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Abstract 
 
A landslide is one form of geological hazard that causes socioeconomic impacts, geo-environmental changes, and 
damage to human lives and properties globally. The Mae Tha River watershed, located in a complex faulted- and 
high- slope terrain, is considered to be especially susceptible to occurrences of landslides.  This study aimed to 
evaluate landslide susceptibility across this unique watershed using the integration of geoinformatics and a 
statistical frequency ratio model.  Across the watershed, 67 landslide scars in the mountainous region were 
observed and examined for use as landslide inventory data.  The landslide inventory data were combined with 
causative factors to produce a landslide susceptibility index as well as zones.  The analysis revealed that 
approximately 36% of the entire watershed was highly susceptible to landslides, particularly the high terrain in 
the watershed's east and west. The accuracy, reliability, and predictability of the landslide susceptibility data were 
validated using the values of the area under the receiver operating characteristic (ROC)  curve analysis (AUC) . 
AUC values between 0.6 and 0. 8 indicated that the model's performance in identifying and predicting landslide 
susceptibility classes was reasonably satisfactory to good.  The results suggested that the frequency ratio model 
was an efficient statistical tool for landslide susceptibility assessment.  Effective landslide susceptibility classes 
can be produced for community planning and mitigation purposes in this watershed as well as other areas with 
similar conditions. 
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1. Introduction 
 

A landslide is a significant and potentially devastating geohazard that poses damaging risks to human life and 
property. It can destroy structures and infrastructure, and reduce the quality of the environment and natural 
resources. It is a rapid downslope mass movement in which the driving force from overburdened loads has 
exceeded the resistance force of the material strength and soil density of earth [1]. Landslides commonly occur in 
the tropics where intense rainfall and rainstorms increase pore pressure and cause a reduction of the shear strength 
of soil, resulting materials slide on sloped terrain. Therefore, knowledge of areas susceptible to landslides is 
essential so at-risk countries can prepare appropriate landslide prevention and mitigation strategies. One efficient 
method for identifying potential risk areas is the creation of a reliable and accurate map of landslide-prone 
locations. Landslide hazard evolution models can be divided into qualitative and quantitative approaches. The 
qualitative approach assesses the potential landslide areas by combining the weighted averages of several 
parameters based on the decisions of experts, i.e., weighted linear combination (WLC) and the analytical hierarchy 
process (AHP) [2]. However, the main problems concerning the qualitative approach are a need for more 
understanding of the area of interest and the subjectivity and non-quantitative nature, leading to unacceptable 
generalization. On the other hand, the quantitative approach evaluates the potential landslide area based on the 
relationship between landslide inventory and landslide conditioning factors. Popular quantitative approaches 
include the weight of evidence model (WEM) [3], logistic regression (LR) [4], artificial neural network (ANN) 
[4], and frequency ratio (FR) [4]. Notably, the FR model has been employed for landslide susceptibility and has 
been proven to effectively predict landslide occurrences worldwide [5] including in northern Thailand [6]. The 
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model provides more realistic landslide susceptibility data and future landslides that potentially occur under the 
same conditions as past landslides using a means geographic information system (GIS) [7]. However, the 
disadvantages and limitations of the FR model include the high degree of oversimplification when data are 
inadequate and the applicability of the model on a regional scale over small areas [8]. 

Northern Thailand is a region that remains susceptible to landslides. Previously, landslide hazard zones were 
evaluated and revealed to include 6,500 villages in 1,100 sub-districts that were highly susceptible to landslides 
[9]. Despite the severity of landslide problems in northern Thailand, the assessment of landslide occurrence and 
slope instability is largely insufficient. The Mae Tha River watershed is located in the east of the Chiang Mai 
Basin where the Mae Tha River flows through it. It covers approximately 350 km2 in Ta Nuea and Mae Tha Sub-
districts, Mae On District, Chiang Mai Province, and Tha Pla Duk Sub-district, Mae Tha District, Lamphun 
Province. The total population is approximately 13,000 people. Most of the area in the watershed is covered by 
rainforest and deciduous forests in high mountains. The foothills are shrubland, and the central valley comprises 
communities, buildings, and agricultural areas. Geologically, the watershed comprises a compilation of various 
rock types underneath the high topography (low-to-medium grade metamorphic rocks with a granitic intrusion in 
the east and a massive sandstone interbedded with finer clastic rocks in the west) and small portions of terraces 
and alluvial deposits in the middle of the watershed. The watershed is also bounded by the Mae Tha Fault Zone 
(MTFZ), considered in Thailand to have a moderate-to-high degree of fault activity [10] (Figure 1). Although the 
watershed is relatively small and in a remote mountainous area, the central valley flat, villages, and farming have 
experienced landslides and debris flow delivered from the surrounding high topography.   

To evaluate landslide susceptibility across the Mae Tha River watershed, identifying the scars caused by 
previous landslides is necessary. The assumption has been made in the study that landslides occur in the same 
place or under the same conditions as before. Repeated tectonic and seismic events can cause terrain instability 
and the potential for landslides. Therefore, this study identifies landslide susceptibility across the Mae Tha River 
watershed using the FR model. The model combines the presence of landslide inventory and causative factors. 
The accuracy and reliability of the model are validated using the area under the receiver operating characteristic 
(ROC) curve [11]. This study aims to provide accurate and reliable landslide susceptibility data concerning the 
Mae Tha River watershed so city planners, governors, and decision-makers can recognize landslide susceptible 
classes and reduce the impact of landslides on the population. 

 
2. Materials and methods 
 
2.1 Landslide scars and inventory data 
 

Landslide inventory data are essential for analyzing landslide susceptibility because the spatial extent of 
landslide scars on the surface is more prone to cause present or future landslides.  Historical landslide events and 
scars that had been recorded in Landsat 5 and 8 satellite images taken since 1985 were identified. The boundaries 
of the landslide scars were delineated at the source area and the prominent scarp of the landslide, excluding the 
depositional zone of the landslides [12] (Figure 2). This sampling scheme proceeded to the extraction of landslide 
scars throughout the watershed. 
 
2.2 Landslide causative factors 

 
Landslides typically occur by interaction among various causative factors.  In this study, ten causative factors 

were chosen for the analysis based on data availability and a literature review. These factors were divided into 
four categories comprising climate, geomorphology, geology, and land cover (Table 1, Figure 3). 

 
Table 1 Information and data sources used for landslide susceptibility assessment in the Mae Tha River watershed. 

Data categories Classification 
scheme 

Data sources (year of data used) Scale/ 
resolution 

- Landslide 
inventory 

Landsat 5 and 8 satellites (1985-2021) - 

Climate Accumulated 
rainfall 

Early Warning System, Department of Water 
Resources (DWR) (2016-2021) 

1:50,000 

Geomorphology Altitude Topographic Map, Department of Mineral 
Resources (DMR) (2000) 
DEM from ALOS PALSAR (2009) 

1:50,000 
12.5 × 12.5 m 

Terrain slope  DEM from ALOS PALSAR (2009) 12.5 × 12.5 m 
Geology Lithology Thailand geologic map, DMR (1995) 1:250,000 

Soil texture Soil series, LDD (2021) 1:25,000 
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Table 1 (continued) Information and data sources used for landslide susceptibility assessment in the Mae Tha 
River watershed. 

Data categories Classification 
scheme 

Data sources (year of data used) Scale/ 
resolution 

Geology Distance to 
rivers 

DEM from ALOS PALSAR (2009) 12.5 × 12.5 m 

Distance to 
fault lines 

Thailand geologic map, DMR (1995) 
DEM from ALOS PALSAR (2009) 

1:250,000 
12.5 × 12.5 m 

Fracture density Thailand geologic map, DMR (1995) 
DEM from ALOS PALSAR (2009) 

1:250,000 
12.5 × 12.5 m 

Land Cover Land use and 
land cover 

Land use series, Land Development Department 
(LDD) (2020) 
Sentinel-2 imagery (2021) 

1:50,000 
10 × 10m 

NDVI Sentinel-2B imagery (2021) 10 × 10m 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 Location map of the Mae Tha River watershed showing (A) topographic features of the watershed (the 
red rectangle in the inset)  with the location of 67 landslides, and (B) lithology of the watershed and its 
abbreviations, including Qa:  alluvial sediment, Qt:  terrace sediment, Png1:  tuffaceous sandstone, C:  clastic 
sedimentary rocks, SD: medium-grade metamorphic rocks, Trgr: granitic rock. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 2 (A) The landslide inventory in the watershed shows the training data (yellow polygon) and validating 
data (red polygon). (B) and (C) Examples of landslide scars on aerial photographs recorded in 2010 and 2014. 

(A) (B)

(C) 

(A) (B) 
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2.2.1 Climatic-related factor 
 

The climate- related factor is the amount of precipitation that can reduce material strength as well as trigger 
soil and fragmented rocks to slide on sloped surfaces.  Across the Mae Tha River watershed, the spatial variation 
in accumulated rainfall during the last five years obtained from 9 rain gauge stations fluctuates significantly [13]. 

The accumulated rainfall over the watershed was interpolated using the Kriging geostatistical process. Because 
the interpolated rainfall values were not evenly distributed and had significant variance, the Jenks natural breaks 
optimization method was used to divide the spatial variation in accumulated rainfall into five classes (Figure 3A). 
This method is relatively suitable for grouping similar values from high variance, compared to quantile, 
geometrical, interval, equal interval, and standard deviation classification methods [3]. This classification method 
was applied to other numerical landslide causative factors (i.e., altitude, slope, fracture density, and NDVI). 
 
2.2.2 Geomorphic-related factors 
 

The geomorphic-related factors are altitude and terrain slope. Altitude determines the levels of geomorphic 
and geological processes, mass movement on the slope, vegetation covers, and runoff direction. The spatial 
variation in altitude across the watershed ranged from 366 to 1331 m and was divided into five classes (Figure 
3B). Likewise, terrain slope is one of the most critical parameters for controlling landslide occurrence. With 
increasing slope, shear stress is accumulated to slide materials on sloped terrain [14]. The slope gradient of the 
terrain was calculated using a topography toolset in ArcGIS that proceeded with a three-by-three-cell moving 
window. The spatial variation in the terrain slope was also divided into five classes (Figure 3C). 
 

2.2.3 Geologic-related factors 
 
  The geologic-related factors include lithology, soil texture, distance to rivers, distance to faults, and fracture 
density. Lithology provides the material that supports landslide occurrence and forms landslide development. The 
variation in lithology across the watershed was separated into five classes based on the mechanical properties of 
rocks to landslides: alluvial deposits, terrain deposits, clastic sedimentary rocks, low-to-medium grade 
metamorphic rocks, and granite and granodiorite (Figure 3D).   
  Soil is a product of rock disintegration, including different volumes of gravel, sand, silt, and clay particles. 
Soil texture data collected by the Land Development Department, Thailand was classified into five classes based 
on soil drainage and drainage properties [15] (Figure 3E). The proximity of unstable slopes to rivers can trigger 
channels to erode streambanks and undercut the slope toe. Thus, a closer distance to a river impacts stronger 
erosion and a higher degree of landslide occurrence [16]. In this work, stream networks were extracted from a 
built-in script of the hydrology toolset in ArcGIS. The channel networks were buffered with equal intervals of 
100 m and then the spatial variation was divided into five classes (Figure 3F).  
  Rock exposure to active major and minor faults developed broken and joint fractures [16]. Fractured materials 
on the terrain slope are less stable and more prone to landslide occurrence. The main Mae Tha fault lines and 
minor faults were extracted from a 1:250,000 scaled geologic map and DEM analysis. These lineaments were 
equally buffered into intervals of 250 m in width and divided into five classes (Figure 3G). Fracture density is a 
particular landslide causative factor in the fault zone because rocks are highly fractured and weakened by seismic 
ruptures as well as fault activities. Lineament expression on a surface was delineated from remotely sensed images 
and the implication from rectangular drainage patterns [17]. Fracture density was calculated using a fracture 
density calculation provided by [18]. The spatial variation in fracture density was divided into five classes (Figure 
3H). 
 
2.2.4 Land cover-related factors 
 
  The land cover-related factors involve land use and land cover (LULC), and normalized difference vegetation 
index (NDVI). The spatial variation in LULC defines surface coverage and land use practice that affects the 
sensitivity of areas to landslides. Land cover data were obtained from Land Cover Surveys by the Land 
Development Department, Thailand [15], while land use practices were classified from the multi-temporal 
Sentinel-2 imagery collected during 2021 [19]. LULC were combined into a single class and divided the spatial 
variation into five classes (Figure 3I). Moreover, NDVI can determine the health and vitality of vegetation across 
the watershed. NDVI values were calculated based on the difference between the near-infrared (NIR) wavelength 
obtained from Landsat 8-band 5 and the red (RED) wavelength derived from Landsat 8-band 4 [20]. The spatial 
variation of NDVI values was divided into five classes (Figure 3J). 
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Figure 3 Landslide causative factors: (A) Accumulated rainfall, (B) Elevation, (C) Terrain slope, (D) Lithology, 
(E) Soil textures, (F) Distance from rivers, (G) Distance from fault lines, (H) Fracture density, (I) Land use and 
land cover (LULC), and (J) Normalized difference vegetation index (NDVI). 
 
2.3 Model description and validation 
 
 The FR model is a statistical representation to assess landslide susceptibility based on the relative ratio of the 
area of landslide occurrence (area of landslide scars or inventory) to the total study area. The landslide inventory 
was separated into two datasets: a training dataset (random 70% of total landslide inventory) and a validating 
dataset (the remaining 30% of total landslide inventory) [21]. The Subset Feature in Geospatial Analyst in ArcGIS 

(A) (B) (C) 

(D) (E) (F) 

(G) (H) (I) (J) 
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was utilized to randomly select landslide scars for the training dataset. Then, the training dataset was combined 
with landslide causative factors as follows:   

                                                                                FR= 
A 

B 
= 

Npix(1)/Npix(2)

∑ Npix(1)/ ∑ Npix(2)
                                 (1) 

 
where A is the landslide area in every unit, B is the total area of landslide in the entire units, Npix(1) is the number 
of pixels for landslide in each class of causative factor, and Npix(2) is the total number of pixels in the same class 
[7]. Subsequently, all FR values are added to obtain the landslide susceptibility index (LSI) as: 
 
                                                                    LSI = FR1+ FR2+FR3+ … + FRn                                (2) 

 
where FR is the frequency ratio values, 1, 2, 3, and n is the number of causative factors. It should be noted that 
each FR was multiplied by 100 to make an integer number before adding up in equation (2). Once LSI values 
were calculated, they were classified into five landslide-susceptible classes based on the Jenks natural breaks 
classification method. 
 

Model validation is necessary to evaluate the accuracy and reliability of landslide susceptibility. This study 
relies on the area under the receiver operating characteristic (ROC) curve (AUC) analysis [11]. ROC is a graph 
between a success rate curve, indicating how well the model can classify the regions into landslide-susceptible 
classes using a training dataset and a prediction rate curve, suggesting how well the model can predict future 
landslide occurrences using the validating dataset [21]. The ROC graph was plotted using the "Calculate ROC 
curves and AUC values" tool from the ArcSDM5toolbox [22]. 

The accuracy and predictability of the model were evaluated based on 1) the proximity of the ROC curve to 
the top left of the graph and 2) the range of the AUC values. If the AUC value is lower than 0.50, the indication 
is poor performance in landslide identification and prediction. AUC ranges from 0.50-0.60, 0.60-0.70, 0.70-0.80, 
0.80-0.90, and >0.90 imply that the performance of the model to identify and predict landslide susceptibility are 
unsatisfactory, satisfactory, good, very good, and excellent, respectively [23]. 

 
3. Results and discussion 
 
3.1 Landslide inventory data 
 

The high western mountain embodies 67 landslide scars that cover 4.08 km2. These scars were preliminarily 
predicted as either translational landslides or debris flows because of the bare surface left by the earth's material 
removals on crystalline and clastic sedimentary rocks. Debris flow may occur with landslides due to heavy and 
intense rainfall in the past. However, identifying the type of landslides is challenging due to the low image 
resolution of thick vegetation covering landslide boundaries. 
 
3.2 Roles of landslide causative factors 

 
Each landslide causative factor is discussed as an individual influential factor for landslide occurrence. The 

different classes of accumulated rainfall reveal that accumulated rainfall greater than 562 mm has a high FR value 
greater than 1, indicating a strong influence on landslide probability (Table 2). This high value corresponds to the 
fact that prolonged and heavy rainfall on mountain slopes reduces the material strength and causes materials on 
sloped terrain to slide.  

In terms of terrain slope, the results revealed that a slope that is steeper than 30o has the highest FR value of 
2.23, while the lower classes of slope provide consecutively lower FR values. Steepening terrain slopes cause 
material instability on a slope to slide. Regarding terrain elevation, the altitude ranged between 600 and 900 m 
dominates landslide occurrence in the watershed with the FR value greater than 1 (Table 2).    

Clastic sedimentary rocks underlying the high terrains are highly prone to landslides with an FR value of 3.07. 
The oxidation process in conglomerate and sandstone interbedded with fine-grained siltstone and shale and soluble 
limestone causes high susceptibility to landslides. In contrast, terrain underneath coarse-grained granite and 
medium-grade metamorphic rocks presents relatively lower FR values of 0.92 and 0.39, respectively. Fractured 
granitic and metamorphic rocks containing unstable mineral assemblages of feldspars within thin soil are less 
competent to landslides (Table 2).    

Undifferentiated soil texture on steeply sloped terrain has the highest FR value at 1.32 (Table 2). The 
combination of steep slopes, soil mix, and runoff provides higher energy, velocity, and erosive power for 
transportation, erosion, and slope instability. Although landslides are likely to occur on moderately to poorly 
drained silt and clay, the drainage ability of soil depends strongly on the variation in the terrain gradient. 
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Some landslide causative factors play minor roles in controlling landslide susceptibility. Fluvial networks 
enhance slope instability and induce the collapse of bank materials from undercutting and scouring at the slope 
toe. Similarly, active faults with small earthquake events can develop fractures in rocks that induce rockslide and 
overburden mass to slide. However, the results from the analysis reveal that these factors largely depend on the 
terrain slope on which landslides occur, at the farthest distance from fluvial networks and fault lines. 

 
Table 2 Spatial relationships between each landslide causative factor and landslide using the FR model. 

Factors Classes Number of 
pixels in 
class 

Number of 
pixels in 
class (%): a 

Number of 
pixels in 
landslide class 

Number of pixels 
in landslide class 
(%): b 

Frequency 
ratio (b/a) 

Accumulated 
rainfall (mm) 

280-432 200243 8.82 1229 5.74 0.65 
432-562 372851 16.43 550 2.57 0.16 
562-673 676248 29.80 8169 38.17 1.28 
673-790 656462* 28.93* 11453* 53.52* 1.85* 
790-957 363458 16.02 0 0.00 0.00 

Altitude (m) 366-500 611457 26.96 164 0.77 0.03 
500-615 595557 26.26 4414 20.63 0.79 
615-737 538622* 23.75* 11573* 54.09* 2.28* 
737-895 380696 16.79 5245 24.51 1.46 
895-1331 141492 6.24 0 0.00 0.00 

Terrain slope (o) 0-7.36 508872 22.52 1183 5.53 0.25 
7.36-14.18 545679 24.15 3903 18.26 0.76 
14.18-20.73 562110 24.88 6041 28.26 1.14 
20.73-28.37 455084 20.14 6298 29.46 1.46 
28.37-69.55 187609* 8.30* 3955* 18.50* 2.23* 

Lithology Alluvial deposit 365312 16.11 0 0.00 0.00 
Terrace deposit 59776 2.64 0 0.00 0.00 
Clastic sedimentary rocks 322240* 14.21* 12466* 58.15* 3.07* 
Medium-grade metamorphic 
rock 

886208 39.08 1597 7.45 0.39 

Coarse-grained granite and 
granodiorite 

634368 27.97 7374 34.40 0.92 

Soil textures 
 

Well-drained sand 28416 1.25 0 0.00 0.00 
Well-drained gravel 434304 19.15 1523 7.11 0.37 
Moderately drained clay 190080 8.38 0 0.00 0.00 
Poorly drained silt and clay 13248 0.58 0 0.00 0.00 
Steeply sloped soil 1601856* 70.63* 19883* 92.89* 1.32* 

Distance from 
river system (m) 

0-100 263110 11.60 1348 6.30 0.54 
100-200 237196 10.46 1099 5.14 0.49 
200-300 223268 9.85 1059 4.95 0.50 
300-400 213248 9.40 1706 7.97 0.85 
>400 1330964* 58.69* 16184* 75.64* 1.29* 

Distance from 
fault lines (m) 

0-250 432331 19.06 3239 15.14 0.79 
250-500 367876 16.22 3259 15.23 0.94 
500-750 295217 13.02 1530 7.15 0.55 
750-1000 233767 10.31 1469 6.87 0.67 
>1000* 938610* 41.39* 11899* 55.61* 1.34* 

Fracture density 
(m-1) 

0.38-0.85 176000 7.76 758 3.54 0.46 
0.85-1.2 344064* 15.17* 5415* 25.30* 1.67* 
1.21-1.53 651840 28.74 10155 47.45 1.65 
1.53-1.83 551168 24.30 5074 23.71 0.98 
1.83-2.27 544704 24.02 0 0.00 0.00 

Land use and 
land cover 

Community and  
water body 

38264 1.69 0 0.00 0.00 

Forest 1866741* 82.31* 20991* 98.06* 1.19* 
Shrubland  64259 2.83 100 0.47 0.16 
Irrigated farming  194388 8.57 315 1.47 0.17 
Field crops 104210 4.60 0 0.00 0.00 

NDVI (-0.05)-0.21 184576 8.14 795 3.72 0.30 
0.21-0.26 440960 19.44 3290 15.38 0.52 
0.26-0.30 692992 30.56 5791 27.07 0.88 
0.30-0.35 661120 29.15 7829 36.59 1.89 
0.35-0.52 288128* 12.71* 3691* 17.25* 2.15* 

*Represents the highest value for each landslide causative factor. 
 

Fracture density is relatively high, where major active faults, minor faults, and fractures accumulate. However, 
the relatively high FR values of the fracture density are in the low-to-moderate classes (0.85-1.53 m-1), where wet 
climate, steep terrain slope, high altitude, and underlying clastic sedimentary rock dominate (Table 2). Similar to 
the land cover-related factors, the high FR value corresponds to a healthy and higher density of trees and green 
vegetation. The relatively lower FR values fall in cultivated lands, semi-bare shrubland and grasslands (Table 2). 
This study implies that the land cover-related factor is subordinate to other climatic-, geomorphometric-, and 
geologic-related factors in controlling landslide susceptibility. 
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3.3 Landslide susceptibility and model validation 
 

Although landslide causative factors have a hierarchical relationship, this study combines a training dataset 
from the landslide inventory data with all factors to calculate the landslide susceptibility index (Figure 4A). The 
index is converted to landslide susceptibility classes (Figure 4B). Totals of 41.32% and 27.86% of the area are in 
moderate and high landslide susceptibility classes, respectively. These levels of susceptibility are along the 
foothills and mountainous zones in the east and west. The central basin is considered to have very low to low 
susceptible classes with a percentage of 13.32% and 9.79% of the entire area, respectively. The very high 
susceptibility class, defined as 7.71%, is in the high mountain in the west (Table 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 (A) Landslide susceptibility index of the watershed. (B) Landslide susceptibility classes of the watershed 
with the villages’ names that are highly susceptible to landslides. The data are derived by combining a training 
dataset of landslide inventory and ten landslide causative factors via Equations 1 and 2 using the FR model.   
 
Table 3 Assessment of landslide susceptibility classes in the Mae Tha River watershed using the FR model. 

 Susceptible 
classes 

 Number of 
landslide pixels 

Number of 
total pixels 

The area of the 
hazard zones 
(km2) 

The percentage of the 
area of the hazard 
zones (%) 

Very low          0 300581   46.97 13.32 
Low      354 220742   34.49   9.79 
Moderate    3549 932033 145.63 41.32 
High  10222 628386   98.19 27.86 
Very high  11924 173993   27.19   7.71 

 
The high to very high susceptible zones for a landslide are distributed along the high mountain in the west 

because the terrain ranges in the high elevation, is covered by soil on a slope steeper than 30o and is underlain by 
fractured clastic sedimentary rocks. The very high landslide susceptibility zone, where the dense distribution of 
historical landslide events and scars are observed, is close to seven villages in the Mae Tha sub-districts and eleven 
villages in the Tha Pla Duk sub-districts (Figure 4B). Compared to the general moderate level of landslide 
susceptibility across the watershed derived from the landslide susceptibility map of Chiang Mai and Lamphun 
provinces from the Department of Mineral Resources, Thailand 2021 [24], the landslide susceptibility map in this 
research provides more details on high to very high susceptible zones for landslide in the high mountain in the 
west. Hence, this map provides in-depth and local-scale landslide information for local government and city 
planners to conduct mitigation risk and management planning for the area. 

The area under the ROC curve (success rate and prediction curve) analysis can be used to evaluate model 
reliability and predictability. The results reveal that the ROC of the success rate curve gets closer to the top-left 
of the diagram, with an AUC value of 0.812 (Figure 5). The results for AUC and ROC curves on the success rate 
curves represent the very good performances of the model to identify landslide susceptibility. The predictability 
of approaching landslide occurrence from the prediction rate curve presents the AUC value of 0.673, indicating a 
fair prediction for forthcoming landslide events in the watershed (Figure 5). Based on the model evaluation on 
AUC and ROC curves, the finding suggests that landslide-prone areas correspond with the landslide susceptibility 
map generated by the FR model. This study has shown that the FR model is sufficient for the spatial analysis of 

(A) (B) 
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landslide susceptibility across the watershed. However, further research on landslide susceptibility and occurrence 
in the Mae Tha River watershed is necessary to refine and improve the methodology used in this study.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5 The ROC curve for validation testing. The AUC for landslide susceptibility data using the FR model. 
 

4. Conclusion 
 

This study highlights the use of geoinformatics and statistical FR models to evaluate landslide susceptibility 
data across the Mae Tha River watershed. The accuracy and reliability of landslide susceptibility classes obtained 
from the FR model reveal that areas of terrain with undifferentiated soil on the steep slope, high altitudes, wet 
climates, and underlying clastic sedimentary rocks mainly control the distribution of landslides across the 
watershed. Approximately 36% of the entire watershed is considered an area with high-to-very-high landslide 
susceptibility, mainly located above the base of the mountains or hills in the west. This model performs a suitable 
identification of landslide-susceptible zones and a moderate prediction of future landslides in the watershed. 
Hence, in-depth and local-scale landslide information across the Mae Tha River watershed would be beneficial 
for local governments and agencies aiming to implement suitable plans to reduce property damage and economic 
losses. 
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