
1

Asia-Pacific Journal of Science and Technology: Volume: 29. Issue: 02. Article ID.: APST-29-02-07. Research Article

Asia-Pacific Journal of Science and Technology

https://www.tci-thaijo.org/index.php/APST/index

Published by the Research and Graduate Studies Division,
Khon Kaen University, Thailand

Satellite products computation with multiple GPU devices

Chaiyasit Tanchotsrinon, Wongnaret Khantuwan* and Noppadon Khiripet

Knowledge Elicitation and Archiving Laboratory (KEA), National Electronics and Computer Technology
Center (NECTEC), Pathumthani 12120, Thailand
*Corresponding author: chaiyasit.tan@nectec.or.th

Received 15 October 2022
Revised 18 April 2023

Accepted 19 April 2023

Abstract

Over recent years, the number of earth observation satellites has increased dramatically. The satellite data
gathering from various sources must be prepared and processed into satellite products (indexes), which takes
computational time. Therefore, parallel computing techniques should be utilized in reducing time complexity.
Graphic Processing Unit (GPU) devices are widely used to accelerate the computation process by massively
parallel operations and, thus, are very suitable for this task. Although the index calculations were not complicated,
the major drawback of the GPU process is data transfers between the host and the devices. Once data is transferred,
it should be reused to calculate all related satellite indexes instead of beginning the transfer-compute cycle. In this
paper, we investigate an efficacy way to produce satellite indexes and compare the computational times among
many different approaches, i.e., Central Processing Unit (CPU) process executed based on NumPy and extended
to multi-thread by Dask, single GPU device process performed with Numba, and multiple GPU device processes
launched asynchronously. The experiments were carried out on three hardware environments, namely, the DGX
workstation, the High-performance computing (HPC) High memory node, and the HPC-DGX node. The results
revealed that the proposed GPU processes achieved more than ten times faster in overall. Furthermore, when
compared with the CPU process, it found that its kernel computation could achieve more than 250 times faster.

Keywords: CUDA, LAI, MSAVI, NDVI, Parallel programming

1. Introduction

Over recent years, a dramatic increase in the number of earth observation satellites, image resolution, and
frequency range give us unprecedented levels of collect to satellite data. A massive amount of satellite data is
gathered from various sources. Those data must be prepared and calculated for satellite products (indexes), which
takes computational time. Hence, the size of the satellite data that needed to be computed was huge. For instance,
Sentinel-2 products are freely accessible and downloaded from Copernicus [1]. They divided the earth's surface
into a grid called tiled. Each tile consists of size 100x100 km2 ortho-images in UTM/WGS84 projection. It is
approximately one hundred million pixels on each tile. In Thailand, there are over ninety tiles. Thus, more than
nine thousand million pixels were required to compute in each satellite's orbit per one time series. As previously
mentioned, the satellite data needed to be calculated from several sources, and, in addition, it was needed for
exporting satellite index products for every source. The satellite data were generally used in various kinds of
applications. Several satellite indexes have been adopted to analyze satellite data, such as Normalized Difference
Vegetations Index (NDVI) [2], Normalized Difference Water Index (NDWI) [3], Leaf area index (LAI) [4], and
Soil Adjusted Vegetation Index (SAVI) [5], etc. Remote sensing indices were used to represent or indicate the
areas. Therefore, a computational resource should be optimized as well as possible.

Due to artificial intelligence blooming, parallel programming approaches are developed for handling
computational time consumption problems by GPUs. This idea plays a significant role in parallel computing since
it not only reduces the computational time, but also optimize resources and energy. In some operations, Graphic
Processing Unit (GPU) computing could be performed more than one hundred times faster than Central Processing

2

Unit (CPU) computing. However, not all operations can be accelerated by GPU parallel computing. Although
GPU parallel programming is not designed to speed up basic operations like normalized satellite indexes
calculation that is not a complicated formula, it can bring great benefits when the size of satellite data that needed
to be computed is huge. Thus, the product calculation should be sped up by implementing pixel-wise parallel
computing.

Juan et al. [6] presented the NDVI algorithm calculated based on Compute Unified Device Architecture
(CUDA) [7]. The CUDA kernel launches in several image block sizes. Guerrouj et al. [8] aimed to calculate
satellite indexes (NDVI and NDWI) with real-time streaming data. CPU-GPU heterogeneous has been adopted to
solve these problems. Zou et al. [9] showed different techniques for implementing the NDVI index. The method
is based on the OpenAcc platform and claims to be 5.3 times faster than traditional serial programming without
losing accuracy.

For this paper, we would like to provide an investigation of the efficient way for exporting satellite products.
The following sections will compare the CPU and GPU with three hardware environments. The hardware
environments have been set to cover data processing types. The hardware environments can be divided roughly
into three main categories by capabilities of processing levels which are described further in the next section. The
proposed method was implemented based on the Python programming language. Python is a well-known scientific
programming that provides rich scientific libraries with free of charge. Four Python libraries have been chosen to
compare CPU and GPU time consumption which are NumPy [10], Dask [11, 12], Numba [13], and concurrent
futures [14]. The NumPy was designed for array programming and numerical computing. By the way, NumPy is
represented as a CPU process. CPU process with Multi thread has been executed by combinations of NumPy and
Dask. Dask has been adopted as task assignment in parallel CPU multithreading process.

Here, we investigate multiple-GPU processing solutions. We suggest adding a planning stage before
transmitting data for computing instead of comparing it to traditional techniques, which can assist in shortening
computation times for large-scale calculations. The outcomes of this approach will be demonstrated in full detail
during the discussion section. In order to speed up the execution of band ratio computation and morphological
operations, Bhangale et al. [15] demonstrated using GPU by the traditional kernel launch technique executed in
CUDA C. The process computes results from the GPU using the traditional kernel launch technique [16] in C/C++,
while the alternative way was decided to be implemented in Python for the proposed method, a decision that we
will discuss later. The results from this study demonstrate that the calculation time decreases when the batch size
is divisible while somewhat increasing when the batch size is not divisible. Our experimental findings support the
previously stated argument for the same reason. GPU processing has several advantages over CPU processing,
for instance, when compared to CPU calculation, it is obvious that using the GPU for computation can
significantly decrease computation time.

In contrast, Numba was designed to simplify GPU parallel programming with a just-in-time (JIT) compiler.
Numba was involved in several studies to reduce computation time [17, 18]. Numba with @jit decorations was
an automatically optimal Python code that can be executed similarly to CUDA C or Fortran. The proposed method
combined concurrent.futures and Numba to launch kernel function as an asynchronous process compared with
traditional kernel launch and Numba @jit (plus parallel flag). The method could reduce computational time
efficiently. In addition, the results show that the proposed method can be more than ten times faster than the CPU
process.

2. Materials and methods

2.1 Dataset specifications

Datasets have been divided into two categories. Firstly, synthesis data will be generated random numbers with
the same range of sentinel-2 data values into an array of 32 bits floating points. This data will be used to examine
elementwise operations for exporting satellite products. Secondly, sentinel-2 data (Level-2A) was implemented
based on this applied data size.

2.2 Hardware environments

This study aimed to design for a large-scale data process. Multiple graphic devices have been adopted to
parallelly compute each device's kernel function. NSTDA Supercomputer Center: ThaiSC [19] has provided
TARA HPC Cluster for the experiments. TARA consists of compute node, high-memory node, GPU node, and
DGX node. High-memory and DGX nodes have been chosen for processing large data in CPU and GPU,
respectively. The proposed method has been executed only one node at a time. Message Passing Interface (MPI)
[20] was not involved in these experiments. The small data size might not be properly manifest with algorithm
performance and the size of HPC data. Therefore, DGX Station has been involved in investigating small data sizes
as preliminary results provided by executing CPU and GPU processes. The detail of hardware specifications is
shown in Table 1.

3

Table 1 Hardware Environment.

DGX stations V100
ThaiSC HPC (TARA)

High-memory node DGX node (DGX-1)
Central Processing Unit (CPU) 1 x Intel Xeon E5-2698 v4 4 x Intel Xeon® Gold 6148 1 x Intel Xeon E5-2698 v4

(20 core 40 threads, 2.2 –
3.6 GHz)

(24 core 48 threads, 2.1 –
3.7 GHz)

(20 core 40 threads, 2.2 –
3.6 GHz)

Memory (RAM) 252 GB 3 TB DDR4 512 GB DDR4
Storage types SSD SSD + SAS SSD + SAS
Graphic Processing unit (GPU) 4 x Nvidia Tesla V100 - 8 x Nvidia Tesla V100

(16 GB per device) (32 GB per device)
Operating system Ubuntu 18.04.6 LTS CentOS 7 CentOS 7
Dataset specifications Synthesis Data & Sentinel-2 Data

2.3 Software environments

Parallel computing in this experiment is specified based on CUDA. CUDA has adopted GPU to accelerate
programming executions. CUDA was developed in many programming languages, such as C, C++, Fortran,
Python, and MATLAB. CUDA was widely implemented based on C, C++, or Python rather than the others.
Fortran was designed for parallel programming but has fewer users than other programming languages. Although
MATLAB is widely used as a scientific programming platform and provides several toolboxes, it was not free of
charge compared to Python.

Therefore, this method was implemented based on Python instead of C or C++ programming languages since
Python is open-source software with free of charge and requires a low learning curve. Python CUDA is slightly
slower than C or C++ CUDA, but it takes advantage of the automatic garbage collection of resources and provides
plentiful scientific libraries. For this reason, Python is more suitable than C++ in such a way that the satellite
indexes might be further used for creating classification models in artificial neural network. That is why Python
programming was chosen. Besides, all operating systems were based on Linux.

This study uses asynchronous coding as a planner to launch kernel function independently operation in each
GPU device. Hence, the devices were individually executing kernel functions independently. The processing of
the proposed method can be illustrated as Figure 1.

2.4 Normalized data

This experiment downloaded satellite data freely from COPENICIOUS, The European Space Agency (ESA)
[1]. According to Sentinel-2 user guides [21], the data must be normalized before use. Briefly, the raw data must
be normalized by dividing ten thousand, but since January 25, 2022, those data must be minus with a value
depending on the Extensible Markup Language (XML) file and then divided by one thousand. Those dates were
restricted to the Thailand area only. Other places might be varied in date. The normalized equations are revealed
as Equation (1).

𝐿2𝐴_𝐵0𝐴𝑖 =
𝐿2𝐴஽ே௜ + 𝐵0𝐴஺஽஽ೀಷಷೄಶ೅೔

𝑄𝑈𝐴𝑁𝑇𝐼𝐹𝐼𝐶𝐴𝑇𝐼𝑂𝑁௏஺௅௎ா௜

 (1)

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (2)

𝑆𝐴𝑉𝐼 =
(1 + 𝐿) × (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

𝐿 + 𝑁𝐼𝑅 + 𝑅𝐸𝐷
 ; 𝐿 = 0.428 (3)

𝐿𝐴𝐼 = − log

(0.69 − 𝑆𝐴𝑉𝐼)
0.59ൗ

0.91
 (4)

𝑀𝑆𝐴𝑉𝐼 =
൫2 × 𝑁𝐼𝑅 + 1 − ඥ(2 × 𝑁𝐼𝑅 + 1)ଶ − 8 × (𝑁𝐼𝑅 − 𝑅𝐸𝐷)൯

2
 (5)

2.5 Normalized satellite index equations

To measure the performance of the method, synthesis data has been computed by elementwise operations with

normalized satellite indexes. The indexes consist of NDVI, Modified soil adjusted vegetation index (MSAVI),

4

and LAI. The LAI can be calculated by several equations, so a traditional one has been chosen. Then, all the
formulas used in this experiment are as shown in Equations (2) – (5).

2.6 CPU Programming

NumPy is a well-known Python library used for scientific computing multidimensional arrays. Since NumPy

was executing a single thread by default. Therefore, the Dask library has been used for providing parallel
computing in Python. It can be operated in both CPU and GPU processes. In this scenario, it was used with NumPy
to perform the CPU multithreading process.

2.7 GPU Programming

2.7.1 Python – Numba

Numba was chosen as an open-source Python library that automatically translates Python code into optimized

machine code. Numba has provided several Python decorator functions such as @jit (Just-In-Time), @vectorize,
@guvectorize (generalized universal function), @stencil, etc. JIT decorator is used with flags, no-Python, and
parallel modes. These flags can be automatically executed by Python code with a contactless Python interpreter
and automatically perform GPU parallel execution. The decorator has been taken as primitive parallel
programming. Therefore, Python users do not need to step out of the Python comfort zone. @jit decorator with
the parallel flag was used as a baseline for automatic parallel computing. However, the limitation of Numba is
that some Python functions or libraries cannot perform as GPU Parallelize.

Figure 1 Flowchart of the proposed method.

2.7.2 Kernel functions

CUDA programming was composed of three-main process components: Firstly, data must be transferred from
host memory to GPU device memory (Host to Device). Secondly, GPU programming was loaded and then
executed. Lastly, the results of GPU programming were transferred back to the host memory (Device to Host).
The hierarchical structure of CUDA consists of Grids, Blocks, and Threads. A group of threads was defined as
Block. Likewise, the group of blocks is represented as Grid. To launch any CUDA kernel function, those three
dimensions must be assigned relating to the specification of GPU devices and data shape. The dimension can be
implemented in various dimensions, such as 1D, 2D, and 3D. In this study, the One-Dimensional kernel function
has been chosen based on the shape of the data and asynchronous algorithm. The data shape can be anything.
Thus, 2D or 3D might not be suitable for this reason. In this case, the efficiency for designed size was selected
based on divisible kernel sizes. Performance might be affected by those fractions. Hence, the Data array must be
re-shaped in vector. The data has been split into groups depending on which GPU device models (GPU memory
capacity) and the number of GPU devices.

2.7.3 Parallel multiple devices

Serial processing was regularly executing code in order line by line. On the other hand, some tasks do not need
to wait for the earlier task to be accomplished. Elementwise operations were counted in the same categories as

Input Data

Total number
of

GPU devices

Re-index
and

Data spilt

Planning
Asynchronous

Tasks

Device 0
Kernel launch

Device 1
Kernel launch

Device i
Kernel launch

NDVI, LAI, MSAVI

5

well. Therefore, parallel processing stepped in to reduce computation time. Asynchronous coding techniques were
widely used in parallel programming. The proposed method is used concurrent futures for wrapping and planning
CUDA kernel operations in each device. The devices can independently execute operations almost at the same
time. Figure 1 presents a flowchart of the proposed method. Additionally, the traditional CUDA kernel launch
and the proposed method are described in pseudo-code as shown in Algorithm 1 and 2, respectively.

Algorithm_1: Traditional multiple-device kernel launch
1. Input = NIR_band, Red_band
2. Output = NDVI, LAI, MSAVI
3. def kernel_function(TPB, BPG, NIR, RED, NDVI, LAI, MSAVI):
4. TPB = threadsperblock
5. BPG = blockspergrids
6. total_gpu_devices = len(cuda.gpus)
7. for i in range(total_gpu_devices):
8. cuda.selected_device(device_i)
9. kernel_functions[BPG, TPB](NIR, RED, NDVI, LAI, MSAVI)
Algorithm_2: Proposed method
1. Input = NIR_band, Red_band
2. Output = NDVI, LAI, MSAVI
3. # wrap traditional kernel_function with concurrent.futures
4. # Number of future objects depends on user design
5. with concurrent.futures.ThreadPoolExecutor(max_worker) as executor:
6. for i in range (num_gpu_devices):
7. future_obj[i] = executor.submit(kernel_function, device[i])
8. concurrent.futures.as_completed(future_obj[all])
9. executor.shutdown(wait=True)

3. Results

For the experiment, various data sizes are used to investigate relations between an appropriate size and the
performance of the CUDA kernel function. The data is fetched to the main memory (RAM) through numerous
Python libraries such as NumPy, Xarray, Rasterio, rioxarray, Open Data Cube (ODC), etc. Once data is loaded,
the data will be able to calculate all the satellite indexes, as shown in Table 2. The size of the data could be affected
by computation time. Small data size might not be worthy for executing operations on GPU programming because
data transferring cost was massive compared to running time on CPU. Hence, CPU computing could be completed
before GPU data moving was finished in the case of small data.

Consequently, the loading operations from storage to memory will be excluded for the reason as same as
writing from memory to storage. The HPC will take massive advantage of scratch space to write large-scale data
into storage. However, this study still counts the data transfer times between host-memory and device-memory in
the workflow of GPU computing, which is a significant drawback in GPU parallel computing.

Table 2 DGX stations (GPU single device VS. Multiple devices) – Computation time.

Method /
Size of pixels, Computation time (sec)

100M
pixels

200M
pixels

300M
pixels

400M
pixels

500M
pixels

CPU NumPy 2.7473 5.4602 8.3687 10.9728 13.6795
GPU -Single device,
Kernel profiling

Host to Device 0.2983 0.5565 0.9131 1.1930 1.4832
Kernel executes (including
CUDA overhead)

0.0519 0.0509 0.0525 0.0486 0.0541

Device to Host 0.1526 0.3192 0.4718 0.6160 0.7699
Total Consumption time 0.5029 0.9268 1.4376 1.8577 2.3073

GPU -Multiple
devices

Numba @jit(parallel=True) 0.5161 0.7929 1.0820 1.3572 1.6307
Proposed method 0.2446 0.4296 0.6089 0.7961 0.9820

4. Discussion

In comparison, Numba - @jit was automatically run in parallel and used as a baseline in this experiment. The
running time of every technique was measured by an average of ten times repeating. Comparing the performance
of each method has been represented in Tables 3 , Table 4 , Figure 2, and Figure 3. The result shows that single
and multiple GPU processing is much faster than CPU computing. The speed-up ratio between CPU processing,

6

single GPU processing, and multi-GPU processing is related to the data size. The CPU will execute faster than
GPU if the data size is too tiny.

A GPU device can handle its computation efficiently when all data is within its limited GPU memory.
However, multiple GPU devices will be used to optimize all operations when the data size is massive. The
traditional kernel launch method in multiple devices has been delayed by I/O bound operations in assigning data
movement for execution. The proposed method alleviated this drawback by using concurrent.futures to wrap each
kernel's instructions into future objects. The future objects can be executed independently on the assigned device
at nearly the same time. The results showed that the proposed method is better at optimizing computation time
than other methods.

Moreover, the speed-up ratios between CPU processing and GPU processing performance are shown in
Figures 3 (a-b). For the DGX station experiment, the ratios between CPU and GPU were not increased due to the
limitation that the data size could not be increased by more than 252 GB of memory space. Furthermore, the
speed-up ratio seems to grow slightly when the data size can be divisible by kernel size, as shown in Figure 3 (a).
However, the speed-up ratios do not significantly increase when the data size was larger than two thousand million
pixels. The amount of data that affects computation time is related to divisible data size with kernel size. The
optimum point is when data size equals GPU memory space. The speed-up of the HPC DGX node experiment
can be grown in Figure 3 (b). As shown in Tables 3 and 4, the computation time of the same data size of 1,000 to
3,000 million pixels on the HPC-DGX nodes was slightly slower when compared to the DGX station. This might
be caused by the data size being too small compared to the hardware specifications of HPC. The computation time
on the HPC-DGX node might be slower than the DGX Station machine because of cluster memory architecture,
data transferring between nodes (front-end node to high memory node and HPC-DGX node), and overhead from
the SLURM workload manager. However, that does not mean the HPC-node performance is worse than the DGX
Station. Since the DGX Station has only four GPU devices with 16GB of memory for each device, on the other
hand, DGX-node consists of eight GPUs with 32GB of memory for each device; this made the DGX-node able to
handle the larger data than DGX Station. In real situations, many operations are also included to finish the entire
workflow, such as reading, writing, etc. Overall, it made the computation on HPC-DGX faster than DGX Stations.

Table 3 DGX stations (Multiple devices) – Computation time.

Method /
Total number of pixels
in millions (Time
consumption - secs)

2
M

4
M

6
M

8
M

10
M

20
M

40
M

60
M

80
M

100
M

200
M

400
M

600
M

800
M

1000
M

2000
M

3000
M

CPU – NumPy single
thread

0.04 0.09 0.14 0.19 0.28 0.55 1.12 1.67 2.19 2.74 5.45 11.20 16.29 21.93 27.70 55.70 84.69

GPU - traditional
kernel launch

0.11 0.11 0.13 0.14 0.14 0.19 0.27 0.36 0.45 0.53 0.95 1.79 2.57 3.37 4.21 8.49 13.07

GPU - Numba @jit
(parallel=True)

0.22 0.23 0.24 0.24 0.25 0.29 0.34 0.39 0.43 0.49 0.76 1.30 1.88 2.41 3.45 6.26 9.19

GPU - Proposed
method – NDVI

0.10 0.10 0.10 0.10 0.10 0.10 0.14 0.15 0.17 0.20 0.30 0.53 0.76 0.97 1.21 2.29 3.33

GPU - Proposed
method LAI

0.10 0.10 0.10 0.10 0.10 0.11 0.14 0.16 0.17 0.21 0.32 0.53 0.76 0.99 1.22 2.39 3.44

GPU - Proposed
method MSAVI

0.11 0.11 0.11 0.12 0.11 0.12 0.15 0.16 0.18 0.22 0.32 0.54 0.77 0.97 1.21 2.31 3.44

GPU - Proposed
method (Sum time
computation of NDVI,
LAI, MSAVI)

0.31 0.31 0.31 0.31 0.31 0.34 0.43 0.47 0.53 0.63 0.94 1.60 2.28 2.93 3.64 6.99 10.21

GPU - Proposed
method (calculating 3
products at the same
time)

0.12 0.11 0.10 0.10 0.11 0.14 0.17 0.19 0.23 0.29 0.47 0.86 1.22 1.56 1.99 3.86 6.05

Table 4 ThaiSC (CPU – High memory node, GPU – DGX node) – Computation time.

Method / 1,000 M
pixels

2,000 M
pixels

3,000 M
pixels

6,000 M
pixels

9,000 M
pixels

12,000 M
pixels

7

Total number of pixels in
millions (Computation time -
sec)
CPU - NumPy single thread 34.5240 68.9926 108.5673 206.8101 366.5507 656.4981

CPU - Numba + Dask
Multi-threads

10.9850 20.1078 28.6280 68.3279 102.7995 132.2834

GPU - traditional kernel launch 6.6022 13.8750 21.0548 48.1403 75.9102 95.2698

GPU - Numba jit
(parallel=True)

3.2901 6.2925 9.4978 17.7719 27.3729 36.3783

GPU - Proposed method
(3 products at the same time)

2.6602 4.5844 7.2360 14.0662 22.3275 29.7365

Figure 2 DGX station and ThaiSC HPC – LOG graph of the comparison between the size of pixels and
computation time. (A) – DGX station, (B) – ThaiSC HPC.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 2M 4M 6M 8M 10M 20M 40M 60M 80M 100M 200M 400M 600M 800M 1000M 2000M 3000MC
om

pu
ta

ti
on

 ti
m

e
in

 lo
g

sc
al

e
(S

ec
.)

Number of pixels (in millions)

DGX station - Log graph of computation time

CPU - Numpy single tread GPU - traditional kernel launch

GPU - Numba @jit (parallel=True) GPU - Proposed method NDVI

GPU - Proposed method LAI GPU - Proposed method MSAVI

GPU - Proposed method (Sum of NDVI, LAI, MSAVI) GPU - Proposed method (3 products same time)

0

0.5

1

1.5

2

2.5

3

 1000M 2000M 3000M 4000M 5000M 6000M 7000M 8000M 9000M 10000M 12000M

C
om

pu
ta

ti
on

 ti
m

e
in

 lo
g

sc
al

e
(S

ec
.)

Number of pixels

ThaiSC - Log graph of computation time

CPU - Numpy single thread CPU - Numba + Dask multi threads

GPU - traditional kernel launch GPU - Numba njit (parallel=True)

GPU - Proposed method (3 products same time)

(A)

(B)

8

Figure 3 DGX station and ThaiSC – Speed-UP Graph. (A) – DGX station, (B) – ThaiSC HPC.

When comparing the kernel function excluding data transfer time between the CPU and GPU, the time needed

for computing with GPU is more than 250 times faster than those with CPU. Practically, we must consider the
time required for sending data to the GPU for processing. Depending on the quantity of the data, this only
accelerates processes ten to twenty times faster than a CPU. However, the major drawback of the GPU process is
shown in Table 2. Most of the time, data transfer between host to devices and devices to host is required. Using
GPUs for data processing has this drawback because data transport may take longer time than direct computing.
It cannot reduce the total amount of data transferred from host to devices and devices to host. The time needed for
planning before submitting the data for processing also influences calculation time. The proposed method can
take longer time to plan if the data is not large enough. Planning may take longer time than sending the data for
processing.

Hence, calculating only one satellite index was ineffective. If the data has already been transferred to GPU,
the other satellite index should be calculated simultaneously to reduce the data transfer cost. Moreover, the first
execution of the CUDA process might suffer from CUDA overhead, as demonstrated in Figure 4. Thus, executing
multiple CUDA kernels over the same dataset will be more efficient.

0

2

4

6

8

10

12

14

16

 2M 4M 6M 8M 10M 20M 40M 60M 80M 100M 200M 400M 600M 800M
1000M 2000M 3000M

S
pe

ed
-U

P

Number of pixels (in millions)

DGX station - Speed-UP, CPU = 1

CPU - Numpy single tread GPU - traditional kernel launch

GPU - Numba @jit (parallel=True) GPU - Proposed method (Sum of NDVI, LAI, MSAVI)

GPU - Proposed method (3 products same time)

0

5

10

15

20

25

 1000M 2000M 3000M 4000M 5000M 6000M 7000M 8000M 9000M 10000M 12000M

S
pe

ed
-U

P

Number of pixels

ThaiSC - Speed-UP, CPU = 1

CPU - Numpy single thread CPU - Numba + Dask multi threads

GPU - traditional kernel launch GPU - Numba njit (parallel=True)

GPU - Proposed method (3 products same time)

(A)

(B)

9

Figure 4 Demonstration of CUDA overhead.

5. Conclusion

Numba has provided the automatic configuration for GPU parallel computing. It performs very well without
requiring any background knowledge of CUDA programming. However, Numba GPU computing might not
support some external functions and may cause execution failure. The proposed method has the benefit of
combining the traditional CUDA kernel function launch and the asynchronous GPU computing. In this way, it
can reduce running time compared to other techniques. Even though normalized satellite index equations were
not intensively computed and did not take any advantage of CUDA architectures like shared memory, the results
demonstrated that if the data is large enough, it is still worth transferring to GPU and processing it parallelly. The
complexity of mathematical computations and the not-too-small data size are suitable for computing with GPU
programming. If the data size was too small, it might not be worth using this method due to overhead from both
CUDA and concurrent. However, when both conditions are met, the kernel computation on GPU is up to 250
times faster than CPU process or, especially ten times faster if include data transfer time. Hence, complicated
algorithms and enormous data were suitably processed with GPU. In future work, we are planning to explore MPI.
MPI will be applied to handle multiple nodes in the cluster.

6. References

[1] Copernicus Sentinel-2 (processed by ESA). MSI Level-1C TOA Reflectance Product, Collection 0

[Internet]. European Space Agency; 2021 [cited 2022 May 15]. Available from: https://doi.org/
10.5270/S2_-d8we2fl.

[2] Townshend JRG, Goff TE, Tucker CJ. Multitemporal dimensionality of images of normalized difference
vegetation index at continental scales. IEEE Trans Geosci Remote Sens. 1985;GE-23(6):888-895.

[3] Gao BC. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from
space. Remote Sens Environ. 1996;58(3):257-266.

[4] Liang S, Wang J. Chapter 10 - Leaf area index. In: Liang S, Wang J, editors. Advanced Remote Sensing.
2nd ed. London: Academic Press; 2020. p. 405-445.

[5] Huete AR. A soil-adjusted vegetation index (SAVI). Remote Sens Environ. 1988;25(3):295-309.
[6] Juan W, Jianchao S. A new type of NDVI algorithm based on GPU dividing block technology. International

Conference on Computational and Information Sciences; 2013 Jun 21-23; Shiyang, China. USA: IEEE;
2013. p. 709-712.

[7] NVIDIA. CUDA toolkit, release: 10.2.89 [Internet]. NVIDIA Corporation; 2020 [cited 2022 May 15].
Available from: https://developer.nvidia.com/cuda-toolkit.

[8] Guerrouj FZ, Latif R, Saddik A. Evaluation of NDVI and NDWI parameters in CPU-GPU heterogeneous
platforms based CUDA. 5th International Conference on Cloud Computing and Artificial Intelligence:
Technologies and Applications (CloudTech); 2020 Nov 24-26; Marrakesh, Morocco. USA: IEEE; 2020.
p. 1-6.

[9] Zuo X, Qi T, Qiao B, Deng Z, Ge Q. Fast parallel extraction method of normalized vegetation index. 15th
International Conference on Computer Science & Education (ICCSE); 2020 Aug 18-22; Delft,
Netherlands. USA: IEEE; 2020. p. 433-437.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10
T

im
e

co
m

pu
ta

io
n

(s
ec

)

Number of iterations

Demonstration of CUDA overhead

Array size = 200 million pixels Array size = 400 million pixels

Array size = 600 million pixels Array size = 800 million pixels

Array size = 1000 million pixels

10

[10] Harris CR, Millman KJ, Van der walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array
programming with NumPy. Nature. 2020;585:357-362.

[11] Rocklin M. Dask: Parallel computation with blocked algorithms and task scheduling. Proceedings of the
14th Python in Science Conference; 2015 Jul 6-12; Austin, United States. p. 126-132.

[12] Crist J. Dask & Numba: Simple libraries for optimizing scientific python code. IEEE International
Conference on Big Data (Big Data); 2016 Dec 5-8; Washington, USA. USA: IEEE; 2016. p. 2342-2343.

[13] Lam SK, Pitrou A, Seibert S. Numba: A LLVM-based python JIT compiler. Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC; 2015 Nov 15; Austin, United States. New York:
ACM; 2015. p. 1-6.

[14] de Groot C. The Concurrent. Futures Library. New York: Apress; 2020.
[15] Bhangale UM, Durbha SS. Cloud detection in satellite imagery using graphics processing units. IEEE

International Geoscience and Remote Sensing Symposium - IGARSS; 2013 Jul 21-26; Melbourne,
Australia. USA: IEEE; 2013. p. 270-273.

[16] Zhao B, Liu M, Wu J, Liu X, Liu M, Wu L. Parallel computing for obtaining regional scale rice growth
conditions based on WOFOST and satellite images. IEEE Access. 2020;8:223675-223685.

[17] Watkinson N, Tai P, Nicolau A, Veidenbaum A. NumbaSummarizer: A python library for simplified
vectorization reports. IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW); 2020 May 18-22; New Orleans, USA. USA: IEEE; 2020. p. 1-7.

[18] Oden L. Lessons learned from comparing C-CUDA and Python-Numba for GPU-Computing. 28th
Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP); 2020
Mar 11-13; Västerås, Sweden. USA: IEEE; 2020. p. 216-223.

[19] ThaiSC – NSTDA Supercomputer Center [Internet]. 2022 [cited 2022 May 15]. Available from:
https://thaisc.io/en/mainpage/.

[20] Clarke L, Glendinning I, Hempel R. The MPI message passing interface standard. In: Decker KM,
Rehmann RM, editors. Programming Environments for Massively Parallel Distributed Systems. Basel:
Birkhäuser; 1994. p. 213-218.

[21] Sentinel Online. Sentinel-2 MSI User Guide [Internet]. 2022 [cited 2022 May 15]. Available from:
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi.

