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Abstract 
 
The world is currently facing the novel coronavirus 2019 (COVID-19). Thailand, with a high basic reproduction 
number (2.27), the situation remains serious as the disease spreads throughout the country. Applying various 
control measures to contain the outbreak has increased the need for policymakers to assess the scale of the 
epidemic. In this study, a logistic growth regression (LGR) model is implemented to characterize the trends and 
estimate the final size of the third wave of the epidemic in Thailand at both the provincial and national levels. 
The parameters of the LGR are fine-tuned through the genetic algorithm assisted by the Gauss-Newton 
algorithm (GA/GNA). The outbreak data from the previous two waves of infection is used to validate the model 
performance. As a result, the LGR-GA/GNA model provides goodness-of-fit with a low RMSE, high R2, and 
highly significant parameters. Furthermore, when compared to the LGR model parameterized by particle swarm 
optimization and ant colony optimization, the proposed model outperforms the rest. In addition, to verify the 
prediction performance by comparing with the Susceptible-Infectious-Recovered (SIR) model, the proposed 
model improves the prediction accuracy better than the other. As the work was completed on May 6, 2021, the 
study found a possible increasing trend of COVID-19 for some vulnerable provinces and the whole country and 
an estimated final and peak size of the epidemic and their occurrences. The study concluded that the epidemic 
size of the third wave of COVID-19 in Thailand was about 190,000 by mid-July 2021. 
 
Keywords: COVID-19, Logistic growth regression, Genetic algorithm, Gauss-Newton algorithm, Particle    
                    swarm optimization, Ant colony optimization, SIR model 
 
1. Introduction 

 
The COVID-19 (SARS-CoV-2) pandemic is very severe and life-threatening to the human race in the 21st 

century. For Thailand, the situation has worsened since the first case of infection was detected on January 12, 
2020. The virus’s spread seemed very slow for a while until the first super-spreader occurred, after which the 
infection rate peaked exponentially. The outbreak subsided by May 2020 after lockdown measures had been 
taken. In December 2020, the second wave of the outbreak occurred, which clustered primarily around large 
migrant worker communities, but the virus also spread to other provinces. After infections ended in March 2021, 
due to the restriction of those vulnerable areas, the situation worsened again with a new third wave of infections 
(April 1, 2021), which spread throughout the country. This spread was partially connected to bar patrons in 
Bangkok (the capital) and workers returning to their birthplaces during the traditional Thai New Year festival, 
causing COVID-19 infection cases to drastically increase to more than ten times as much as the same time in the 
previous year. Thailand currently tops the world rankings with a reproductive number of 2.27, meaning that a 
COVID-infected person transmits the infection to another 2.27 persons, whereas other places keep this rate low, 
including India (1.49), USA (1.08), and Brazil (1.10) (April 13, 2021) [1]. In at least 62 of Thailand’s 77 
provinces where COVID-19 is spreading, a number of patients with mild symptoms are being treated at the 
special field hospital to avoid hospitalization. However, in the absence of timely and accurate estimates of 
infected cases, provincial governors cannot provide sufficient facilities in advance. Health care providers may 
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make mistakes in resource planning. Therefore, in short-term and long-term planning to control infectious 
transmission, a predictive model must be used to determine the trajectory and the final size of the COVID-19 
epidemic, as well as the practical measures. Furthermore, it also helps the disease control authority 
systematically respond to a future surge in infections. However, this study is limited specifically to the context 
of Thailand.  

In the literature survey, the characteristics of the first two waves of the COVID-19 epidemic in Thailand 
were illustrated using a linear regression model that incorporated the ambient temperature [2]. However, the 
ambient temperature is very different throughout the country. In addition, deterministic-mechanistic models 
were applied in predicting the second wave of the epidemic [2-3]. In contrast, studies of predictive models in 
other countries are extensive and advanced in recent years. These include a mechanistic-based Susceptible-
Infectious-Recovered (SIR) model [4-6] and its derivatives, such as, the S-Exposed-IR (SEIR) model [7] and the 
SIR/Death (SIRD) model [8], and a statistics-based model, such as the multiple linear regression (MLR) [9], the 
nonlinear regression model using Bayesian approach [10] and the autoregressive integrated moving average 
(ARIMA) [11]. For a modern data-driven technique, the machine learning-based artificial intelligence approach 
has been increasingly used in the field of prediction, such as predicting the number of daily cases of COVID-19 
using a neural network (NN) model [12]. Additionally, the model-free methods, such as logistic growth 
function, hyperbolic tangent function, and Gaussian function, were proposed by employing curve fitting [13-14]. 

However, the SIR model and its variant are based on the strongly idealistic assumptions that the number of 
people always remains constant or the individuals that recover have immunity, which may not be valid and have 
not yet been proven in the case of COVID-19 epidemic. Further, the MLR and ARIMA approaches require 
multi-step prediction, i.e., prior investigation of the stationary of the data, data transformation, lagged 
identification, parameter estimation, selection of the best model, and diagnostic to check the correlation of 
residuals. Furthermore, the NN model requires a number of datasets to train the network, otherwise, an over-
fitting is likely to occur. To overcome the problem, a long-short-term-memory (LSTM) in the field of deep 
learning integrated the complete data of the SARS epidemic (in 2003) into the COVID-19 data in the training 
step [7]. However, SARS and COVID-19 are different, and the SARS data is not up to date. Therefore, machine 
learning to produce a COVID-19 predictive model, may be inaccurate and un-reliable [14]. 

Typically, the key to accurately predict an epidemic is parameter estimation of the model. There are various 
methods of parameter estimation used in COVID-19 epidemic models. The ordinary least squares method was 
used to evaluate the unknown parameters of the MLR models [9,15]. Gradient-based search methods include the 
Gauss-Newton algorithm (GNA) used to iteratively solve the parameters of the logistic growth regression 
(LGR) model [13], the Gompertz, the von Bertalanffy, and the cubic polynomial models [16]. Moreover, the 
Levenberg-Marquardt algorithm (LMA) combining the GNA, and gradient descent method was used to fit the 
nonlinear SIR model [4]. On the other hand, the non-gradient search method, for example, the Nelder-Mead 
(NM) simplex method was applied to estimate the parameters of the Gompertz model [17]. In addition, for 
global optimization using stochastic search, simulated annealing (SA) was employed to optimize the parameters 
of the SEIR model [18]. Furthermore, particle swarm optimization (PSO) - a bio-inspired computation is used to 
identify the parameters of the SIR and SEIR model [19-20]. 

In the early stages of the COVID-19 epidemic with existing in a short period, this work presents a simple but 
powerful predictive model based on LGR method. Moreover, genetic algorithm (GA) as a global search 
technique assisted by the GNA, a fast local convergence, is applied to fine-tune the LGR’s parameters for 
enhancing prediction performance. The proposed LGR-GA/GNR model is used to extrapolate the trends and 
estimate the epidemic size and cessation date of the ongoing third wave of the COVID-19 epidemic in Thailand 
at both provincial and national levels. To validate that the proposed model can be used as a predictor of the 
ongoing outbreak it is first conducted to project the trend in the first and second waves of the COVID-19 
epidemic that have passed their peak and completed their cycle. Moreover, this study also conducts a 
performance comparison of the parameter estimation between the GA and the two well-known population-based 
search methods, PSO and ant colony optimization (ACO). Furthermore, the performances of prediction of the 
proposed model are compared with those of the deterministic SIR model. In the test, 102 days of data (February 
9, 2020 - May 20, 2020) and 101 days of data (December 11, 2020 - March 31, 2021) of daily infected cases for 
the first and second waves of the epidemic, respectively, are divided into two parts of training/testing of 
different sliding windows each to formulate/validate the LGR model. On the other hand, the predicted target 
focuses on the ongoing third wave of the epidemic, for which 36 days (April 1, 2021 - May 6, 2021) of data for 
daily infected cases have been collected.  
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2. Materials and methods 
 
2.1 LGR model and GNA and GA Optimization  

 
In mathematical epidemiology, the logistic growth model is basically used to model the spread of disease, 

including COVID-19. A general logistic differential equation is expressed by.  
 

                               
ୢେ(୲)

ୢ୲
= RC(t) ቀ1 −

େ(୲)

୏
ቁ                                                               (1) 

 
where C(t) is the number of accumulative COVID-19 cases as a function of time t (in units of days), R is the 

logistic growth rate or infection rate, and K is called carrying capacity, or final epidemic size. 
 
In fact, Equation (1) is a Bernoulli equaion which yields the logistic function solution as follows: 
 

                               C(t) =
୏

ଵା୅ ୣ୶୮(ିୖ୲)
                   (2) 

 

where A =
୏ିେ(଴)

େ(଴)
 is a constant, and C(0) is the initial number of cases.  

 
In general, the logistic function (S-curve) is exponential increasing rapidly for some initial number of times, 

but the growth decreases slowly to a certain limit below the horizontal asymptote when it passed the turning 
point (ln (A)/R, K/2) or the peak of the pandemic. This function is used to directly model the patient’s 
cumulative cases. Equation (2) can be expressed in LGR form as follows: 

 
                               C(t) = C෠(t; θ) + ε(t)                                     (3) 
 

where C෠(t; θ) is the logistic growth model, where  = {K, R, A} is the set of parameters, and (t) is the 
residuals assumed to be independent and identically distributed random variables.  

In this work, the  is estimated by two different methods, one is a gradient-based NLS method of GNA-a 
classical iterative technique by minimizing the sum of the residual squares, Equation (4), and the other is the 
evolutionary search-based GA as a gradient-free method by maximizing the fitness function, Equation (5). 

 

                                2ˆ( ) min ( ) ( : )tJ C t C t 


                                (4) 
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                                                                               (5) 

 
where t =1, 2, …, m  3, m is a sampling size, and  denotes the rounding up to a positive integer. The 

second and third terms of the denominator in Equation (5) are weighted residuals that occur at the flattening and 
nonlinear high slope portions of the logistic function. 

For the GNA, the minimum value of J occurs when the gradient J/j = 0, where j =1, 2, and 3. Since the 
gradients depend on both the independent variable t and the parameter, so there is no closed-form solution. 
Instead, the parameters are solved iteratively by successive approximation. 

 
                               θ୩ାଵ = θ୩ + (Δθ)୩              (6) 
 

where,  = [K, A, R] T is the shift vector, k =1, 2, …, 𝑚𝑖𝑛{k|Δθౠ|ழδౠ,∀୨, k୫ୟ୶} where j is the tolerance 

of the |j|, k is the iteration number, and kmax is the maximum iteration. 
By linearization, the nonlinear model C෠(t; θ) can be approximated to linear form using a first-order Taylor 

polynomial expansion in the neighborhood of k with the first-order term as follows: 
 

    C෢ (t୧; θ) ≈ C෠(t୧, θ୩) +
பେ෡(୲౟,θౡ)

ப୏
(K୩ାଵ − K୩) +

பେ෡(୲౟,θౡ)

ப୅
(A୩ାଵ − A୩) +

பେ෡(୲౟,θౡ)

பୖ
(R୩ାଵ − R୩)                            (7) 

 
From Equation (3), ε(t୧) = C(t୧) − C෠(t୧; θ୩) is substituted into Equation (7), rearranging to 

 



4 
 

              
பେ෡(୲౟,θౡ)

ப୏
(ΔK୩) +

பେ෡(୲౟,θౡ)

ப୅
(ΔA୩) +

பେ෡(୲౟,θౡ)

பୖ
(ΔR୩) = ε(t୧)                          (8) 

The m-linear equation system can be expressed as matrix form by. 
 

                                           J(Δθ) = ε         (9) 

where J = ቎
∂C෠(tଵ, θ୩)/ ∂K ∂C෠(tଵ, θ୩)/ ∂A ∂C෠(tଵ, θ୩)/ ∂R

⋮ ⋮ ⋮
∂C෠(t୫, θ୩)/ ∂K ∂C෠(t୫, θ୩)/ ∂K ∂C෠(t୫, θ୩)/ ∂K

቏ is the Jacobian matrix, and ε =

[ε(1)ε(2). . . ε(m)]୘is the error vector and T denotes the vector or matrix transpose. 
 

After a square matrix J is formed,  is solved as follows. 
 

                                        Δθ = (J୘J)ିଵJ୘ε                     (10) 
 

Therefore, the solution of Equation (4) is obtained. It is noted that the iterations fail when the matrix JTJ 
becomes a singular matrix. Besides, if ||k|| is very large, Equation (10) is not a good approximation, and 
convergence is not guaranteed. Moreover, the different initial parameters may lead to different solutions, not all 
of which correspond to the global minimum. Furthermore, due to many multiple minimums of J, so the poor 
initial guesses may lead to the solution trap in a local minimum, resulting in a poor model fit. 

To overcome the problem,  is alternatively fine-tuned by the GA– an optimization and a stochastic global 
search technique under the principles of genetics and natural selection (John Holland, 1975). In the parameter 
estimation procedure using GA (Figure 1), the initial chromosomes of Nc individuals representing the solutions 
composed of the parameters (genes) K, A, and R, including some genetic operators, e.g., crossover rate (Pc) and 
mutation rate (Pm), for comprehensive optimization, are randomly generated first. Moreover, the solution 
obtained from the NLS method is included in the chromosome pool as a candidate to accelerate the convergence 
of GA. Each gene is encoded into a binary string with the total number of bits (Nbit), which depends on the 
desired accuracy at the precision level of each parameter () and transformed into the universe of discourse 
(UOD) containing the solutions. Let the UOD of the  is [LK, UK], [LA, UA], and [LR, UR], respectively, and of 
the genetic operator, Pc and Pm is [LPc, UPc], and [LPm, UPm], respectively, then Nbit is determined by. 

 

Nୠ୧୲ = ∑ ቀNୠ୧୲,θ౟
ቁଷ

୧ୀଵ + Nୠ୧୲,୔ౙ
+ Nୠ୧୲,୔ౣ

= ∑ ൬඄logଶ ൬
୙θ౟

ି୐θ౟

σθ౟

൰ඈ൰ଷ
୧ୀଵ + ඄logଶ ൬

୙ౌౙି୐ౌౙ

σౌౙ

൰ඈ + ඄logଶ ൬
୙ౌౣି୐ౌౣ

σౌౣ

൰ඈ                     (11) 

 
where Nୠ୧୲,θ౟

, Nୠ୧୲,୔ౙ
, and Nୠ୧୲,୔ౣ

are the number of bits of , Pc, and Pm, respectively, and the binary value 

(BG,i) of each gene is converted to the decimal value (DG,i) of each gene by the linear mapping of 
 

                                             Dୋ,୧ = L୧ +
(୙౟ି୐౟)

ଶ
ొౘ౟౪,౟ିଵ

× Bୋ,୧                   (12) 

 
 
 
 
 
 
 
 
 
 
Figure 1 Block diagram of the GA assisted with GNA used for the parameter estimation of the LGR model. 
 

The UOD is thus divided into finite pieces. The performance of the individual chromosome in the current 
population is evaluated using F in Equation (5) for predicting C෠(t; θ), thus the chromosomes that have high 
fitness scores are given higher ranks. Some of them are retained Melit% using the elitism strategy, while the rest 
are selected by the roulette wheel method to the reproduction step for generating the new offspring. Two types 
of reproduction in this work are crossover and mutation. In a crossover, a selected parent chromosome in the 
current generation exchanges genes and recombines them in the next generation to produce the new offspring, 
which are expected to a better performance than their parents. They change some information by crossover with 
Pc. The C-point on the chromosome string is chosen randomly to crossover. Besides, the mutation mutates the 
chromosomes with Pm. A small random change in the chromosome (e.g., converting the binary code from “0” to 
“1” and vice versa) providing a new offspring can help the solution to get out of the trap of local minima. The 
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M-point on the chromosome string to the mutation is randomly selected. Then, the earlier chromosomes are 
replaced by the new offspring. The process of GA is then repeated until the maximum generation (Genmax) is 
reached.    
 
2.2 PSO and ACO for parameters of LGR model 
 

The particle swarm optimization (PSO) and the ant colony optimization (ACO), the other well-known 
population-based search techniques in the field of nature-inspired stochastic and evolutionary optimization 
algorithms, are applied to estimate the parameters of the LGR model, named LGR-PSO and LGR-ACO, in 
comparing their prediction performances with those of the proposed LGR-GA/GNA. 

The PSO (1995) [21] is inspired by the movement and intelligence of the swarms in nature, such as insects, 
birds, and fish, in their behaviors of preying, searching food, or tracking the route to reduce total searching time. 
In the PSO, Figure 2A, a swarm of P particles (solutions) flies over the search space in N-dimension to locate a 
global optimum. All of the particles have the fitness values evaluated from the objective function (f) to be 
optimized and also velocities that direct their movement to follow the current best particle. Their initial position 
vectors X  RN composed of the candidate parameters are randomly generated. To minimize f(Xp(i)) of the pth 

particle, p = 0, 1, …, P, at the ith iteration, f(Xp(0)) is evaluated, such that the initial personal best position, 
Pbest,p(0) = Xp(0), whereas the initial global best position Gbest(0) is obtained from one having Min(f(Xp(0)), ).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Block diagram of the PSO (A) and ACO with each parameter vector of K, R, and A composed of the 
maximum number of Maxnode nodes (B) used for the parameter estimation of the LGR model. 
 

In the beginning, they are moving, so the vector of velocity V  RN is 0. During the procedure, they 
communicate with one another and learn to move their current positions (Xp(i)) toward both the personal best 
position (Pbest,p(i -1)) obtained from the personally highest fitness value and the global best position (Gbest(i - 1)) 
obtained from the overall highest fitness value. Therefore, the velocity is updated by. 

 
                    V୮(i + 1) = δ୲ωV୮(i + 1) + cଵuଵ

୘(Pୠୣୱ୲,୮(i) − X୮(i)) + cଶuଶ
୘(Gୠୣୱ୲(i) − X୮(i))  (13) 

 
So, the new position is updated by. 

 
                     X୮(i + 1) = X୮(i) + V୮(i + 1)                     (14) 
 

where  is the inertia weight parameter,  is the damping ratio, c1 and c2 are the personal and social 
acceleration coefficients, and {u1, u2}  RN are the vectors of random number uniformly distributed between 0 
and 1.  
 

In addition, the velocities are bounded by Vp,max. If Vp > Vp,max and Vp < -Vp,max, then Vp = Vp,max and Vp = -
Vp,max, respectively. Also, the positions are bounded by Xp.min and Xp,max. The procedure is repeated until met the 
maximum iteration (I). For the LGR-PSO model with 3-dimension search space of  ={K, R, A}, Xp(i) = p(i) 
= [Kp, Rp, Ap]T, Pbest,p(i) = pbest,p(i)=[Kpbest,p , Rpbest,p, Apbest,p]T, Gbest(i)= gbest(i) = [Kgbest, Rgbest, Agbest]T, 
V୮,୫ୟ୶ = [V୮,୫ୟ୶

୏ , V୮,୫ୟ୶
ୖ , V୮,୫ୟ୶

୅ ]୘, X୮,୫୧୬ = [X୮,୫୧୬
୏ , X୮,୫୧୬

ୖ , X୮,୫୧୬
୅ ]୘, and X୮,୫ୟ୶ = [X୮,୫ୟ୶

୏ , X୮,୫ୟ୶
ୖ , X୮,୫ୟ୶

୅ ]୘.  

The fitness function of the LGR-PSO is J(), Equation (4). On the other hand, the ACO algorithm [22] is 
another nature-inspired method based on the cooperative behavior of real ant colonies for searching the shortest 
path of the round-trip nest to the best quality food. The pheromone used in ant communication left from the ants 
to the paths guides the others toward the target point, and it evaporates gradually with time. The higher level of 

(A) (B) 
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(20)

pheromone the less travel time means those paths have a chance to be chosen. The ACO has successfully 
applied to the routing and load balancing problems as a graphical problem by means of finding the shortest path 
between points in a graph, e.g., traveling salesman problem (TSP), vehicle routing, and scheduling. It is rarely 
used in the parameter estimation problem. 

For minimizing J(), Equation (4), to estimate the parameters of the LGR model (K, R, and A), the pattern of 
path linking the nodes (parameters) constructed by the artificial ants, which is represented as the set of solution, 
is considered instead of its total distance of tour, Figure 2B. In step 1, all the values of parameters Ki, Rii, and 
Aiii (i, ii, iii = 1, 2, Maxnode) divided equally within the UOD of the  into three different vectors (Equation 15) 
are set as the nodes where the ants have to pass once a vector. So, there are different paths corresponding to the 
combinations of the number of Maxnode

 nodes of each parameter vector of K, R, and A. 
 

                                    [KRA] = [L୏LୖL୅] +
[୙ే୙౎୙ఽ]ି[୐ే୐౎୐ఽ]

୑ୟ୶౤౥ౚ౛ିଵ
                   (15) 

 
Given NAnt-ant during the search, in step 2, each kth ant constructs a tour from the selected ith, iith, and iiith 

nodes using the roulette wheel method, which is biased based on the deposited pheromones (phe) contained in 
the nodes. In the beginning, the initial pheromone is assigned to all nodes equally. In step 3, at the jth iteration, 
the cost function J is evaluated through these nodes and used to locally update the pheromone, which can be 
expressed by 

 

                 (phe୏౟
, pheୖ౟౟

, phe୅౟౟౟
)୨

୐୭ୡୟ୪ ← (phe୏౟
, pheୖ౟౟

, phe୅౟౟౟
)୨ିଵ

୩ +
βశ

୎ౠషభ
ౡ ϕ                (16) 

 
After completing a tour and locally updating, in step 4, the best tour (the minimum of J, Jmin) and the worst 

tour (the maximum of J, Jmax) are used to update globally the pheromone by ()Best and ()Worst for increasing 
and decreasing the chance of selecting these nodes in the next iteration, respectively, which can be expressed by 

 

(phe୏౟
, pheୖ౟౟

, phe୅౟౟౟
)୨

ୋ୪୭ୠୟ୪ ← ൫(phe୏౟
, pheୖ౟౟

, phe୅౟౟౟
)୨

୐୭ୡୟ୪൯
λ

+ (Δϕ)୆ୣୱ୲ + (Δϕ)୛୭୰ୱ୲               (17) 
 

where 
 

                 (Δϕ)୆ୣୱ୲ = (Δphe୏౟
, Δpheୖ౟౟

, Δphe୅౟౟౟
)୆ୣୱ୲ =

βష

୎ౣ౟౤ ϕ,                  (18) 

 

                  (Δϕ)୛୭୰ୱ୲ = (Δphe୏౟
, Δpheୖ౟౟

, Δphe୅౟౟౟
)୛୭୰ୱ୲ =

βష

୎ౠషభ
ౣ౗౮ ϕ,                 (19) 

 
and  is the weight of pheromone vector, β+ and β- are the positive and negative pheromone constants, 

respectively. 
Besides, the pheromone evaporation parameter () helps the ACO forget the past tour and the accumulation 

of the pheromones, so the ants can make a new tour means getting out the local trapped solutions. The procedure 
with the same ant colony is repeated until meeting the maximum number of tours (Maxtour). 
 
2.3 SIR model 

 
To evaluate the prediction performances of the proposed model, the standard SIR model [4-6], as a classical 

epidemiological model, is used as the baseline model. Both LGR and SIR models require less data and hence 
can be quickly put to use in time. The SIR model divides the population of size N into three classes, named 
susceptible people (S), infected people (I), and removed people (R). This basic compartmental framework, 

i.e.,S(t)
 β 
ሱ⎯⎯ሮ I(t)

 γ 
ሱ⎯⎯ሮ R(t), can be expressed by the differential equation as, 

 

                                            
ୢୗ

ୢ୲
= −

ஒ୍ୗ

୒
 

dI

dt
=

βIS

N
− γI 

                                                                                          dR/dt = γI       
 

where t is time, β is the contact rate,  is the recovery rate, with the initial conditions of S(0) = S0, I(0) = I0, 
and R(0) = 0 and under the assumption of closed population, i.e., N = S(t) + I(t) + R(t). 
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Due to the nonlinear forms (20), the solutions cannot be solved explicitly. The analytical solution of S(t) 
with I(t), whereas R(t) = N – S(t) – I(t), is obtained easily by solving the first two equations of (20) as follows. 

 
                                              I(t) = R଴ ln(S଴/S(t)) − S(t) + N                                  (21) 

where R0 = β/ is the reproduction number. 
 

Alternatively, the numerical method is applied for solving (20) while the model parameters β,  and initial 
value S0 are estimated from the cumulative cases data by minimizing the objective function, 

 
                     f(β, γ, S଴) = ฮC୲ − C෠ ୲(β, γ, S଴)ฮ

ଶ
                                              (22) 

 
where C෠୲(β, γ, S଴) = I(β, γ, S଴) + R(β, γ, S଴) ||||2 is the Euclidean norm, and I(0) = C1.  

 
2.4 Data and data processing  

 
The number of confirmed cases of COVID-19 data is retrieved from the Department of Disease Control of 

Thailand (DDCT), covering two waves and part of the third wave of the epidemic, from the first detected patient 
in Thailand on January 12, 2020, to the last recorded data on May 6, 2021. It is noted that the data provided 
online by WHO website did not match the official data reported by the DDCT, with time shift and wrong 
quantity, as shown in Figure 3. Since the predictive model is driven by data, its prediction is only as good as the 
data are. To obtain an accurate and reliable predictive model, the correctness of the data is crucial. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 3 Incorrect data of the daily infected cases of the first-third waves of the COVID-19 epidemic in 
Thailand provided by WHO against the official reported data from the DDC of Thailand, leading inaccurate 
prediction. 
 

The data from the first two waves of the COVID-19 epidemic are used to validate the performances of the 
LGR model to infer that it can be generalized as an extrapolation for predicting the trend of the third wave 
(launched April 1, 2021), which is ongoing at the time of writing paper. For the first and second waves, the 
models are trained by 102 samples (February 9 - May 20, 2020) and 111 samples (December 11, 2020 - March 
31, 2021), respectively. The daily cases data are cumulatively summed and divided into two parts, i.e., training 
and test data, of 9 different sliding window: 10/92, 20/82, 30/82, 35/67, 40/62, 45/57, 50/65, 60/62, and 80/22 
for the first wave, and 10/101, 15/196, 20/91, 25/86, 30/81, 35/76, 45/66, 60/51, and 80/31 for the second wave. 
For modeling the LGR models during the ongoing third waves (April 1, 2021 - May 6, 2021) at both national 
and provincial levels, such as Bangkok (BKK, the capital), Chiang Mai (CM, the tourism city in the north), 
Chonburi (CBI, the tourism city in the east) and Samut Prakan (SPK, where a large number of migrant workers 
live), the sliding windows of training/test data are 10/26, 20/16, and 30/6. 
 
2.5 Criteria of the goodness-of-fit  

 
Due to the assumption of normal distribution of the error, the goodness-of-fit can be evaluated using the 

standard metrics, such as the coefficient of determination (R2), and the root mean square error (RMSE),  
 

                                                    Rଶ =
∑ ൫େ෡(୲;θ)൯

మ
౪

∑ (େ(୲))మ
౪

                    (23) 
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                                                  RMSE = ට
ଵ

୒౓
∑ ൫C(t) − C෠(t; θ൯

ଶ୒౓
୲ୀଵ                   (24) 

 
For the significance of the fitted parameters of the LGR model, the t-statistic and its p-value are used to 

make a conclusion in a significance test at the 95% confidence interval (CI) or significance threshold () of 
0.05.  
 
3. Results and discussion 
 

The results of parameter estimation and the comparison of prediction performances between the proposed 
LGR-GA/GNA, the LGR-PSO, and the LGR-ACO for the first and second waves of the COVID-19 epidemic in 
Thailand at provincial and national levels are presented in this section. Additionally, the prediction 
performances between the proposed model and the SIR model for those waves and the ongoing third wave of 
the COVID-19 epidemic are examined. 

The predictive LGR models with the parameter estimation methods (i.e., GNA and GA, including PSO and 
ACO) are implemented using our writing source code run on the Matlab software package. To solve the 
differential equations in (20) and estimating the parameters in (22) of the SIR model, Matlab’s built-in ode45 
and fminsearch functions are used, respectively. 

The selected parameters and their setting values of the GNA are as follows, the maximum iteration (kmax) =
 20 and the tolerance of |K|, |A|, and |R| = 200, 100, and 0.02, respectively, and those of the GA are given in 
Table 2. Whereas the two major genetic operators (Pc and Pm) are fine-tuned simultaneously with the LGR’s 
parameters (K, R, and A) to improve the performance of the GA. There are various types of crossover and 
mutation, but no theoretical proof to guarantee which one of them is the best for different optimization 
problems. However, the one-point, multiple-point, and uniform crossovers and mutations are frequently used 
and simple methods. In this work, through the base run on different test data by controlling the other GA 
parameters, the two-point crossover (i.e., the random segment of information of selected parents’ chromosomes 
is exchanged to produce two unique offspring individuals), and the one-point mutation (i.e., flip the binary bit at 
the random position in the selected chromosomes) are the best combinations providing averagely high fitness 
value among others. The parameters of the PSO and ACO, including their selected parameters obtained from the 
factorial design, are shown in Table 3. 

The estimated parameters, the goodness-of-fit performances, and significance tests of the LGR-GA/GNA 
model for the first and second waves of the COVID-19 epidemic are shown in Table 4, while the predictions of 
the basic measures are shown in Table 5.  
 
Table 2 GA parameters and relevant parameters with their descriptions and setting values for fine-tuning the 
LGR’s parameters (K, R, and A), simultaneously with some GA’s parameters themselves, i.e., Pc and Pm.  
Parameters Descriptions and setting values Fine-tuning 

interval 
1) The number of chromosomes (Nc+1) and genes 10 and 5 - 
2) The total number of binary bit (Nbit) 
     (Nbit,K+ Nbit,A + Nbit,R + Nbit,Pc + Nbit,Pm) 

44 (11+10+7+7+9) - 

3) The number of elitism chromosomes (Melit%) 10% - 
4) The precision level (K, A, R, Pc, and Pm) 100, 50, 0.01, 0.005, and 0.001 - 
5) Maximum generation (Genmax) 1000 - 
6) The UOD: [LK, UK], [LA, UA],  
    [LR, UR], [LPc, UPc], and [LPm, UPm] 

[1000, 200000], [10, 40000],  
[0.001, 1], [0.1, 0.9], and [0.001, 0.5] 

- 

7) Type of crossover and crossover rate (PC) Two-point crossover 0.1-0.9 
8) Type of mutation and mutation rate (Pm) One-point mutation 0.001-0.5 

 
Table 3 The parameters and their setting values of the PSO and ACO for estimating the LGR’s parameters. 
PSO  ACO 
Parameters Setting 

values 
 Parameters Setting 

values 
1) The number of particles (P) 20  1) The number of artificial ants (NAnt) 20 
2) Inertia weight () 1.0  2) Weighted pheromone (phe) 0.06 
3) Damping ratio () 0.99  3) Pheromone evaporation parameter ()  0.95 
4) Personal and social acceleration      
    coefficients (c1 and c2) 

2  4) Positive and negative pheromone 
    constants (β+ and β-) 

0.2 & 0.3 

5) The number of maximum iterations (I) 2000  5) The maximum number of tours (Maxtour) 2000 
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Table 4 The results of the estimated parameters (K, R, and A) of the LGR model using the GA/GNA method for 
the 9-sliding windows of training/test samples and the performances of the fitted model (RMSE and R2) for the 
first and second waves of the COVID-19 epidemic in Thailand at the national level. 

 
In Table 3, it can be seen that there are large confidence intervals of the parameters at the early stage of the 

first wave of the COVID-19 epidemic means less knowledge about the context of infection, causing high 
uncertainty in the prediction. In this infection wave, three weeks of data after the outbreak is sufficient for the 
proposed model to gain a more accurate prediction. Moreover, the high RMSE and low R2 criteria on the test 
data show poor performance in the early phase due to the difference between the portions of curves in the 
training that are smooth and those in the test that are sharp with high nonlinearity (Figure 4). Moreover, the R2 
criterion of the test data seems to be inconsistent, reflecting the real predictions. In the significance tests for the 
parameters of the LGR models, the p-values are all less than 0.05, demonstrating an acceptable prediction. For 
the second wave of the COVID-19 epidemic, the confidence intervals of the parameters, including the error 
measures, fluctuate due to several spikes in daily confirmed cases data (Figure 3) that appeared to be different 
and not consistent. The spikes in infection caused by the clusters of migrant workers in the overcrowded 
communities and abrupt restriction and quarantine measures limit the performance of the proposed LGR models. 

In Table 4, for the first wave, it can be seen that the dates of occurrence of the maximum cases, the cessation 
date, the maximum number of cases, and the number of final sizes obtained from the proposed LGR models 
vary from 18-21 March 2020, from 18-27 April 2020, between 130-200, and between 3,000-3,100, respectively, 
which are close to the observed data. In contrast, those of the second wave with several spikes have a wide 
variation and are not close to the observed data. It should be mentioned that the proposed model cannot well 
characterize the growth function of the COVID-19 epidemic with the infection spikes. However, it is expected 
that there are no such spikes in the third wave of infection as less stringent measures are taken at this stage. 
Therefore, from the prediction results with less RMSE and high R2 of the first wave of the epidemic, it can be 
inferred that the proposed LGR-GA/GNA models can be used to predict the trend in the third wave of the 
COVID-19 epidemic. 

The prediction results of the number of cumulative cases for the first and second waves of the COVID-19 
epidemic between the LGR-GNA and LGR-GA/GNA models are compared with the observed data (Figure 4) 
for all nine sliding windows of training/test data. It is seen that the proposed LGR-GA/GNA tracks the trends 
and provides a more accurate final size of infected case than the other. However, in the second wave with 
multiple infection spikes, both models underestimate the final size of the epidemic. In addition, the prediction 
results of the daily cases (Figure 5), which are obtained from Equation (1), demonstrated that the LGR models 
suit well in tracking the trends of the epidemic with one spike in the infection cycle. 

For the third wave of the COVID-19 epidemic, the parameter estimation results, the error measures based on 
RMSE and R2 criteria, and the prediction results of the basic measures (the date when maximum cases occurred, 
the maximum number of cases, the cessation date, and the final size, parameter K) obtained from the proposed 
LGR-GA/GNA models for the four most vulnerable provinces (BKK, CM, CBI, and SPK) and the whole 
country are shown in Table 6. The results of in-sample and out-of-sample predictions for each sliding window 
are shown in Figure 6. The additional results of the prediction trends of the daily cases of infection are shown in 
Figure 7. The prediction results of the total number of cases with the estimated cessation date of all three waves 
of the epidemic in Thailand at the national level using the last training sliding window are summarized in Table 
7. 

Phase Training/ 
Test  
samples 

Parameters (95% of CI) t-stat 
(p-
value) 

RMSE R2 
K 
(Final size) 

R 
(Infected rate) 

A Train Test Train Test 

First wave 
(Feb 9,2020 
- May 20,2020) 

10/92   3,609.45 (979) 0.33 (0.15) 11,862.14 (2,694) <0.05     1.03  1,113.17 0.88 0.78 
20/82   3,233.62 (419) 0.17 (0.077)   4,209.33 (1,800) <0.05     2.06     468.60 0.89 0.90 
30/72   3,073.02 (208) 0.27 (0.026)   3,4901.11 (1,408) <0.05     5.16     313.86 1.00 0.93 
35/67   3,141.94 (127) 0.28 (0.036)   3,6115.42 (940) <0.05   18.40     388.29 0.99 0.88 
40/62   3,069.49 (74) 0.21 (0.030)   4,370.64 (578) <0.05   43.22     224.19 0.99 0.92 
45/57   3,063.17 (64) 0.19 (0.042)   1,914.11 (376) <0.05   54.33     176.98 0.99 0.93 
50/52   3,012.17 (80) 0.17 (0.022)   1,061.29 (70) <0.05   70.94     113.99 0.99 0.94 
60/42   3,004.48 (63) 0.16 (0.018)      681.68 (42) <0.05   90.78       65.68 0.99 0.98 
80/22   3,003.69 (53) 0.17 (0.019)      852.65 (21) <0.05   90.99       47.40 1.00 0.90 

Second wave 
(Dec 11,2020 
-Mar 31,2021) 

10/101 19,789.03 (1,421) 0.24 (0.14)      143.77 (108) <0.05 309.97   6,070.73 0.89 0.50 
15/96   6,016.68 (888) 0.27 (0.16)        81.93 (53) <0.05 294.62 12,740.48 0.85 0.35 
20/91 16,237.27 (942) 0.13 (0.09)        59.38 (33.3) <0.05 323.95   5,043.23 0.90 0.80 
25/86 16,471.60 (999) 0.12 (0.05)        42.28 (36) <0.05 337.25   4,963.53 0.97 0.86 
30/81 20,213.57 (887) 0.10 (0.012)        42.45 (22.1) <0.05 379.53   2,498.59 0.98 0.95 
35/76   8,768.25 (638) 0.14 (0.022)        27.25 (7.61) <0.05 317.96 11,792.06 0.99 0.78 
45/66 21,515.06 (475) 0.07 (0.014)        24.51 (6.26) <0.05 703.69   2,332.02 0.96 0.93 
60/51 33,846.30 (334) 0.07 (0.010)        42.63 (6.14) <0.05 764.55   7,386.76 0.98 0.86 
80/31 23,554.64 (113) 0.09 (0.010)        40.91 (3.7) <0.05 911.52      773.03 0.99 0.83 
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Table 5 The prediction results of the basic measures obtained from the proposed LGR-GA/GNA models for all 
nine sliding windows of training/test compared with the actual data for the first and second waves of the 
COVID-19 epidemic in Thailand at the national level. 

 
 
 
 
 
 
 
 
 
 
 
Figure 4 Comparison the prediction results including the final size of epidemic between the LGR-GNA and 
LGR-GNA/GA models against the observed data (black dotted-line) for all nine sliding windows of training/test 
samples of (A-B) first and (C-D) second waves of the COVID-19 epidemic in Thailand at the national levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 The best-fit prediction curves of the daily cases obtained from the LGR-GA/GNA model, against the 
observed data for all nine sliding windows of training/test of (A) first (Feb 9- May 20, 2020) and (B) second 
(Dec 11- Mar 31, 2021) waves of the COVID-19 epidemic in Thailand at the national level. 
 
 
 
 
 
 

Date Training/Test samples 
(Window size) 

Prediction results 
Date at maximum 
cases (lnA)/r 

Maximum daily 
cases (K/2) 

Ending  
date 

       Final size 

First wave 
(Feb 9,2020 -May 20, 2020) 

10 (Feb 9-19)/92 Mar 8 296 Apr 20   3,609.45 (8,979) 
20 (Feb 9-29)/82 Mar 29 137 May 3   3,233.62 (4,119) 
30 (Feb 9-Mar 10)/72 Mar 18 205 Apr 16   3,073.02 (2,098) 
35 (Feb 9-Mar 15)/67 Mar 17 219 Apr 11   3,141.94 (1,427) 
40 (Feb 9-Mar 20)/62 Mar 20 161 Apr 18   3,069.49 (704) 
45 (Feb 9-Mar 25)/57 Mar 20 143 Apr 20   3,063.17 (640) 
50 (Feb 9-Mar 30)/52 Mar 21 136 Apr 25   3,012.17 (280) 
60 (Feb 9-Apr 9)/42 Mar 21 120 Apr 27   3,004.48 (123) 
80 (Feb 9-Apr 29)/22 Mar 20 127 Apr 26   3,003.69 (53) 

Actual observations Mar 22 188 May 4   2,966 
Second wave 
(Dec 11, 2020 – Mar 31, 2021) 

10 (Dec 11-21)/101 Jan 1 1186 Jan 28 19,789.03 (10,421) 
15 (Dec 11-26)/96 Dec 27   405 Jan 19   6,016.68 (6,888) 
20 (Dec 11-31)/91 Jan 11   527 Feb 28 16,237.27 (2,742) 
25 (Dec 11-Jan 5)/86 Jan 12   493 Feb 27 16,471.60 (1,999) 
30 (Dec 11-Jan 10)/81 Jan 17   505 Mar 21 20,213.57 (1,287) 
35 (Dec 11-Jan 15)/76 Jan 4   306 Feb 13   8,768.25 (1,238) 
45 (Dec 11-Jan 25)/66 Jan 26   376 Apr 5 21,515.06 (725) 
60 (Dec 11-Feb 9)/51 Feb 2   592 Mar 29 33,846.30 (334) 
80 (Dec 11-Mar1)/31 Jan 22   530 Mar 26 23,554.64 (113) 

Actual observations Jan 25   959 Mar 31 25,000 
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Table 6 The results of the estimated parameters (K, R, and A) of the proposed LGR-GA/GNA model and the 
performances of the fitted model (RMSE and R2), including the prediction results for the 3-sliding windows of 
training samples during the ongoing third wave of the COVID-19 epidemic in Thailand both the provincial and 
national levels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 The output of best-fit curves of the cumulative infected cases from the proposed LGR-GA/GNA model 
for (A) the in-sample and out-of-sample tests using the (B-D) 10,20 and 30-sliding windows of training samples 
for the ongoing third wave of the COVID-19 epidemic in Thailand both provincial and national levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Level 
Provincial 

Training  
samples 
(date) 

Parameters  RMSE R2 Prediction results 
      K   R             A Train Test Train Test Date at Max.  

cases 
Max.daily 
cases 

Ending  
date 

BKK Apr,1-10   33,030 0.352        917.95 61.45 23,894 0.975 0.464 Apr,19 2,894 Apr,28 
Apr,1-20   20,873 0.158          94.08 198.50 10,141 0.983 0.031 Apr,29    824 May,26 
Apr,1-30   34,833 0.143        125.92 349.70 16,585 0.992 0.112 May,4 1,245 Jun,28 

CM Apr,1-10     3,462 0.990      384,230 10.60 816.4 0.976 0.284 Apr,13    857 Apr,22 
Apr,1-20     3,539 0.297        148.41 155.10 150.4 0.980 0.506 Apr,17    263 May,11 
Apr,1-30     4,005 0.208          52.45 255.50 169.8 0.979 0.798 Apr,19    208 May,28 

CBI Apr,1-10     7,919 0.567      8563.40 9.39 6,630.5 0.986 0.020 Apr,16 1,122 Apr,14 
Apr,1-20     6,103 0.192        132.87 96.81 3,856 0.963 0.020 Apr,25    292 May,10 
Apr,1-30     5,314 0.128          47.24 164.70 3,133.6 0.958 0.082 Apr,30    170 Jun, 23 

SPK Apr,1-10   19,685 0.437     7,148.60 4.785 14,308 0.996 0.596 Apr,20 2,141 Apr,24 
Apr,1-20   13,770 0.142        276.49 59.84 2,774.9 0.948 0.723 May,10    488 Jun,8 
Apr,1-30   10,219 0.107        125.14 69.00 2,192.9 0.982 0.168 May,15    275 Jun, 28 

National Apr,1-10 108,970 0.350        1,241.30 62.13 76,333 0.998 0.531 Apr,20 9,502 May,2 
Apr,1-20 157,930 0.178        270.45 809.49 66,243 0.985 0.043 May,1 7,016 Jun,6 
Apr,1-30 158,760 0.113          90.65 2,001 841.0 0.986 0.134 May,10 4,209 Jul,15 
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Figure 7 The output of best-fit curves of the daily infected cases from the proposed LGR-GA/GNA model for 
the in-sample and out-of-sample tests using the 3-sliding windows of training samples for the ongoing third 
wave of the COVID-19 epidemic in Thailand both provincials; (A) Bangkok, (B) Chiang Mai, (C) Chonburi, 
(D) Samut Prakan, and (E) national levels. 
 
Table 7 Prediction results of the cessation date and final size of the third wave of the COVID-19 epidemic using 
the proposed LGR-GA/GNA model in Thailand at the national level. 
Measures Firstwave Second wave Third wave Total 

Jan 1 – Nov 30, 2020 Dec 1 – Mar 31, 2020 From1 Apr 2021 
Estimated final size 3,003 23,554 158,760 185,317 
Actual fina size 3,912 24,814 -  
Estimated cessation date April 26, 2020 March 26, 2021 July 15, 2021  
Actual cessation date May 1, 2020 April 1, 2021 -  
*The predictions have been established on May 6, 2021. 
 

This study found that the outbreak growth rates differed among four provinces in Thailand. In the earliest 
epidemic phase, the model does not fit well with the observed data and the number of cumulative cases is 
significantly underestimated. However, the goodness-of-fit of the model increases as the sample size for training 
the model increases. Except in the case of BKK, a linear upward trend causes the model to underestimate the 
final size (Figure 6). According to the prediction results, the outbreak will possibly end in late June to mid-July 
2021, except in CM, with an end in May. The final size of the epidemic during the third wave of infection is 
about 35,000 cases for BKK, 4,000 cases for CM, 5,500 for CBI, 10,300 for SPK, and 160,000 cases for the 
whole country. 

Moreover, in the comparison of parameter estimation between the GA, PSO, and ACO for the LGR models, 
the results of the estimated parameters, including the goodness of fits, of the LGR-PSO and LGR-ACO are 
shown in Table 8 for all three waves of the COVID-19 epidemic in Thailand at the national level, whereas those 
of the LGR-GA are tabulated in Table 9. The prediction results of the trends for all three waves of the COVID-
19 epidemic are illustrated in Figure 8. The prediction results from the first two waves demonstrate the 
superiority of GA over the others (with lower RMSE and higher R2, including closer prediction to the final size 
of the epidemic). 

To evaluate prediction performances of the proposed LGR-GA/GNA model with the SIR model, the sliding 
windows of training data are 10, 20, 30, and 40 for the first wave, 15, 30, 45, and 60 for the second wave, and 
15 and 30 for the third wave. The estimated parameters of the SIR model and the comparison of the 
performances between LGR and SIR models are presented in Table 9. The validation results of the number of 
cumulative cases of COVID-19 for the first and second waves and the prediction results for the ongoing third 
wave are shown in Figure 9. It is seen that, at the beginning of the epidemic, the SIR does not work well, 
indicated by the high RMSE and low R2 when compared to the proposed LGR. For the high spread of infections 
with multiple peaks (especially in the second wave), the proposed LGR model has advantages over the rest with 
lower RMSE and higher R2.  
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Table 8 Parameter estimation (K, R, and A) for the LGR-PSO and LGR-ACO models and the goodness-of-fit 
measures (RMSE and R2) between the proposed LGR-GA/GNA model and the SIR model for the past two 
waves and during the ongoing third wave of the COVID-19 epidemic in Thailand at the national levels using the 
4-sliding and 2-sliding windows of the training samples, respectively. 
Epidemic 
wave 

No. 
 of 
data 
training 

LGR-PSO LGR-ACO 

Final  
size 

  K R   A Training Test Final  
size 

  K R     A Training Test 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 

1 10   1000   2.66 13.30   1000       6 0.99   1272 -0.40   6121   4.13 24.50     6124     21 0.91  2302 -3.58 

20   1511   2.86 14.96   1511     23 1.00     879  0.33   2883   9.64 28.68     3036   228 0.73    395   0.87 

30   2415   4.26 18.88   2415     45 1.00     257  0.94   1972   5.41 16.26     1973   228 0.92    575   0.71 

40   2642   4.81 20.00   2643     53 1.00     130  0.99   3039   9.31 24.11     3128   233 0.94    199   0.97 

2 15   1920   1.20   6.99   1,920   134 0.97 11740 -1.31 15051   8.80 31.51   15147   400 0.76   3421   0.80 

30   8581   6.31 21.36   8583   276 0.98   7079  0.16   6370   8.55 17.35     6376   826 0.86   8585 -0.24 

45 11791   8.79 27.33 11,838   456 0.98   5212  0.54   9104   7.35 21.12     9109   785 0.95   6767   0.23 

60 21956 10.00 40.93 22614 1087 0.97     969  0.98   9816   2.33 11.30     9816 4986 0.38   6800   0.22 

3 15 14105   2.72 13.90 14105     96 1.00 71685 -0.85 53478 18.86 85.76 158700 2127 0.37 59989 -0.29 

30 4,209   5.17 23.07 45212    683 1.00 51072  0.06 60028   9.17 30.04   60583 3331 0.92 43466   0.32 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 Comparison on the projections of the cumulative cases and the estimation of final size of the COVID-
19 epidemic in Thailand at the national level between the proposed LGR-GA/GNA model, the LGR-PSO, and 
the LGR-ACO model for the 4-sliding and 2-sliding windows of the training samples of the past first (A) and 
(B) second waves and (C) during the ongoing third wave, respectively. 
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Table 9 Parameter estimation for the SIR model (S0, β, and ) including the reproductive number (R0) and the 
performances comparison of the goodness of fit (RMSE and R2) between the proposed LGR-GA/GNA model 
and the SIR model for the past two waves and during the ongoing third wave of the COVID-19 epidemic in 
Thailand at the national levels using the 4-sliding and 2-sliding windows of the training samples, respectively. 
Epidemic 
wave 

No. of 
data 
training 

SIR model The proposed LGR-GA/GNA 
Parameters R0 Performances Performances 
S0 β  RMSE  

Training 
R2 

Training 
RMSE 
Test 

R2 
Test 

RMSE 
Training 

R2 
Training 

RMSE 
Test 

R2 
Test 

1 10 6.3107 374.7 388.5 0.96 65.91 0.12 2018 -2.52 7.9 0.98 1143.87 -0.13 
20 3484 1.38 1.04 1.33 22.31 0.99 822.7 0.41 37.0 0.99 569.76 0.71 
30 20900 3.53 3.32 1.06 36.74 0.99 212.2 0.96 73.4 0.99 329.67 0.90 
40 31844 4.43 4.24 1.04 39.78 0.99 109.2 0.98 61.0 0.99 119.90 0.98 

2 15 2,118 1.27 0.42 2.99 122.2 0.97 11680 -1.29 313.3 0.85 9917.32 -0.65 
30 709154 10.98 10.90 1.00 253.4 0.98 5268 0.53 328.0 0.97 5907.68 0.41 
45 2,251,787 14.88 14.84 1.00 362.3 0.98 3663 0.77 494.4 0.98 4406.63 0.67 
60 2.6107 15.05 15.01 1.00 698.7 0.98 3645 0.77 1358.0 0.95 1540.61 0.96 

3 15 60610 2.23 1.90 1.17 71.2 0.99 69644 -0.74 831.8 0.90 25842.4 0.75 
 30 898664 4.07 3.91 1.04 2583 0.95 36022 0.53 1817.2 0.97 18450.6 0.87 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 Comparison on the projections of the cumulative cases and the estimation of final size of the COVID-
19 epidemic in Thailand at the national level between the proposed LGR-GA/GNA model and the SIR model 
for 4 and 2 sliding training windows of (A) the past first and (B) second waves and (C) the ongoing third wave, 
respectively. 
 
4. Conclusion 
  

In this study, the LGR-based predictive models are used to estimate the basic measures and predict the trends 
of the COVID-19 epidemic during the ongoing third wave of infection in Thailand at both provincial and 
national levels. The LGR models are optimized using the GA assisted by the GNA for enhancing the prediction 
performance. The proposed LGR-GA/GNA models provide goodness-of-fit with low RMSE and high R2 for the 
first two waves that have passed the peak of infection, inferring that they can be used as extrapolation for the 
current wave. The comparison of the prediction performance between the proposed LGR-GA/GNA, the LGR-
PSO, and the LGR-ACO showed that the LGR-GA outperforms the rest. Furthermore, when compared to the 
SIR model to verify the effectiveness of the LGR model in its prediction, the proposed LGR-GA can improve 
the goodness-of-fit better than the other. However, due to the small amount of data in the early phase of the 
epidemic used to train the model, the out-of-sample prediction results may be inconsistent, although they fit well 

(C) (C) 

(A) 

(B) 
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with the in-sample test. In addition, the lack of including other external factors into the model may miss 
achieving the optimal prediction model. In the future, alternatively, a machine learning approach using a small 
amount of available training data in the early period of an outbreak can be applied to the prediction models for 
new incoming epidemics. 
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