCFLP was formulated through an integer nonlinear programming problem (INLP).  However, a 
nonlinear model, in the process of solving a problem, is complicated and cumbersome, and it takes a long time to 
solve the problem. Therefore, to simplify the problem and reduce the computational time, we were interested in 
converting a nonlinear model to a linear model and solving the problem with a Gurobi optimizer. 
 
2.1 Problem definitions 
 

For a facility location problem under disruption, a backup facility will be considered to produce the product 
to serve each customer. Researchers have tried to propose a model for finding a primary depot and a backup depot 
to minimize total cost; however, fortification is another way to protect the facility in a disruption scenario. If the 
facility is fortified, the customer does not need support by a backup facility, thereby reducing the setup and 
transportation costs. However, since each supplier’s financial limitations for each depot allows for the fortification 
of a subset of the established depots within a limited budget, the question of which depots should be chosen for 
fortification arises. 
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In this problem, we minimized an objective function to find the optimal solution for establishing a depot and 
satellite to required demands.  The decision determined the appropriate number of facilities needed to minimize 
the number of establishments and allocation costs to meet all customers’ demands. The assumptions to define 
TCFLP were as follows: 

 Single assignment constraints must be considered. 
 Consider only the disruption that occurs in the depot. 
 Depots and satellites have limited capacity. 
 Depot failures are independent. 
 Each customer is supported by a primary and backup depot unless the primary depot is fortified, in which 

case the customer is not supported by a backup depot. 
 If a depot fails, it will lose a proportion of its capacity in the range [0,1]. 
 The fortification budget is fixed. 

 
2.2 Model formulation 

 
In this subsection, we first introduce the notations of the mathematical model for the TCFLP under disruption 

and fortification shown in Table 2. Next, we presented the model of TCFLP with an objective function to minimize 
cost, which considered the probability of depot disruption. 

 
Table 2 Notation 

Index Definition 
i  Index of depot 
j  Index of satellite 

k  Index of customer 
Decision variable 

ix  1,ix if the depot i  is established; otherwise, 0ix  

jy  1,jy if the satellite j  is established; otherwise, 0jy  

iz  1,iz if the depot i  is fortified; otherwise, 0iz  

ijkw  1,ijkw  if the customer k is supported by primary depot i  and satellite j ; otherwise, 0ijkw  

ijkw  1, ijkw if the customer k  is supported by a backup depot i  and satellite j ; otherwise, 0 ijkw  

Parameter 
ijkc  Allocation cost from depot i  and satellite j  to customer k  

iF Setup cost of the depot i  

jM  Setup cost of satellite j  

ip  Failure proportion of depot i  

icap  The capacity of the depot i  
jca p  The capacity of the satellite j  

kd  The demand of customers k  

ifc  Fortification cost of the depot i  

B  Fortification budget 
 
The model of TCFLP with disruption and fortification can be written as follows: 

min     1 1 1
       



 
        
  

    i i j j i i ijk ijk i i ijk ijk rok r r
i I j J i I i I j J k K r I o J

r i

F x M y fc z c w p z c w w p z  (1)

s.t. ijk ijkw w   ix  , ,i j k  (2)

 ijk ijkw w   iy  , ,i j k  (3)

  


 ijk ijk
j J

w w   1 ,i k  (4)

 
 
 ijk
i I j J

w  
 1 k  (5)

 
 

 ijk
i I j J

w  
 1 k  (6)
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     1 1 1
   



  
           

 k ijk i i ijk rok r r
j J k K r I o J

r i

d w p z w w p z     1 1 i i ip z cap  i  (7)

     1 1 1
   



  
           

 k ijk i i ijk rok r r
i I k K r I o J

r i

d w p z w w p z   
jcap  j  (8)

 iz   ix  i  (9)

 

 i i
i I

fc z   B   (10)

  , 0,1 ijk ijkw w    , ,i j k  (11)

  , 0,1i ix z    i  (12)

  0,1jy    .j  (13)
 

The objective function (1) aims to minimize the total cost, i.e., transportation cost, depot establishment cost, 
and satellite establishment cost, while considering the failure probability and fortification of the depots. In the 
fourth term, it is the expected transportation cost of the primary depot 𝑖, satellite 𝑗 to customer 𝑘 where (1 - pi) is 
the probability that the primary depot 𝑖 will be available. Constraints (2) and (3) guarantee that the depots and 
satellites must be established before sending the product to any customer. Constraint (4) ensures that the primary 
and backup depot must not be the same facility. In constraints (5) and (6), each customer 𝑘 must be supplied by 
only one primary and one backup depot. Constraints (7) and (8) are capacity constraints that ensure that the total 
demand assigned to the depot will be no more than the available capacity. Constraint (9) ensures the depot must 
be fortified after being established. Constraint (10) ensures that the total fortification cost will be no more than 
the budget. Constraints (11), (12), and (13) guarantee the integrity of the binary variables of the model. 

Since the proposed model was nonlinear and had many constraints and decision variables, it took a long time 
to solve the problem. Therefore, we were interested in decreasing the time to solve the complex problem by 
converting a nonlinear model to a linear model. 

 
2.2.1 Model linearization 
 

Since the objective function of the proposed model was nonlinear, the optimal solution to such a problem 
required combinatorial optimization that often renders the solution search procedure intractable for large- size 
supply networks. One of the possible approaches was to linearize the nonlinear term in the objective function 
consisting of the products of , , 

ijk i ijk i ijk ijkw z w z w w  and 
ijk ijk rw w z  by introducing a new decision variable in the 

model as follows:  
 

Let ij ijk it w z ,  ij ijk it w z , ijrok rok ijku w w  and ijrok rok ijk rv w w z ; the terms are defined as follows Table 3. 

 
Table 3 Decision variables and definition 

Decision variable Definition 
tij tij =1, if customer k is supported by primary depot i, satellite j and depot i is fortified 

∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽; otherwise, tij = 0. 

tʹ
ij  tʹ

ij =1, if customer k is supported by backup depot i, satellite j and depot i is fortified 
∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽; otherwise, tʹ

ij = 0. 

uijrok  uijrok =1, if customer k is supported by primary depot r, satellite o and backup depot i, 
satellite j ∀𝑖, 𝑟 ∈ 𝐼, 𝑗, 𝑜 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑟 ≠ 𝑖; otherwise, uijrok = 0.  

vijrok  vijrok =1, if customer k is supported by primary depot r, satellite o and backup depot i, 
satellite j and depot r is fortified ∀𝑖, 𝑟 ∈ 𝐼, 𝑗, 𝑜 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑟 ≠ 𝑖; otherwise, vijrok = 0. 

 
Since tijk = wijk zi, the value of tijk depends on wijk and zi.  That is, tijk is equal to 1 when wijk and zi are equal to 

1, otherwise tijk = 0. Thus, tijk ∈ {0,1}, and to ensure that the results obtained from the linearized model were 
consistent with the previous model, the following constraints were added for consideration, as follows: 
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2tijk           ≤wijk+zi              ∀i,j,k                                                                                                                         (14) 
wijk+zi      ≤tijk+1                  ∀i,j,k                                                                                                                        (15) 

 
From constraints (14)-(15), if zi = 0 or wijk = 0, then 2tijk  ≤ 1. Since tijk ∈ {0,1}, tijk = 0. If zi = 1 and wijk = 1, 

then 2tijk  ≤ 2 and 2≤tijk + 1. Since tijk ∈ {0,1}, tijk = 1, which corresponds to the value of wijk zi. 
Similarly, for variables tʹ

ijk , uijrok  and vijrok, we can add constraints (26)-(33) to the model. Thus, the value of 
the given variable is equivalent to the previous model.  The linearized model of TCFLP under disruption and 
fortification can be written as follows: 

min    
       



 
        
  

    i i j j i i ijk ijk ijk ijk i ijk ijk i ijk ijrok ijrok r
i I j J i I i I j J k K i I o J

r j

F x M y fc z c w c w p c t p c u v p  (16)

s.t. ijk ijkw w   ix  , ,i j k  (17)

 ijk ijkw w   iy  , ,i j k  (18)

  


 ijk ijk
j J

w w   1 ,i k  (19)

 
 
 ijk
i I j J

w  
 1 k  (20)

 
 

 ijk
i I j J

w  
 1 k  (21)

    
   



  
           

 k ijk ijk i ijk i ijrok ijrok r
j J k K r I o J

r i

d w w p t p u v p    1 1 i i ip z ca p  i  (22)

    
   



  
           

 k ijk ijk i ijk i ijrok ijrok r
i I k K r I o J

r i

d w w p t p u v p  
jcap  j  (23)

 iz   ix  i  (24)

 

 i i
i I

fc z   B   (25)

 2 ijkt   ijk iw z  , ,i j k  (26)

 ijk iw z   1ijkt  , ,i j k  (27)

 2 ijkt    ijk iw z  , ,i j k  (28)

  ijk iw z   1 ijkt  , ,i j k  (29)

 2 ijroku   ijk ijkw w  , , , , , i j r o k r i  (30)

 ijk ijkw w   1ijroku  , , , , , i j r o k r i  (31)

 3 ijrokv    rok ijk rw w z  , , , , , i j r o k r i  (32)

  rok ijk rw w z   2ijrokv  , , , , , i j r o k r i  (33)

  , 0,1ijrok ijroku v    , , , , , i j r o k r i  (34)

  , , , 0,1  ijk ijk ijk ijkw w t t    , ,i j k  (35)

  , 0,1i ix z    i  (36)

  0,1jy    j . (37)
 

From the linearized model, if the number of depots, satellites, and customers are m, n, and l, respectively, then, 
the number of decision variables is 6 (m × n × l) + 2m + n. 

 
3. Results 
 

In this section, we propose a numerical example and experimental results. The experiments for TCFLP with 
disruption and fortification were conducted using the locations of depots and satellites from a company in 
Bangkok. The data were randomly generated in the ranges shown in Table 4. The problems of TCFLP with 
disruption and fortification were solved with the Gurobi optimizer (python) package in jupyter notebook. The 
results were obtained using a 64-bit core i5-1137G7 machine with 8GB RAM, running the Windows operating 
system. 
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Table 4 Parameters used in experiments. 
Parameter value Parameter value 

Allocation cost (cijk) [10, 300] Failure proportion (pi) [0.1, 0.2] 
Depot setup cost (Fi) [2,000, 4,000] Depot capacity (capi) [70, 90] 
Satellite setup cost (Mj) [2,000, 4,000] Satellite capacity (capʹi) [100, 140] 
Fortification cost (fci) [1,000, 3,000] Customer demand (dk) [10, 100] 

 
3.1 Numerical example  

 
To illustrate TCFLP with disruption and fortification, a 20- node instance was solved where the number of 

depots, satellites, and customers were 5, 5, and 10 respectively. To compare the results between the different 
fortification budgets, budget $0, $2,000 and $4,000 were tested. Table 5 presents the solution details, i.e., sets of 
established depots and satellites, sets of fortified depots, budget cost, cost without the fortification budget, 
objective value (cost), and CPU time. 

 
Table 5 Results of 20 nodes of TCFLP. 

Facilities 
established Budget Fortified depot 

Cost ($) 
(Not include fci)* 

Total cost ($) CPU time (s) 
Depot Satellite 
1,4,5 2,5 0 - 14,538 14,538 33.02 
1,4,5 2,5 2,000 1 14,538 15,752 412.87 
1,4 2,5 4,000 1,4 12,326 16,730 684.12 

*The total cost does not include a fortified cost (fci) 
 

Table 5 shows the optimal solution to the 20-node instance in the disruption scenario (where the depots are 
disrupted) and the difference in fortification budgets. The established depots in the disruption scenario with a 
budget of $0 were 1, 4, and 5, and the optimal cost was $14,538. After we increased the budget by $2,000, the 
established depots were 1, 4, and 5, while depot 1 was selected for fortification, and the optimal cost was $15,752. 
In this case, we see that the cost that excluded the fortification cost was still not different from the budget of $0. 
It means that the transportation cost was still similar to the case of a budget of $0; therefore, the fortification depot 
was not useful. However, when the budget was increased to $4,000, the established depots were only two. The 
cost excluding the fortification cost decreased to $12,326. Although the total cost was higher than the $0 budget, 
from a supply chain activity and sustainability point of view, it may have represented daily, weekly, or monthly 
savings as opposed to one-time savings. Therefore, spending a fixed amount of fortification may be beneficial 
once to have repeated savings over the long term. Figure 2 shows the established facilities and pairs of depots and 
satellites assigned to each customer in the fortification budget of $4,000. 

 
3.2 Experimental results 
 

To validate the model, the dataset in the small problems comprised of 15–30 nodes where the number of depots 
was 5–10, the number of satellites ranged from 5–10, and the number of customers ranged from 10–20. The data 
were randomly generated in the ranges as shown in Table 3. Budgets were varied by $0, $3,000, and $6,000. 

 

 
 
Figure 2 Illustrative solutions in the disruption scenarios (Budget = $4,000). 

Depot 
Satellites 
Customer 
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Table 6 shows the details of the solutions. Each solution includes established depots and satellites, sets of 
fortified depots, budget cost, cost without the fortification budget, objective value (cost), and CPU time.  

 
Table 6 Solution details of TCFLP 

Number of facilities 

Customer 

Facilities 
established 

Budget 
Fortified 

depot 

Cost ($) 
(Not 

include 
(fci)* 

Cost 
($) 

CPU time 
(s) 

Node Depot Satellite Depot Satellite 

20 5 5 10 1,2,4,5 1,2,5 0 - 19,652 19,652 28.32 
    1,2,4 1,2,5 3,000 4 18,299 20,244 432.49 
    1,2,4 1,2,5 6,000 4 18,299 20,244 731.43 

25 5 10 10 1,2,3,4 1,3,10 0 - 20,958 20,958 154.29 
    1,2,4 1,3,10 3,000 4 19,227 22,911 502.80 
    1,2,4 1,3,10 6,000 4 19,227 22,911 782.91 

30 10 10 10 1,3,4,8 3,9,10 0 - 21,052 21,052 802.08 
    1,3,4,8 3,9,10 3,000 4 21,052 23,145 6,914.78 
    1,4,8 3,9,10 6,000 4,8 19,138 24,389 24,467.33 

*The total cost does not include a fortified cost (fci). 

 
As shown in Table 6, the cost, excluding the fortification budget, decreases when the budget increases. 

Moreover, the results obtained with the linearization model could be solved in 28.32 to 24,467.33 seconds in small 
problems. 

 
3.3 Sensitivity analysis 
 

To compare the effect of a failure proportion, we were interested in studying the effects of different ranges of 
failure proportions pi between [0.05, 0.1] and [0.2, 0.3]. The solution details for small-scale problems of these 
situations are shown in Tables 7 and 8 respectively. 

 
Table 7 Solution details of TCFLP when considering range pi between [0.05, 0.1] 

Number of facilities 
Customer 

Facilities 
established Budget 

Fortified 
depot 

Cost 
($) 

CPU time (s) 
Node Depot Satellite Depot Satellite 

20 5 5 10 1,2,4,5 1,2,5 0 - 19,652 26.78 
    1,2,4 1,2,5 3,000 4 20,244 413.54 
    1,2,4 1,2,5 6,000 4 20,244 651.23 

25 5 10 10 1,2,3,4 1,3,10 0 - 20,958 143.12 
    1,2,4 1,3,10 3,000 4 22,911 501.28 
    1,2,4 1,3,10 6,000 4 22,911 781.25 

 
Table 8 Solution details of TCFLP when considering range pi between [0.2, 0.3]. 

Number of facilities 
Customer 

Facilities 
established Budget 

Fortified 
depot 

Cost 
($) 

CPU time (s) 
Node Depot Satellite Depot Satellite 

20 5 5 10 1,2,4,5 1,2,5 0 - 19,652 31.51 
    1,2,4 1,2,5 3,000 4 20,244 479.32 
    1,2,4 1,2,5 6,000 4 20,244 787.81 

25 5 10 10 1,2,3,4 1,3,10 0 - 20,958 159.26 
    1,2,4 1,3,10 3,000 4 22,911 522.92 
    1,2,4 1,3,10 6,000 4 22,911 892.33 

   
The established depots and the total cost in the range of failure between [0.05, 0.1], [0.1, 0.2], and [0.2, 0.3] 

have the same result in small-scale problems, as shown in Tables 6, 7, and 8, respectively. Figure 3 compares the 
linearized model’s solution time over the different failure settings range between [0.05, 0.3]. The solution time is 
slightly increased for some problems, but it is similar on average. 
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Figure 3 Comparison of the solution time for a linearized model across a range of failure settings [0.05, 0.3], with 
(A) representing a budget of $6000 and (B) also representing a budget of $0. 
 
4. Conclusions 
 

In this paper, we studied the two-level capacitated facility location problem (TCFLP) by considering the 
depot’s limited capacity and failure probabilities. The fortification budget was considered to ensure the depot’s 
limited capacity was maintained. In this problem, we presented an integer nonlinear programming model of 
TCFLP with disruption and fortification to minimize the total cost. However, the proposed model was nonlinear. 
It takes a long time to solve the problem; therefore, the model was linearized to solve the complex problem.  

The experiments for TCFLP with disruption and fortification were conducted using the locations of depots and 
satellites from a company in Bangkok and solved with the Gurobi optimizer (python) to validate the model. 
Although the total cost, including the fortification cost, was higher than the $0 budget from a supply chain activity 
and sustainability perspective, it may represent daily, weekly, or monthly savings rather than one-time savings. 
Therefore, spending a fixed amount of fortification once may be beneficial to have repeated savings over the long 
term. Our approach could help decision-makers prevent disruption scenarios by choosing fortifications according 
to the existing budget. For future work, we are interested in studying the technique to solving TCFLP in large-
scale problems. Moreover, the consideration of the satisfaction of customers when the facility is disrupted is 
interesting. 
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