
1 
 

Asia-Pacific Journal of Science and Technology: Volume: 29. Issue: 02. Article ID.: APST-29-02-07. Research Article  

 
Asia-Pacific Journal of Science and Technology 

 

https://www.tci-thaijo.org/index.php/APST/index 
 

Published by the Research and Graduate Studies Division, 
Khon Kaen University, Thailand 

 

 

 

 
Satellite products computation with multiple GPU devices 
 
Chaiyasit Tanchotsrinon, Wongnaret Khantuwan* and Noppadon Khiripet 
  
Knowledge Elicitation and Archiving Laboratory (KEA), National Electronics and Computer Technology 
Center (NECTEC), Pathumthani 12120, Thailand 
*Corresponding author: chaiyasit.tan@nectec.or.th 
 

Received 15 October 2022 
Revised 18 April 2023 

Accepted 19 April 2023 
 

Abstract 
 

Over recent years, the number of earth observation satellites has increased dramatically. The satellite data 
gathering from various sources must be prepared and processed into satellite products (indexes), which takes 
computational time. Therefore, parallel computing techniques should be utilized in reducing time complexity. 
Graphic Processing Unit (GPU) devices are widely used to accelerate the computation process by massively 
parallel operations and, thus, are very suitable for this task. Although the index calculations were not complicated, 
the major drawback of the GPU process is data transfers between the host and the devices. Once data is transferred, 
it should be reused to calculate all related satellite indexes instead of beginning the transfer-compute cycle. In this 
paper, we investigate an efficacy way to produce satellite indexes and compare the computational times among 
many different approaches, i.e., Central Processing Unit (CPU) process executed based on NumPy and extended 
to multi-thread by Dask, single GPU device process performed with Numba, and multiple GPU device processes 
launched asynchronously. The experiments were carried out on three hardware environments, namely, the DGX 
workstation, the High-performance computing (HPC) High memory node, and the HPC-DGX node. The results 
revealed that the proposed GPU processes achieved more than ten times faster in overall. Furthermore, when 
compared with the CPU process, it found that its kernel computation could achieve more than 250 times faster. 
 
Keywords: CUDA, LAI, MSAVI, NDVI, Parallel programming 
 
1. Introduction 
 

Over recent years, a dramatic increase in the number of earth observation satellites, image resolution, and 
frequency range give us unprecedented levels of collect to satellite data. A massive amount of satellite data is 
gathered from various sources. Those data must be prepared and calculated for satellite products (indexes), which 
takes computational time. Hence, the size of the satellite data that needed to be computed was huge. For instance, 
Sentinel-2 products are freely accessible and downloaded from Copernicus [1]. They divided the earth's surface 
into a grid called tiled. Each tile consists of size 100x100 km2 ortho-images in UTM/WGS84 projection. It is 
approximately one hundred million pixels on each tile. In Thailand, there are over ninety tiles. Thus, more than 
nine thousand million pixels were required to compute in each satellite's orbit per one time series. As previously 
mentioned, the satellite data needed to be calculated from several sources, and, in addition, it was needed for 
exporting satellite index products for every source. The satellite data were generally used in various kinds of 
applications. Several satellite indexes have been adopted to analyze satellite data, such as Normalized Difference 
Vegetations Index (NDVI) [2], Normalized Difference Water Index (NDWI) [3], Leaf area index (LAI) [4], and 
Soil Adjusted Vegetation Index (SAVI) [5], etc. Remote sensing indices were used to represent or indicate the 
areas. Therefore, a computational resource should be optimized as well as possible. 

Due to artificial intelligence blooming, parallel programming approaches are developed for handling 
computational time consumption problems by GPUs. This idea plays a significant role in parallel computing since 
it not only reduces the computational time, but also optimize resources and energy. In some operations, Graphic 
Processing Unit (GPU) computing could be performed more than one hundred times faster than Central Processing 
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Unit (CPU) computing. However, not all operations can be accelerated by GPU parallel computing. Although 
GPU parallel programming is not designed to speed up basic operations like normalized satellite indexes 
calculation that is not a complicated formula, it can bring great benefits when the size of satellite data that needed 
to be computed is huge. Thus, the product calculation should be sped up by implementing pixel-wise parallel 
computing. 

Juan et al. [6] presented the NDVI algorithm calculated based on Compute Unified Device Architecture 
(CUDA) [7]. The CUDA kernel launches in several image block sizes. Guerrouj et al. [8] aimed to calculate 
satellite indexes (NDVI and NDWI) with real-time streaming data. CPU-GPU heterogeneous has been adopted to 
solve these problems. Zou et al. [9] showed different techniques for implementing the NDVI index. The method 
is based on the OpenAcc platform and claims to be 5.3 times faster than traditional serial programming without 
losing accuracy. 

For this paper, we would like to provide an investigation of the efficient way for exporting satellite products. 
The following sections will compare the CPU and GPU with three hardware environments. The hardware 
environments have been set to cover data processing types. The hardware environments can be divided roughly 
into three main categories by capabilities of processing levels which are described further in the next section. The 
proposed method was implemented based on the Python programming language. Python is a well-known scientific 
programming that provides rich scientific libraries with free of charge. Four Python libraries have been chosen to 
compare CPU and GPU time consumption which are NumPy [10], Dask [11, 12], Numba [13], and concurrent 
futures [14]. The NumPy was designed for array programming and numerical computing. By the way, NumPy is 
represented as a CPU process. CPU process with Multi thread has been executed by combinations of NumPy and 
Dask. Dask has been adopted as task assignment in parallel CPU multithreading process.  

Here, we investigate multiple-GPU processing solutions. We suggest adding a planning stage before 
transmitting data for computing instead of comparing it to traditional techniques, which can assist in shortening 
computation times for large-scale calculations. The outcomes of this approach will be demonstrated in full detail 
during the discussion section. In order to speed up the execution of band ratio computation and morphological 
operations, Bhangale et al. [15] demonstrated using GPU by the traditional kernel launch technique executed in 
CUDA C. The process computes results from the GPU using the traditional kernel launch technique [16] in C/C++, 
while the alternative way was decided to be implemented in Python for the proposed method, a decision that we 
will discuss later. The results from this study demonstrate that the calculation time decreases when the batch size 
is divisible while somewhat increasing when the batch size is not divisible. Our experimental findings support the 
previously stated argument for the same reason. GPU processing has several advantages over CPU processing, 
for instance, when compared to CPU calculation, it is obvious that using the GPU for computation can 
significantly decrease computation time. 

In contrast, Numba was designed to simplify GPU parallel programming with a just-in-time (JIT) compiler. 
Numba was involved in several studies to reduce computation time [17, 18]. Numba with @jit decorations was 
an automatically optimal Python code that can be executed similarly to CUDA C or Fortran. The proposed method 
combined concurrent.futures and Numba to launch kernel function as an asynchronous process compared with 
traditional kernel launch and Numba @jit (plus parallel flag). The method could reduce computational time 
efficiently. In addition, the results show that the proposed method can be more than ten times faster than the CPU 
process. 
 
2. Materials and methods 
 
2.1 Dataset specifications 
 

Datasets have been divided into two categories. Firstly, synthesis data will be generated random numbers with 
the same range of sentinel-2 data values into an array of 32 bits floating points. This data will be used to examine 
elementwise operations for exporting satellite products. Secondly, sentinel-2 data (Level-2A) was implemented 
based on this applied data size. 

 
2.2 Hardware environments 
 

This study aimed to design for a large-scale data process. Multiple graphic devices have been adopted to 
parallelly compute each device's kernel function. NSTDA Supercomputer Center: ThaiSC [19] has provided 
TARA HPC Cluster for the experiments. TARA consists of compute node, high-memory node, GPU node, and 
DGX node. High-memory and DGX nodes have been chosen for processing large data in CPU and GPU, 
respectively. The proposed method has been executed only one node at a time. Message Passing Interface (MPI) 
[20] was not involved in these experiments. The small data size might not be properly manifest with algorithm 
performance and the size of HPC data. Therefore, DGX Station has been involved in investigating small data sizes 
as preliminary results provided by executing CPU and GPU processes. The detail of hardware specifications is 
shown in Table 1. 
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Table 1 Hardware Environment. 

DGX stations V100 
ThaiSC HPC (TARA) 

High-memory node DGX node (DGX-1) 
Central Processing Unit (CPU) 1 x Intel Xeon E5-2698 v4 4 x Intel Xeon® Gold 6148 1 x Intel Xeon E5-2698 v4 

(20 core 40 threads, 2.2 – 
3.6 GHz) 

(24 core 48 threads, 2.1 – 
3.7 GHz) 

(20 core 40 threads, 2.2 – 
3.6 GHz) 

Memory (RAM) 252 GB 3 TB DDR4 512 GB DDR4 
Storage types SSD SSD + SAS SSD + SAS 
Graphic Processing unit (GPU) 4 x Nvidia Tesla V100 - 8 x Nvidia Tesla V100 

(16 GB per device)  (32 GB per device) 
Operating system Ubuntu 18.04.6 LTS CentOS 7 CentOS 7 
Dataset specifications Synthesis Data & Sentinel-2 Data 

 
2.3 Software environments 
 

Parallel computing in this experiment is specified based on CUDA. CUDA has adopted GPU to accelerate 
programming executions. CUDA was developed in many programming languages, such as C, C++, Fortran, 
Python, and MATLAB. CUDA was widely implemented based on C, C++, or Python rather than the others. 
Fortran was designed for parallel programming but has fewer users than other programming languages. Although 
MATLAB is widely used as a scientific programming platform and provides several toolboxes, it was not free of 
charge compared to Python. 

Therefore, this method was implemented based on Python instead of C or C++ programming languages since 
Python is open-source software with free of charge and requires a low learning curve. Python CUDA is slightly 
slower than C or C++ CUDA, but it takes advantage of the automatic garbage collection of resources and provides 
plentiful scientific libraries. For this reason, Python is more suitable than C++ in such a way that the satellite 
indexes might be further used for creating classification models in artificial neural network. That is why Python 
programming was chosen. Besides, all operating systems were based on Linux. 

This study uses asynchronous coding as a planner to launch kernel function independently operation in each 
GPU device. Hence, the devices were individually executing kernel functions independently. The processing of 
the proposed method can be illustrated as Figure 1. 

 
2.4 Normalized data 
 

This experiment downloaded satellite data freely from COPENICIOUS, The European Space Agency (ESA) 
[1]. According to Sentinel-2 user guides [21], the data must be normalized before use. Briefly, the raw data must 
be normalized by dividing ten thousand, but since January 25, 2022, those data must be minus with a value 
depending on the Extensible Markup Language (XML) file and then divided by one thousand. Those dates were 
restricted to the Thailand area only. Other places might be varied in date. The normalized equations are revealed 
as Equation (1). 

 

𝐿2𝐴_𝐵0𝐴𝑖 =  
𝐿2𝐴஽ே௜  + 𝐵0𝐴஺஽஽ೀಷಷೄಶ೅೔

𝑄𝑈𝐴𝑁𝑇𝐼𝐹𝐼𝐶𝐴𝑇𝐼𝑂𝑁௏஺௅௎ா௜

                                                                                                                           (1) 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
                                                                                                                                                              (2) 

 

𝑆𝐴𝑉𝐼 =  
(1 + 𝐿)  × (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

𝐿 + 𝑁𝐼𝑅 + 𝑅𝐸𝐷
 ;  𝐿 = 0.428                                                                                                              (3) 

 

𝐿𝐴𝐼 = − log

( 0.69 − 𝑆𝐴𝑉𝐼 )
0.59ൗ

0.91
                                                                                                                                      (4) 

 

𝑀𝑆𝐴𝑉𝐼 =
൫2 × 𝑁𝐼𝑅 + 1 − ඥ(2 × 𝑁𝐼𝑅 + 1)ଶ − 8 × (𝑁𝐼𝑅 − 𝑅𝐸𝐷)൯

2
                                                                         (5) 

 
2.5 Normalized satellite index equations 

 
To measure the performance of the method, synthesis data has been computed by elementwise operations with 

normalized satellite indexes. The indexes consist of NDVI, Modified soil adjusted vegetation index (MSAVI), 
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and LAI. The LAI can be calculated by several equations, so a traditional one has been chosen. Then, all the 
formulas used in this experiment are as shown in Equations (2) – (5). 

 
2.6 CPU Programming 

 
NumPy is a well-known Python library used for scientific computing multidimensional arrays. Since NumPy 

was executing a single thread by default. Therefore, the Dask library has been used for providing parallel 
computing in Python. It can be operated in both CPU and GPU processes. In this scenario, it was used with NumPy 
to perform the CPU multithreading process. 

 
2.7 GPU Programming 
 
2.7.1 Python – Numba 

 
Numba was chosen as an open-source Python library that automatically translates Python code into optimized 

machine code. Numba has provided several Python decorator functions such as @jit (Just-In-Time), @vectorize, 
@guvectorize (generalized universal function), @stencil, etc. JIT decorator is used with flags, no-Python, and 
parallel modes. These flags can be automatically executed by Python code with a contactless Python interpreter 
and automatically perform GPU parallel execution. The decorator has been taken as primitive parallel 
programming. Therefore, Python users do not need to step out of the Python comfort zone. @jit decorator with  
the parallel flag was used as a baseline for automatic parallel computing. However, the limitation of Numba is 
that some Python functions or libraries cannot perform as GPU Parallelize. 
 

 
 
Figure 1 Flowchart of the proposed method. 
 
2.7.2 Kernel functions 
 

CUDA programming was composed of three-main process components: Firstly, data must be transferred from 
host memory to GPU device memory (Host to Device). Secondly, GPU programming was loaded and then 
executed. Lastly, the results of GPU programming were transferred back to the host memory (Device to Host). 
The hierarchical structure of CUDA consists of Grids, Blocks, and Threads. A group of threads was defined as 
Block. Likewise, the group of blocks is represented as Grid. To launch any CUDA kernel function, those three 
dimensions must be assigned relating to the specification of GPU devices and data shape. The dimension can be 
implemented in various dimensions, such as 1D, 2D, and 3D. In this study, the One-Dimensional kernel function 
has been chosen based on the shape of the data and asynchronous algorithm. The data shape can be anything. 
Thus, 2D or 3D might not be suitable for this reason. In this case, the efficiency for designed size was selected 
based on divisible kernel sizes. Performance might be affected by those fractions. Hence, the Data array must be 
re-shaped in vector. The data has been split into groups depending on which GPU device models (GPU memory 
capacity) and the number of GPU devices. 

 
2.7.3 Parallel multiple devices  
 

Serial processing was regularly executing code in order line by line. On the other hand, some tasks do not need 
to wait for the earlier task to be accomplished. Elementwise operations were counted in the same categories as 

Input Data 

Total number 
of  

GPU devices 

Re-index  
and  

Data spilt 

Planning 
Asynchronous 

Tasks 

Device 0 
Kernel launch 

Device 1 
Kernel launch 

Device i 
Kernel launch 

NDVI, LAI, MSAVI 
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well. Therefore, parallel processing stepped in to reduce computation time. Asynchronous coding techniques were 
widely used in parallel programming. The proposed method is used concurrent futures for wrapping and planning 
CUDA kernel operations in each device. The devices can independently execute operations almost at the same 
time. Figure 1 presents a flowchart of the proposed method. Additionally, the traditional CUDA kernel launch 
and the proposed method are described in pseudo-code as shown in Algorithm 1 and 2, respectively. 

 
Algorithm_1: Traditional multiple-device kernel launch 
1. Input = NIR_band, Red_band 
2. Output = NDVI, LAI, MSAVI 
3. def kernel_function(TPB, BPG, NIR, RED, NDVI, LAI, MSAVI): 
4. TPB = threadsperblock 
5. BPG = blockspergrids 
6. total_gpu_devices = len(cuda.gpus) 
7. for i in range(total_gpu_devices): 
8. cuda.selected_device(device_i) 
9. kernel_functions[BPG, TPB](NIR, RED, NDVI, LAI, MSAVI) 
Algorithm_2: Proposed method 
1. Input = NIR_band, Red_band 
2. Output = NDVI, LAI, MSAVI 
3. # wrap traditional kernel_function with concurrent.futures 
4. # Number of future objects depends on user design 
5. with concurrent.futures.ThreadPoolExecutor(max_worker) as executor: 
6. for i in range (num_gpu_devices): 
7. future_obj[i] = executor.submit(kernel_function, device[i]) 
8. concurrent.futures.as_completed(future_obj[all]) 
9. executor.shutdown(wait=True) 
 
3. Results 
 

For the experiment, various data sizes are used to investigate relations between an appropriate size and the 
performance of the CUDA kernel function. The data is fetched to the main memory (RAM) through numerous 
Python libraries such as NumPy, Xarray, Rasterio, rioxarray, Open Data Cube (ODC), etc. Once data is loaded, 
the data will be able to calculate all the satellite indexes, as shown in Table 2. The size of the data could be affected 
by computation time. Small data size might not be worthy for executing operations on GPU programming because 
data transferring cost was massive compared to running time on CPU. Hence, CPU computing could be completed 
before GPU data moving was finished in the case of small data. 

Consequently, the loading operations from storage to memory will be excluded for the reason as same as 
writing from memory to storage. The HPC will take massive advantage of scratch space to write large-scale data 
into storage. However, this study still counts the data transfer times between host-memory and device-memory in 
the workflow of GPU computing, which is a significant drawback in GPU parallel computing. 
 
Table 2 DGX stations (GPU single device VS. Multiple devices) – Computation time. 

Method / 
Size of pixels, Computation time (sec) 

100M 
pixels 

200M 
pixels 

300M 
pixels 

400M 
pixels 

500M 
pixels 

CPU NumPy 2.7473 5.4602 8.3687 10.9728 13.6795 
GPU -Single device, 
Kernel profiling 
 
  

Host to Device 0.2983 0.5565 0.9131 1.1930 1.4832 
Kernel executes (including 
CUDA overhead) 

0.0519 0.0509 0.0525 0.0486 0.0541 

Device to Host 0.1526 0.3192 0.4718 0.6160 0.7699 
Total Consumption time 0.5029 0.9268 1.4376 1.8577 2.3073 

GPU -Multiple 
devices 

Numba @jit(parallel=True) 0.5161 0.7929 1.0820 1.3572 1.6307 
Proposed method 0.2446 0.4296 0.6089 0.7961 0.9820 

 
4. Discussion 
 

In comparison, Numba - @jit was automatically run in parallel and used as a baseline in this experiment. The 
running time of every technique was measured by an average of ten times repeating. Comparing the performance 
of each method has been represented in Tables 3 , Table 4 , Figure 2, and Figure 3.  The result shows that single 
and multiple GPU processing is much faster than CPU computing. The speed-up ratio between CPU processing, 
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single GPU processing, and multi-GPU processing is related to the data size. The CPU will execute faster than 
GPU if the data size is too tiny.  

A GPU device can handle its computation efficiently when all data is within its limited GPU memory. 
However, multiple GPU devices will be used to optimize all operations when the data size is massive. The 
traditional kernel launch method in multiple devices has been delayed by I/O bound operations in assigning data 
movement for execution. The proposed method alleviated this drawback by using concurrent.futures to wrap each 
kernel's instructions into future objects. The future objects can be executed independently on the assigned device 
at nearly the same time. The results showed that the proposed method is better at optimizing computation time 
than other methods. 

Moreover, the speed-up ratios between CPU processing and GPU processing performance are shown in 
Figures 3 (a-b). For the DGX station experiment, the ratios between CPU and GPU were not increased due to the 
limitation that the data size could not be increased by more than 252 GB of memory space. Furthermore, the 
speed-up ratio seems to grow slightly when the data size can be divisible by kernel size, as shown in Figure 3 (a). 
However, the speed-up ratios do not significantly increase when the data size was larger than two thousand million 
pixels. The amount of data that affects computation time is related to divisible data size with kernel size. The 
optimum point is when data size equals GPU memory space. The speed-up of the HPC DGX node experiment 
can be grown in Figure 3 (b). As shown in Tables 3 and 4, the computation time of the same data size of 1,000 to 
3,000 million pixels on the HPC-DGX nodes was slightly slower when compared to the DGX station. This might 
be caused by the data size being too small compared to the hardware specifications of HPC. The computation time 
on the HPC-DGX node might be slower than the DGX Station machine because of cluster memory architecture, 
data transferring between nodes (front-end node to high memory node and HPC-DGX node), and overhead from 
the SLURM workload manager. However, that does not mean the HPC-node performance is worse than the DGX 
Station. Since the DGX Station has only four GPU devices with 16GB of memory for each device, on the other 
hand, DGX-node consists of eight GPUs with 32GB of memory for each device; this made the DGX-node able to 
handle the larger data than DGX Station. In real situations, many operations are also included to finish the entire 
workflow, such as reading, writing, etc. Overall, it made the computation on HPC-DGX faster than DGX Stations. 
 
Table 3 DGX stations (Multiple devices) – Computation time. 

Method / 
Total number of pixels 
in millions (Time 
consumption - secs) 

2 
M 

4 
M 

6 
M 

8 
M 

10 
M 

20 
M 

40 
M 

60 
M 

80 
M 

100 
M 

200 
M 

400 
M 

600 
M 

800 
M 

1000 
M 

2000 
M 

3000 
M 

CPU – NumPy single 
thread 
  

0.04 0.09 0.14 0.19 0.28 0.55 1.12 1.67 2.19 2.74 5.45 11.20 16.29 21.93 27.70 55.70 84.69 

GPU - traditional 
kernel launch 
  

0.11 0.11 0.13 0.14 0.14 0.19 0.27 0.36 0.45 0.53 0.95 1.79 2.57 3.37 4.21 8.49 13.07 

GPU - Numba @jit 
(parallel=True) 
  

0.22 0.23 0.24 0.24 0.25 0.29 0.34 0.39 0.43 0.49 0.76 1.30 1.88 2.41 3.45 6.26 9.19 

GPU - Proposed 
method – NDVI 
  

0.10 0.10 0.10 0.10 0.10 0.10 0.14 0.15 0.17 0.20 0.30 0.53 0.76 0.97 1.21 2.29 3.33 

GPU - Proposed 
method LAI 
 
 

0.10 0.10 0.10 0.10 0.10 0.11 0.14 0.16 0.17 0.21 0.32 0.53 0.76 0.99 1.22 2.39 3.44 

GPU - Proposed 
method MSAVI 
 
 

0.11 0.11 0.11 0.12 0.11 0.12 0.15 0.16 0.18 0.22 0.32 0.54 0.77 0.97 1.21 2.31 3.44 

GPU - Proposed 
method (Sum time 
computation of NDVI, 
LAI, MSAVI) 
 

0.31 0.31 0.31 0.31 0.31 0.34 0.43 0.47 0.53 0.63 0.94 1.60 2.28 2.93 3.64 6.99 10.21 

GPU - Proposed 
method (calculating 3 
products at the same 
time) 

0.12 0.11 0.10 0.10 0.11 0.14 0.17 0.19 0.23 0.29 0.47 0.86 1.22 1.56 1.99 3.86 6.05 

 
Table 4 ThaiSC (CPU – High memory node, GPU – DGX node) – Computation time.  

Method / 1,000 M 
pixels 

2,000 M 
pixels 

3,000 M 
pixels 

6,000 M 
pixels 

9,000 M 
pixels 

12,000 M 
pixels 
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Total number of pixels in 
millions (Computation time - 
sec) 
CPU - NumPy single thread  34.5240 68.9926 108.5673 206.8101 366.5507 656.4981 

CPU - Numba + Dask 
Multi-threads 

10.9850 20.1078 28.6280 68.3279 102.7995 132.2834 

GPU - traditional kernel launch  6.6022 13.8750 21.0548 48.1403 75.9102 95.2698 

GPU - Numba jit 
(parallel=True) 

3.2901 6.2925 9.4978 17.7719 27.3729 36.3783 

GPU - Proposed method 
(3 products at the same time) 

2.6602 4.5844 7.2360 14.0662 22.3275 29.7365 

 

 
 

 
 
Figure 2 DGX station and ThaiSC HPC – LOG graph of the comparison between the size of pixels and 
computation time. (A) – DGX station, (B) – ThaiSC HPC. 
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Figure 3 DGX station and ThaiSC – Speed-UP Graph. (A) – DGX station, (B) – ThaiSC HPC. 

 
When comparing the kernel function excluding data transfer time between the CPU and GPU, the time needed 

for computing with GPU is more than 250 times faster than those with CPU. Practically, we must consider the 
time required for sending data to the GPU for processing. Depending on the quantity of the data, this only 
accelerates processes ten to twenty times faster than a CPU. However, the major drawback of the GPU process is 
shown in Table 2. Most of the time, data transfer between host to devices and devices to host is required. Using 
GPUs for data processing has this drawback because data transport may take longer time than direct computing. 
It cannot reduce the total amount of data transferred from host to devices and devices to host. The time needed for 
planning before submitting the data for processing also influences calculation time. The proposed method can 
take longer time to plan if the data is not large enough. Planning may take longer time than sending the data for 
processing. 

Hence, calculating only one satellite index was ineffective. If the data has already been transferred to GPU, 
the other satellite index should be calculated simultaneously to reduce the data transfer cost. Moreover, the first 
execution of the CUDA process might suffer from CUDA overhead, as demonstrated in Figure 4. Thus, executing 
multiple CUDA kernels over the same dataset will be more efficient. 
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Figure 4 Demonstration of CUDA overhead. 
 
5. Conclusion 
 

Numba has provided the automatic configuration for GPU parallel computing. It performs very well without 
requiring any background knowledge of CUDA programming. However, Numba GPU computing might not 
support some external functions and may cause execution failure. The proposed method has the benefit of 
combining the traditional CUDA kernel function launch and the asynchronous GPU computing. In this way, it 
can reduce running time compared to other techniques. Even though normalized satellite index equations were 
not intensively computed and did not take any advantage of CUDA architectures like shared memory, the results 
demonstrated that if the data is large enough, it is still worth transferring to GPU and processing it parallelly. The 
complexity of mathematical computations and the not-too-small data size are suitable for computing with GPU 
programming. If the data size was too small, it might not be worth using this method due to overhead from both 
CUDA and concurrent. However, when both conditions are met, the kernel computation on GPU is up to 250 
times faster than CPU process or, especially ten times faster if include data transfer time. Hence, complicated 
algorithms and enormous data were suitably processed with GPU. In future work, we are planning to explore MPI. 
MPI will be applied to handle multiple nodes in the cluster. 
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