Asia-Pacific Journal of Science and Technology: Volume: 29. Issue: 02. Article ID.: APST-29-02-13. Research Article

https://www.tci-thaijo.org/index.php/APST/index

APS Asia-Pacific Journal of Science and Technology

Published by the Research and Graduate Studies Division,
Khon Kaen University, Thailand

Oil palm age estimation using broad-band and narrow-band vegetation indices derived
from Sentinel-2 data

Angeli N. Jarayee', Helmi Z. M. Shafri!*, Yuhao Ang', Yang P. Lee?, Shahrul A. Bakar?, Haryati Abidin?, Hwee
S. Lim?, Rosni Abdullah*, Umar U. M. Junaidi®, and Na’aim Samad?

"Department of Civil Engineering and Geospatial Information Science Research Centre (GISRC), Faculty of
Engineering, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia

Geoinformatics Unit, FGV Sdn Bhd, FGV Innovation Centre, Lengkuk Teknologi, Bandar Enstek, Negeri
Sembilan, Malaysia.

3School of Physics, Universiti Sains Malaysia (USM), Gelugor, Penang, Malaysia.

4School of Computer Sciences, Universiti Sains Malaysia (USM), Gelugor, Penang, Malaysia.

SFGV Agri Services Sdn Bhd, Level 9, West, Wisma FGV, Jalan Raja Laut, Kuala Lumpur, Malaysia.

*Corresponding author: helmi@upm.edu.my
Received 3 October 2022
Revised 1 February 2023
Accepted 16 February 2023

Abstract

In the past, the monitoring of crops in the agriculture sector was done manually. However, this approach is
inconvenient as it consumes time, energy, and money. Various vegetation indices obtained through remote sensing
data are utilized to monitor vegetation development. One main factor affecting the oil palm’s production and
health is its age. Therefore, this study aimed to determine the relationship between vegetation indices (VIs) and
the age of oil palm using polynomial regression and to predict the oil palm age by generating the spatial
distribution map. The data used were raw data that consisted of the oil palm age and its boundaries and the satellite
data, Sentinel-2 imagery. There were four VIs used in this study: Normalized Difference Vegetation Index
(NDVI), Normalized Difference Red Edge (NDRE), Chlorophyll Content Index (CCI), and Soil Adjusted
Vegetation Index (SAVI). Among these VIs, CCI achieved the best overall accuracy with R? = 0.94, and the age
of oil palm can be predicted using the equation y = -4.6062x%+27.864x+14.169. The findings demonstrate that the
narrow-band vegetation index can effectively identify the spatial variation in the ages of oil palm trees and serve
as an inventory for decision-making.
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1. Introduction

The oil palm industry is a Malaysian agricultural sector that primarily contributes to Malaysia’s economy by
generating income from export activities and providing job opportunities. In 2020, this sector utilized
approximately 5.2 million hectares of land in Malaysia for cultivation. Monitoring the development of plants in
the agriculture sector was done manually in the olden days. However, this approach is no longer feasible
considering the large-scale cultivation of oil palm trees. Monitoring oil palm trees’ conditions on this scale
requires a lot of money and human power. Thanks to technological advancement, remote sensing techniques have
been used widely for various agriculture sector applications, such as detecting and calculating the number of trees
and supervising vegetation healthiness. To effectively monitor the conditions of oil palm plantations and tree
replanting, it is crucial to have accurate and detailed maps of the oil palm areas [1-4]. Satellite imagery such as
Landsat-8 and Sentinel-2 is the data source for the oil palm plantation maps. Satellite images provide various data
on the Earth’s surface, usually obtained through aircraft or satellites. Studying through remote sensing is highly
beneficial as it enables access to diverse locations, even those that are challenging to reach through transportation
[5]. Therefore, remote sensing is widely adopted because of its ease of use, cost-effectiveness, and temporal



efficiency. Researchers can perform analysis virtually and obtain data in less time than conventional field-based
methods.

In the agriculture industry, vegetation classification and monitoring are usually performed depending on the
bands reflected by the leaf [6]. Furthermore, it is essential to determine the biophysical characteristics and
properties of the oil palm to monitor its health. The vegetation indices (VIs) perform several other functions, such
as determining the density and growth development of plants, chlorophyll contents, nutrients, biomass, yields,
and other biophysical characteristics [7]. One of the most widely used VIs is the NDVI. Nonetheless, broad-band
vegetation indices like NDVI tend to become saturated when crops are grown under a large canopy [8]. The
problem can therefore be addressed by narrow-band vegetation indices, such as the NDRE and CCI, by including
red edge bands that show rapid changes in reflectance, which directly associate with the biophysical properties of
crops [9].

Identifying the age of the palm tree is significant since oil palm yield is closely associated with its growth
throughout its lifespan. The optimal yield period for a palm tree is between nine to eighteen years of age, following
which the yield capacity gradually decreases over time [10]. Past research studies have proven that remote sensing
technology has the potential to estimate and map the age of oil palm in plantations [11-13]. [13] used Landsat-8
satellite image to generate four indices (advanced vegetation index, bare soil index, shadow index, and thermal
index) and integrate them into the forest density canopy model for estimating oil palm age. [12] used NDVI from
Landsat 8 satellite images to develop a regression model for estimating the age of oil palms and determining the
distribution of oil palm age. Although the application of NDVI for age estimation has been reported in the
literature, the studies of other types of VIs are still limited. Therefore, narrow-band vegetation indices should be
utilized to estimate the age of oil palms, particularly for older palms with larger canopies.

The VIs used in this study include the NDVI, Soil Adjusted Vegetation Index (SAVI), Normalized Difference
Red Edge (NDRE), and Chlorophyll Content Index (CCI). The main objective of this study was to predict the oil
palm tree’s age based on vegetation indices using Sentinel-2 image. This study will then generate the distribution
map of the oil palm age based on the developed model inputted from vegetation indices.

2. Materials and methods

2.1 Study area

Figure 1 The study area.

The study area was in the North-Eastern Pahang in the Jerantut district, as shown in Figure 1. The plantation
area consists of 23 blocks that cover approximately 24 km?. This study area was chosen due to its variations in
the oil palm age. The age range of oil palms in this study was between 5 and 28 years (Table 1). The data indicated
a monthly increase in yields, suggesting that the palm trees in this area could be a suitable candidate for studying
the effect of vegetation indices on their age.

Table 1 General information on a basic description of age across the blocks.

Information Values

Ages 5-28 years old
Count 24

Mean 20

Standard deviation 7.16

Max 28

Min 5
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Figure 2 The flowchart of the study.

Figure 2 shows the methodology proposed to obtain the results discussed in Part 3 of this journal. It consists
of several steps, including data acquisition using Quantum Geographic Information System (QGIS) and reference
data received from Felda Global Ventures (FGV) Holdings Berhad. Satellite data, namely the Sentinel-2 image
for the year 2020 obtained from QGIS, was pre-processed, and VIs were extracted from it. These VIs were used
to conduct regression analysis to determine the relationship between VIs and the age of the oil palm tree. The final
step was to generate the oil palm age distribution map based on the results from regression analysis.

2.3 Data acquisition

Two data used in this study were the reference and satellite imagery. The reference data used in this study
consisted of the oil palm age and the plantation boundaries obtained from Felda Global Ventures (FGV) Holdings
Berhad. Meanwhile, the satellite data was acquired from Sentinel-2 (S2) in QGIS 3.22 for the year 2020 using
Semi-Classification Plugins (SCP). This data was used to generate vegetation indices in mapping the age
distribution of oil palms. The primary purpose of S2 satellites being launched by the European Space Agency
(ESA) under the Copernicus Programme was to improve and provide a higher spatial resolution of satellite
information for the classification of land cover and land use (LULC), as well as to monitor the changes of climate
and disaster. Additionally, it is well-suited for land cover monitoring, particularly in vegetation-rich areas such as
agricultural plantations, forests, urban development areas, and wetlands. It has received positive feedback
regarding its effectiveness [14].

S2 image is known as a multispectral satellite, consisting of 13 spectral bands (from near-infrared to shortwave
infrared) and 10, 20, or 60 meters of spatial resolution for respective bands. This band combination from the
satellite image has been used to obtain various data. This research used these band combinations to estimate the
chlorophyll content in the oil palm tree leaves by ratio. For instance, the band combination of B4 (red), B3 (green),
and B2 (blue), S2 images will generate a natural color which means it will produce an image just like how we see



it in reality. The S2 image had a 10% cloud cover percentage to create a cloud-free composite. Next, the S2 image
was pre-processed by using a cloud masking method. The bands used in this research are shown in Table 2. The
spatial resolutions of all satellite bands were resampled to 10 meters using the nearest neighbor method.

Table 2 The 13 bands in S2.

Band Resolution (m) Central Wavelength (nm) Description
B1 60 443 Ultra-Blue (Coastal and Aerosol)
B2 10 490 Blue
B3 10 560 Green
B4 10 665 Red
BS5 20 705 Visible and Near Infrared (VNIR)
B6 20 740 VNIR
B7 20 783 VNIR
B8 10 842 VNIR
B8a 20 865 VNIR
B9 60 940 Short Wave Infrared (SWIR) - Water Vapor
B10 60 1375 SWIR - Cirrus
B11 20 1610 SWIR
BI12 20 2190 SWIR
2.4 Analysis of data

This study analyzed the data by rationing the bands in QGIS 3.22 and extracting the VIs from the generated
maps. The values extracted from vegetation maps were used to create the regression modeling. The best
relationship models closest to 1 were selected to develop the age spatial distribution map.

2.4.1 Spectral transformation

The VI is an essential quantified element that is important in the agriculture sector to monitor the healthiness
and development of a plant. The value was calculated based on the bands of the satellite imagery acquired from
remote sensing platforms, such as satellites, aircraft, and UAVs [15]. In this paper, four VIs were calculated based
on the S2 image. These VI included NDVI, SAVI, NDRE, and CCI. Table 3 shows the formula used for the VI
calculations in QGIS.

Table 3 The vegetation indices and formulas.

No. Vegetation Index Calculation Reference
1. NDVI (NIR-R)/(NIR+R) [16]
2. NDRE (NIR-RE)/(NIR+RE) [17]
3. SAVI [(1+L)(NIR-R)]/(NIR+R+L) [18]
4. CCI (NIR/RE)-1 [19]

2.4.1.1 Normalized Difference Vegetation Index (NDVI)

NDVI is the ratio of the difference in the near-infrared (NIR) and the red reflectance (R) to their total. The
ratio is typically between -1 to 1, indicating the rate of photosynthesis in the plant. Healthy plants with high
chlorophyll content, essential for photosynthesis, typically reflect at high NIR, resulting in a high NDVI [16].
Thus, it can be inferred that higher NDVI values indicate better plant health, whereas lower NDVI values suggest
the presence of little or no vegetation.

2.4.1.2 Normalized Difference Red Edge (NDRE)

NDRE is the difference between the NIR and red edge (RE) bands divided by the sum of the NIR and RE
bands. NDRE is usually used in the later phase of agriculture. Similar to NDVI, a higher NDRE value indicates
plants with high levels of chlorophyll content and a healthy state. Compared to NDVI, NDRE can estimate the
chlorophyll content in the tree canopy more accurately due to the RE bands [17].



2.4.1.3 Soil Adjusted Vegetation Index (SAVI)

SAVI is one of the vegetation indices used to reduce the brightness of the soil by using the correction factor
(L) [18]. It is the ratio of the difference in NIR and red bands to the sum of NIR and red bands with a correction
factor (L). The correction factor (L) value is often defined as 0.5, which reduces the influence of soil brightness
when the vegetation area is sparsely distributed.

2.4.1.4 Chlorophyll Content Index (CCI)

CCI is the difference between the ratio of NIR to RE spectral bands and 1. The chlorophyll content in the
leaves provides the necessary information about the health condition of the plants as measured by the rate of
photosynthesis. The high chlorophyll content and photosynthesis rate indicate a healthy plant [19].

2.4.2 Regression modeling

Regression analysis can help determine the impact of one variable on another variable. In this study, we
investigated how the age of the oil palm affects the vegetation indices (NDVI, NDRE, SAVI, and CCI). Due to
the non-linear nature of the oil palm data in this study, polynomial regression models were utilized. To find the
better fitting, we used the mean square error of polynomial regression to determine the suitable degree of
polynomial [20]. The lower the mean square error, the better the model fits the data. We found that the best degree
of polynomial fitting for the model was 2. The equation obtained was proven useful for estimating the age of oil
palm trees, with the value of R? indicating the fitness of the model to the actual data. The nearer the value to 1,
the better the model fits the data [21].

2.4.3 Oil palm age distribution mapping

This study generated the oil palm age distribution map in QGIS 3.22 using an interpolation method known as
inverse distance weighting (IDW). A weighted average of the values recorded at the control point determined the
weights allocated to the unsampled locations.

3. Results and Discussion

3.1 Relationship between vegetation indices and oil palm age
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Figure 3 Vegetation indices maps: (A) CCI, (B) NDRE, (C) SAVI, and (D) NDVL



VIs combines surface reflectance at two or more wavelengths to emphasize a specific vegetation characteristic
based on reflectance. Each VI emphasizes a specific characteristic of the vegetation. Formulas in Table 2 were
computed using the raster calculator, and the resulting vegetation indices (VIs) were reclassified to generate maps,
as shown in Figure 3.

(A) Predicted against actual age based on CCI (B) Predicted against actual age based on NDRE
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Figure 4 Scatter plots of the predicted age versus actual age of oil palm trees for polynomial regression in the
year 2020. (A) CCI, (B) NDRE, (C) SAV], and (D) NDVL.

Figure 4 depicts the relationship between the predicted and actual age of oil palm trees, as determined by
polynomial regression. The graph for predicted age versus actual age using CCI yielded the highest R? value of
0.94.

The VIs were extracted from the respective VIs map of the study area, which consisted of 23 blocks. The
extraction involved a random selection of the respective boundary and age. The extracted VIs were used to
generate a regression model shown in Figure 5. The regression models were developed using the oil palm age data
from FGV, and VIs extracted from S2 2020, as shown in Figure 5(A)—(D). The relationship between each VI and
the oil palm age was visualized in a scatterplot. A scatterplot is a graph frequently used to observe the relationship
between two variables. The data were fitted using polynomial regression with a degree order of two. The
polynomial regression was chosen due to its flexibility in predicting the non-linear relationship between VIs and
oil palm age. The coefficient of determination (R?) values were obtained from these models, and the highest R?
amongst these VIs was selected to generate the age distribution map. The range of R?is between 0 to 1. The closer
the value of R? to 1, the lesser the discrepancies between the measured data and the predicted values.

Figure 5(A)—(D) shows the graphs representing the relationship between the oil palm age and the VIs. Figure
5 shows the results of the model and coefficient of determination (R?) for CCI. CCI achieved the best overall
accuracy among VIs with an R? = 0.94, indicating that 94% of the data variability fit the regression model. The
equation, y = -4.6062x>+27.864x+14.169, was used to predict the age of oil palm. The CCI extracted from the S2
image demonstrated a good correlation with the oil palm age. The lowest R? showing the correlation between the
oil palm age and NDVI was 0.58. During the growing stage, the value of NDVI is usually lower than SAVI (R? = 0.78)
since SAVT uses soil-adjustment factors (L) for its analysis. SAVI can be another alternative adjusted index for
NDVI because it can eliminate the noise of the soil background. Further explanation was provided by [22], who
demonstrated that the negative soil adjustment factor was also a factor of the slope of vegetation contour and the



positive intersection points between vegetation isolines and soil. NDRE achieved better accuracy (R?= 0.80) than
NDVI and OSAVI because it comprises a red edge band that can penetrate deeper into the canopy of the plant’s
leaves. Additionally, CCI achieved the highest accuracy with an R? of 0.94 among other VIs. The results were
consistent with most precision agriculture methods reported in previous studies [23][24]. A narrow vegetation
index, such as NDRE and CCI, is highly responsive to changes in leaf reflectance, which coincide with the
transition between chlorophyll absorption at the red wavelength and canopy scattering at the NIR wavelength
[25][26]. Our results demonstrate that the narrow band vegetation index is the best indicator for estimating oil
palm age, which surpasses the previous work of [12] that used NDVT to estimate oil palm age.

(A) Predicted age against CCI (B) Predicted age against NDRE
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Figure 5 The trend in the age of oil palm trees against VIs: (A) CCI, (B) NDRE, (C) SAVI, and (D) NDVI.

Figure 5 (A)—~(D) exhibits a consistent pattern across all graphs, with a decrease in vegetation indices (VIs)
observed as oil palm trees age. Oil palm trees typically have a lifespan of 25 to 30 years before they are replaced
by replanting. The young oil palm trees showed lower VIs. At their prime age (10 to 24 years), the VIs increased
significantly, and in mature age (>25 years), the value decreased. As the plant ages, the rate of photosynthesis
decreases, and the amount of chlorophyll degrades, resulting in a low VI. Crop yields are typically highest between
9 to 18 years, after which they decline. High yields also indicate the high usage of chlorophyll for photosynthesis,
as exhibited in increased Vls.

3.2 Oil palm mapping
A spatial distribution map was used to show the density of the oil palm in the study area based on their age.

The map was generated by calculating the predicted oil palm age based on the model equation obtained through
regression analysis.



OIL PALM AGE

Figure 6 Spatial age distribution map.

Generated using spatial interpolation called inverse distance weighting (IDW), the spatial age distribution map
shows the density of the oil palm trees according to their age. In Figure 6, younger oil palm trees are depicted as
red, while the progressively darker shades of green correspond to older trees. The results demonstrate that most
oil palm trees in the study area were mature (age > 20 years). With the information extracted from the spatial
maps, management can accurately plan replanting programs to maintain oil palm yield production.

4. Conclusion

The findings demonstrate the effective use of narrow and broad-band vegetation indices for developing the
model to estimate oil palm age. The result shows that the narrow-band vegetation index is the best indicator for
estimating the oil palm age compared to broad-band vegetation indices. There is a moderate correlation between
CCI and oil palm age. As the age of oil palm increases, the value of vegetation indices (VIs) decreases. Compared
to other VIs, CCI achieved the best overall accuracy with an R? = 0.94, and the age of the oil palm was predicted
using y = -4.6062x>+27.864x+14.169. Based on the spatial distribution maps, the density of the oil palm trees
based on their age was determined. Future studies should focus on assessing the distribution of oil palm age within
blocks to ascertain the actual coverage areas based on age. Efforts should be made to validate the relationship
between chlorophyll content and oil palm age using SPAD readings. The findings will aid in developing a
comprehensive mapping procedure for the plantation. Developing comprehensive mapping procedures for the
palm age can help establish an inventory for the oil palm age and may be effective for the ground census operation
so that any loss of information can be avoided.
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