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Abstract

In this study, we analyze the effectiveness of combining various machine learning approaches in order to detect
specific attack classes within the Internet of Things (10T). Using the 10T23 dataset, the research examines distinct
features associated with attack classes derived from the raw data. Multiple algorithms, such as Multi-layer
Perceptron, Random Forest, Extreme Gradient Boosting (XGBoost), Decision Tree, K-Nearest Neighbor, Support
Vector Machine, Logistic Regression, and Naive Bayes, were thoroughly trained and evaluated. Through the
implementation of ensemble learning techniques, the study successfully achieved an elevated detection rate of
attack classes and an overall accuracy improvement, maintaining a false alarm rate of up to 15%. The research
highlights the importance of using ensemble learning methods to identify and categorize attacks in 10T domains,
serving as a valuable resource for further research. The insights revealed in this study provide readers with a
compelling reason to read it and should act as a catalyst for further research in similar directions.
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1. Introduction

In 2020, Shafique, K. [1] introduced the term Internet of Things (10T) for the next generation smart system,
referring to devices that can gather data from their environment using sensors and execute programming to
enhance efficiency and quality of life. 10T devices communicate with each other, and due to their affordability,
availability, and numerous applications in various domains like fitness, healthcare, home management, and more,
the 10T market has been expanding rapidly, propelled by the fourth industrial revolution 4.0, according to the
study by Dwivedi et al. [2].

Although the 10T provides numerous advantages, including enhanced efficiency and convenience, it also
presents significant security and privacy risks. One crucial security concern with the 10T is that many devices lack
proper security measures and can be easily hacked, enabling attackers to gain access to sensitive information such
as personal data or login credentials, and even take control of the device remotely. Furthermore, due to limited
processing power and memory, many loT devices cannot run conventional security software, making it
challenging to secure them.

Our research proposes using an intrusion detection system (IDS) to prevent anomaly attacks, which, coupled
with machine learning, is capable of detecting anomalies across billions of 10T devices worldwide, as suggested
by Xiao et al. [3]. Machine learning-based network intrusion detection has been a research topic for the past two
decades. We evaluate the effectiveness of different machine learning classifiers, such as Multi-layer Perceptron
(MLP), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Decision Tree (DT), K-Nearest Neighbor
(KNN), Support Vector Machine (SVM), Logistic Regression (LR), and Naive Bayes (NB), for detecting
anomalies in 10T data. The performance of each classifier is measured using well-known metrics like accuracy,
specificity, sensitivity, false positive rate, precision, recall, and F1 Score. Furthermore, we employ random search
to fine-tune the parameters of each classifier.

Our study employs statistical analysis to determine whether significant performance differences exist between
the various classifiers. We also measure the average response time of the classifiers to evaluate their usability in



our loT simulation. The performance of machine learning classifiers is assessed using 10T-23 data through
repeated holdout and cross-fold validation techniques.

Ullah et al. [4] have proposed a technique for identifying corrupted devices by utilizing the traffic stream
generated by 10T devices' temporal periodicity. They employed a Recurrent Neural Network (RNN) to detect
deviations from the expected typical behavior of each specific device. Authentication-based methodologies have
also been explored for the classification and management of identities in 10T systems. This approach was
evaluated, which also introduced the authors' discussion on a survey of the enabling technologies of forthcoming
0T ecosystems by Mukhaini et al. [5]

Rathore et al. in [6] established the foundation for the Enhanced Spatial Fuzzy C-Means (ESFCM) approach,
which is a distributed threat detection framework for the Internet of Things. Their fog-based threat detection
method, which incorporates both the ESFCM and fog computing paradigms, outperformed existing schemes on
various datasets. One significant advantage of the ESFCM technique is that it solves the problem of labeled data,
resulting in high detection rates and excellent performance.

In 2019, Liang et al. [7] developed a PD model that employs K-means and perceptron models to identify
undesired nodes and calculate 10T node values. Their proposed method addresses challenges by creating a
structured multiple-mix-attack framework, streamlining the network path, and building an upgraded perceptron
learning process to construct a PDE for increased detection accuracy. The simulation results demonstrate
enhanced performance and increased accuracy in detecting node malware using the framework.

Miettinen et al. [8] developed an 10T Sentinel solution to protect 10T networks by using device fingerprinting,
which utilizes machine learning to identify 10T devices when they join and register on the network. However, this
technique does not take device behavior into account. Another method, proposed by Siby et al. in [9], is called
0T scanner, which examines network traffic flow by analyzing frame headers during a set research period. The
disadvantage of this method is that if the traffic capture windows are not synchronized, devices with similar traffic
patterns may be mistakenly identified as separate entities. Kawai et al. [10] employed traffic flow characteristics
and machine learning techniques to classify 10T devices. Their approach was unique because they exclusively
analyzed two types of traffic attributes-packet size and inter-arrival time-without considering other factors. Some
techniques incorporate additional traffic features to improve identification accuracy and categorize device traffic
at an early stage. Sarker et al. [11] carried out a broad survey work on 10T security intelligence in 2023, where a
comprehensive overview of machine learning solutions and research directions is discussed in detail, also
highlighting the novel solution approach for securing 10T devices using Al.

The paper 'A survey," authored by Liao et al. [12], discusses topics related to modeling, detecting, and
scheduling large data flows within a software-defined energy cloud environment. Boutaba et al. [13] suggested a
composite property to improve the accuracy of early recognition using machine learning, emphasizing the
importance of a strong composition relationship when identifying streams of interactive network resources. Dutta
et al. [14] developed an ensemble method using deep models and the Stacking methodology to detect network
anomalies in cyber-physical systems network traffic. They collected heterogeneous flow-based data, including
0T data, to classify outliers. Thanh and Lang [15] evaluated the performance of several machine learning
algorithms, including Bagging, AdaBoost, Stacking, Decorate, Voting, and Random Forest, using a data mining
tool to identify the optimal ensemble technique for detecting network intrusions. Among the ensembles, those that
utilized Stacking and Decorate procedures to aggregate the results of their base classifiers required longer training
and testing times compared to single classifiers. The research work combining multiple machine learning
approaches can offer significant benefits. However, there are challenges related to overfitting, complexity, and
data biases. Generalizing these strategies for other authentication applications requires a focus on adaptability,
robustness, and consistent performance across diverse data types and security measures.

2. Materials and methods

This section presents a summary of commonly employed machine learning (ML) algorithms for developing
effective anomaly detection systems and outlines a fundamental approach for Al-based anomaly detection. The
ML algorithms are broadly categorized into two types: supervised and unsupervised. The unsupervised algorithms
work with unlabeled data to identify anomalies, while supervised algorithms use labeled data to extract crucial
information.

2.1 A general Al-based Anomaly detection methodology

Anomaly detection systems are developed using machine learning, which involves three main steps as shown
in Figure 1. Firstly, data is preprocessed by encoding, normalizing, and cleaning it to prepare it for algorithmic
processing. This step involves removing duplicate entries and missing data. Next, the preprocessed data is
randomly split into two parts: the training dataset, which usually accounts for 80% of the original data, and the
testing dataset. In the training phase, the ML algorithm is trained on the training dataset. The duration of this phase



varies depending on the complexity of the proposed model and the size of the dataset. After training the model, it
is tested using the dataset, and its performance is assessed based on its predictions. Anomaly detection models
classify network traffic instances as benign (normal) or attack.
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Figure 1 Generalized machine learning-based anomaly detection system methodology.
2.1.1 Decision Tree

The Decision Tree is a supervised learning model that utilizes a series of simple decisions based on information
to classify a dataset. This is one of the fundamental techniques in supervised machine learning and can be used
for both classification and regression tasks, as explained by Chary et al. [16]. The structure of the model resembles
a tree, with nodes, branches, and leaves as depicted in Figure 2. Each node represents an attribute or feature, and
each leaf denotes a potential class designation or result. As explained by Sahani et al. [17], each branch of the
decision tree represents a rule or decision. To prevent overfitting and reduce extra branches, the DT algorithm
automatically selects the most relevant attributes and performs pruning, as demonstrated in the study conducted
by Xin et al. [18]. The three most commonly used DT subtypes are CART, C4.5, and 1D3. Advanced learning
algorithms such as Random Forest (RF) and XGBoost are also based on decision trees.

2.1.2 K — Nearest Neighbors (KNN)

KNN is a supervised learning algorithm that employs the concept of "feature similarity,” as described in the
broad study conducted by Ahmad et al. [19], to classify data samples into classes similar to the training data based
on distance. The algorithm estimates the distance between a given data sample and its neighbors to identify its
class. The impact of the KNN algorithm's parameter k on the model's performance is shown in Figure 3. If the
value of k is too small, the model may become overfit. However, an excessively large range of k values could
result in incorrect classification of the sample case. In their study, Zhang et al. [20] evaluated the performance of
several machine learning algorithms using the most recent benchmark dataset, CSE-CIC-1DS 2018. By utilizing
the Synthetic Minority Oversampling Technique (SMOTE), they addressed the issue of imbalanced datasets and
improved the detection rate for minority class attacks using K-Nearest Neighbors.
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Figure 3 Structure of KNN classifier for anomaly detection.
2.1.3 Logistic Regression

Anomaly detection, also referred to as outlier detection, involves identifying data points that deviate from the
expected pattern of the majority of the data. One approach to using logistic regression for anomaly detection is to
train a logistic regression model on a dataset that exclusively contains normal instances, and then employ the
model to assess the probability that a new instance is normal or anomalous, as indicated in the broad work done
by Hasan, M et al. [21]. If the predicted probability falls below a specific threshold, the instance is deemed an
anomaly, as depicted in Figure 4. Suppose you wish to detect fraudulent transactions on the 10T23 dataset, which
entails detecting abnormal transactions. In that case, you could train a logistic regression model on a dataset of
normal transactions from the 10T23 dataset and use the model to predict the likelihood that a new transaction is
normal. If the probability is low, it suggests that the transaction may be fraudulent. It's important to note that
logistic regression is just one of several techniques that can be employed for anomaly detection, and the choice of
method will depend on the unique characteristics of the data and the objectives of the anomaly detection task.
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Figure 4 Structure of logistic regression classifier for anomaly detection.
2.1.4 Naive Bayes Classifier

In the context of anomaly detection, Naive Bayes can be used to classify whether an input is an anomalous
example or not. To do this, first, we have trained an 10T23 dataset with normal and anomalous samples using the
Naive Bayes method, as studied by Vangipuram et al. [22]. In order to classify fresh inputs as either normal or
anomalous, the algorithm learns to recognize patterns within the normal samples. The dataset is initially split into
a training and a test set to train the algorithm. Following training on the training set, the algorithm is then used to
forecast labels for the test set. Following that, measures like accuracy, precision, and recall are used to evaluate
the algorithm’s performance, as shown in Figure 5. One advantage of using Naive Bayes for anomaly detection
is that it is relatively simple to implement and fast to run. However, it can be less accurate than some other machine
learning algorithms, especially when the data is complex or has a high-dimensional feature space.
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Figure 5 Structure of naive Bayes classifier for anomaly detection.
2.1.5 Random Forest

The process of utilizing a random forest for anomaly detection involves a similar procedure to that of Naive
Bayes. The first step is to prepare the data, which involves scaling the features, addressing missing values, and
possibly modifying the data to enhance its compatibility with the model. After data preparation, the dataset should
be split into a training set and a test set with a suitable ratio, such as 70/30 or 80/20, as illustrated in Figure 6.
Subsequently, a random forest model should be trained on the training set by fitting it to the data and optimizing
its hyperparameters to enhance its performance, as conducted by Thakkar et al. [23]. The model is then used to
predict the labels for the test set, with the labels indicating whether each example is normal or anomalous in the
context of anomaly detection. Model performance can be evaluated using metrics such as accuracy, precision, and
recall, and it is recommended to visualize the performance using plots such as a confusion matrix or Russian
Olympic Committee (ROC) curve. Such plots can provide insights into the model's strengths and weaknesses,



facilitating identification of areas that need improvement. Despite its simplicity and speed, random forest may be
less accurate than other machine learning methods for complex or high-dimensional feature spaces.
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Figure 6 Structure of random forest classifier for anomaly detection.

2.1.6 Support Vector Machine

Support Vector Machines (SVMs) aim to find the optimal boundary or hyperplane that separates different
classes in a dataset. In anomaly detection, an SVM model can be trained to separate normal examples from
anomalous ones, as illustrated in Figure 7. After training, the model can classify new inputs as normal or
anomalous based on which side of the boundary they fall. Before training the model, it is crucial to preprocess the
data by handling missing values, scaling features, and ensuring that the model is not influenced by feature scales.
After preprocessing, the dataset is split into training and testing sets. According to Yang et al [24], the SVM model
is then fitted to the training set using normal examples as the negative class and anomalous examples as the
positive class. Choosing the right parameters, such as kernel type, regularization term, and margin width, is
essential for the performance of the SVM model, according to the study conducted by Chatterjee et al. in [25].
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Figure 7 Structure of support vector machine for anomaly detection.
2.1.7 Multi-Layer Perceptron

The configuration of an MLP, including the number of hidden layers and neurons, is a crucial factor that we
explore in experiments to attain optimal performance, as stated by Abusitta et al [26]. The training process is
iterative and involves selecting an appropriate optimizer and learning rate, with training ending once the model
reaches an acceptable level of performance on the training set, as illustrated in Figure 8. After training, we can



use the model to predict the labels of the test set and assess its efficacy using metrics such as accuracy, precision,
recall, F1-score, and AUC-ROC. MLPs offer flexibility in maximizing performance based on the specific data
and task at hand by allowing modifications to the number of layers and neurons in the network. However, MLPs
can be sensitive to the choice of optimizer, the number of hidden layers and neurons, and the learning rate, and
may require a large amount of data to achieve good results, as indicated by the studies conducted by Zhang et al.
[27] and Alwahedi et al. [28].
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Figure 8 Structure of multi-layer perceptron classifier for anomaly detection.
2.1.8 XGBoost Classifier

The XGBoost classifier is an ensemble learning framework based on decision trees that is highly efficient,
flexible, and portable for classifying data, as proposed by Wang et al [29]. In the context of anomaly detection,
XGBoost can be used to classify whether an input is an anomalous example or not, as studied and analyzed by
Taghavirashidizadeh et al. in [30]. To accomplish this, the data must first be prepared by preprocessing it, handling
missing values, and scaling the features. After that, the data can be split into a training set and a test set using a
suitable split ratio, such as 70/30 or 80/20. The XGBoost classifier can then be trained using the training set, with
the typical cases designated as the positive class and the anomalous examples as the negative class, as shown in
Figure 9. Following model training, it is utilized to make predictions on the test set, and its performance is
evaluated using measures like precision, recall, accuracy, F1-score, and Area Under the Curve — Receiver
Operating Characteristic (AUC ROC). One of the benefits of using XGBoost for anomaly detection is its ability
to handle high-dimensional data and automatically learn complex nonlinear relationships within the data.

0909y
...28%0. Original Data
I
+ Il 1!
o000 0O ol @ ove00 Bootstrapping
000 @ 00000
Aggregating

Baggin
Ensemble Classifer EEINg

Figure 9 Structure of XGBoost classifier for anomaly detection.



3. Results and discussion

The classification model's accuracy results are limited to two decimal places, suggesting that the actual results
may fall between 0.947 and 1.000, as illustrated in Figure 10. XGBoost is the best algorithm, with precision,
recall, and F1 scores ranging from 0.86 to 0.87 and 0.83, respectively, as indicated in the confusion matrix in
Figures 13, 18, and 19. Considering the study and its results, Decision Trees could be useful to some extent in
achieving precision. However, the confusion matrix in Figures 11, 12, and 13 demonstrates that the model tended
to favor the most frequent categories and sometimes utilized other categories. It is noteworthy that the algorithm
never predicted benign behavior, and thus, benign captures cannot be distinguished from other anomalies by
drawing a hyperplane. The ROC curve for the most accurate model is depicted in Figures 14, 15, 16, 17, 18, and
19. The dataset had only 16 instances of a particular category, occurring on average four times per file. Similar
issues were encountered in detecting the Torii botnet, but some algorithms were able to produce results. The
challenge in identifying smaller attack categories is due to their infrequent occurrence in the dataset. Figure 10
and the table below show that all algorithms achieved at least 69% accuracy in predicting the most common
categories. The confusion matrix provides additional information on each algorithm's F1 Score, Precision, Recall,
and Accuracy. Researchers can use this information to select the best classification algorithm for their specific
research, taking into account the nature of their dataset. The various classification algorithms illustrated in this
study identify the best-suited algorithm for anomaly detection. Figure 20 depicts the overall performance of the
classification models in terms of accuracy and training time.
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Figure 10 Illustrates various Classification Models for anomaly detection in 10T-23 dataset.

Figures 11 to 13 present the confusion matrices of three prominent classifiers—Random Forest, Support
Vector Machine (SVM), and XGBoost used in the evaluation of the proposed IDS framework. These confusion
matrices offer a clear visualization of the models' prediction outcomes by detailing the true positives, true
negatives, false positives, and false negatives. Figure 11 demonstrates that the Random Forest classifier achieves
strong classification performance, with a high number of correctly identified instances and minimal
misclassifications. In Figure 12, the SVM classifier also shows competitive results; however, it tends to have a
slightly higher false positive rate, which could be attributed to the margin-based decision boundary it employs.
Figure 13 depicts the confusion matrix of the XGBoost classifier, which exhibits excellent precision and recall,
with very few false negatives, making it highly suitable for real-time intrusion detection in 10T networks. Overall,
these results confirm that ensemble learning models, particularly Random Forest and XGBoost, offer superior
accuracy and robustness compared to traditional classifiers.
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Figures 14 to 19 illustrate the ROC curves and Precision vs. Recall curves for the Random Forest, SVM, and
XGBoost classifiers. These performance curves provide valuable insights into the trade-offs between
classification sensitivity and specificity across different threshold settings. Figure 14 shows the ROC curve of the
Random Forest classifier, which achieves an AUC close to 1, indicating excellent discriminatory power.
Complementing this, Figure 15 presents the Precision vs. Recall curve of Random Forest, which maintains high
precision and recall even at varying thresholds, reflecting its robustness in detecting intrusions. Similarly, Figures
16 and 17 display the ROC and Precision vs. Recall curves for the SVM classifier. While the ROC curve in Figure
16 indicates good classification capability, it may slightly underperform compared to ensemble methods due to
sensitivity to feature scaling and non-linearity. The Precision vs. Recall curve in Figure 17 further confirms SVM’s
stable, though comparatively moderate, performance. Figures 18 and 19 correspond to the XGBoost classifier,
where the ROC curve (Figure 18) demonstrates near-perfect classification with an AUC close to 1, showcasing
XGBoost's strength in handling complex decision boundaries. The Precision vs. Recall curve in Figure 19 supports
this observation, as XGBoost maintains high precision and recall even in imbalanced data scenarios. Collectively,
these figures highlight the superiority of ensemble-based classifiers like Random Forest and XGBoost in achieving
both high detection accuracy and reliable performance across varying thresholds.
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Figure 20 illustrates the comparative performance of various machine learning models by plotting their
accuracy against the model names alongside the time taken for training or inference. This multi-dimensional
visualization highlights the trade-offs between model accuracy and computational efficiency. Models such as
Random Forest, Support Vector Machine, and XGBoost are compared, showing that while some models achieve
higher accuracy, they may require longer processing times. Conversely, models with faster execution times
sometimes deliver slightly lower accuracy. This figure provides valuable insights for selecting the optimal model
based on the desired balance between predictive performance and resource consumption in the given application

context.
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Figure 20 Accuracy V/S Model Name V/S time taken.

4. Conclusions

This paper aims to enhance clarity and resonance in its final remarks. The principal contributions, underscored
by numerical improvement percentages, are key focal points for reader engagement. XGBoost emerges as the
standout anomaly detection and classification solution within the 10T-23 dataset, demonstrating superior
performance across all metrics. To elucidate XGBoost's success, future investigations will delve into the
underlying mechanisms, addressing the current ambiguity surrounding its superiority and evaluating with deep
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learning model & hybrid model to evaluate their effectiveness in anomaly detection by considering accuracy as a
parameter. The transparency now features numerical insights, providing readers with a tangible grasp of the
research's impact. This conclusion not only invites researchers to build upon our findings but also suggests
avenues for open research. The integration of deep learning & hybrid models becomes a strategic direction to
overcome identified challenges, promising enhanced adaptability and performance in the realm of anomaly
detection. The incorporation of numerical data, coupled with an enticing glimpse into ongoing and potential
research directions, sets the stage for future investigations into the mechanisms behind XGBoost's success and the
potential of deep learning in mitigating identified shortcomings. This ongoing research endeavors to advance
anomaly detection capabilities and contribute to the ongoing evolution of effective and robust systems in the field
of 1oT.
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