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Abstract

This work present the experimental investigation on heat transfer enhancement and 
thermal performance in a square-duct heat exchanger inserted with 45º V-downstream 
winglet turbulator is carried out by varying velocity of air in the turbulent regime for 
Reynolds numbers (Re) ranging from 4000 to 26,000 in the test section with a constant 
wall heat flux condition. Influents of four different pitch lengths; P=22.5, 33.75, 45 and 90 
mm (PR=P/H=0.5, 0.75, 1 and 2) and three different winglet heights, e=6.75, 9 and 11.25 
mm (BR=e/H=0.15, 0.2 and 0.25) were inserted diagonally and placed in the core flow area 
into the test duct on heat transfer rates in the term of Nusselt number (Nu), pressure loss 
in form of friction factor (f) and thermal performance (η). It was found that the 45º V-down-
stream winglet is provided the Nu and f higher than the smooth surface around 6.0 to 8.7 
times and 37 to 170 times, respectively depending upon operating conditions while the 
thermal performance are about 1.50–2.06. The maximum thermal performance for using 
45º V-downstream winglet turbulator is 2.06 at Re=4100, BR=0.2 and PR=1.0 in this  
experiment. 
Keywords :  V-downstream winglet, square-duct heat exchanger, thermal performance

1. Introduction

Many researchers have been carried 
out to study the effect of geometry of  
turbulent promotor/turbulator for enhancing 
the heat transfer rate and improving the 
thermal performance enhancement factor as 
seen in the Ref (1–2). The main aim of  
investigation is to make more compact or 

high performance heat exchangers, possibly 
their cost or to reduce the pumping power 
required for a given heat transfer process, 
which can result in a saving of investment 
or operating costs. In general, heat transfer 
enhancements technics can be classifieds 
into three methods: active, passive and 
combine method. Within the passive  
category, insertion of turbulator device is 
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one of the most promising techniques  
because this method can be easily employed 
in an existing heat exchanger without  
requiring an additional extra power source.

Varun et al. (3) studied experimentally 
the heat transfer and friction characteristics 
by using a combination of inclined ribs on 
the absorber plate of a solar air heater.  
Results show that the roughened collector 
with absorber plate having relative roughness 
pitch of 8 gives the best performance. The 
heat transfer and fluid flow characteristics 
in a duct heat exchanger fitted with curved 
trapezoidal, rectangular, trapezoidal and 
delta winglets were experimentally investi-
gated by Zhou and Ye (4). Influent of  
combined turbulator (ribs and winglet) on 
convective heat transfer and friction loss 
behaviors for turbulent airflow through a 
constant heat fluxed channel were presented 
by Promvonge et al. (5). Won and Ligrani 
(6) carried out experimentally a comparison 
of heat transfer characteristics of channels 
with 45° parallel and crossed ribs and found 
that the 45° parallel ribs perform better than 
the 45° crossed ribs. Promvonge et al.  
(7, 8) presented the numerically study the 
thermal characteristics in a square channel 
with 30° and 45° angled baffles on two 
opposite walls and compared with the 90° 
transverse baffles.

Chokphoemphun et al. (9) presents the 
effect of V-Shape winglet vortex generators 
with a different attack angle, winglet-height 
and winglet pitch length were inserted 
placed in the core flow area into the test tube 
on thermal performance enhancement of a 
uniform wall heat-fluxed tube heat exchanger 
in turbulent regime. The influence of 30° 
incline winglet vortex generators with four 
different winglet pitch ratios and three 
blockage ratios inserted in the core flow 
area on heat transfer rate and pressure loss 

of tube heat exchanger was reported by 
Chokphoemphun et al. (10).

Most of the investigations, cited 
above, have focused on thermal perfor-
mance for various blockage and pitch ratios 
for baffles/ribs/winlets that placing on  
surfaces of duct or channels and rarely been 
found to be inserted it on the core flow of 
the tube heat exchangers. In the present 
work, the 45° V-downstream winglet  
turbulator are mounted periodically on  
double-sides of a straight tape inserted  
diagonally and placed in duct heat exchanger 
are conducted with the main aim to examine 
the heat transfer and fluid flow behaviors.

2. Data reduction

2.1 Nusselt number
	    The heat transfer is presented in a 

term of the average Nusselt number as seen 
in the Ref (11) which can be obtained by. 
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specific heat of air, iT and oT  is the inlet and 
outlet temperature of air, w
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temperature were calculated from 28 points 
of surface temperatures, bT is the bulk  
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3. Experimental setup and Winglet 
Turbulator

The detail of the experimental apparatus 
used in the present work is shown schemat-
ically in Figure 1. In the apparatus, the inlet 
bulk air at 25 °C from a 1.45 kW blower 
was directed through an orifice flow-meter, 
settling tank and passed to the test  
square-duct. The airflow rate was measured 
by the orifice-meter, built according to 

ASME standard (14) and calibrated by  
using a hot-wire anemometer to measure 
flow velocities across the test duct.  
Manometric fluid was used in an inclined 
manometer with specific gravity (SG) of 
0.826 to ensure reasonably accurate  
measurement of pressure drop across the 
orifice. The desired volumetric airflow rate 
from the blower was obtained by controlling 
the motor speed of the blower through an 
inverter. The 3 mm thick aluminum  
square-duct having a cross section (H×H) 
of 45×45 mm2 and overall length of 3000 
mm and was divided into two sections:  
a clam section of 2000 mm and a test section 
(L) of 1000 mm. The AC power supply was 
the source of power for the plate-type  
heater used for heating all walls of the test 
section and maintain a uniform surface heat 
flux and the outer surface of the test section 
was well insulated to minimize heat loss to 
surroundings. The temperature distributions 
along the outer surface of the test section 
were measured by 28 type-K thermocouples 
(11-points on upper wall, 11-points on side 
walls and 6-points on lower wall) while the 
inlet and outlet air temperatures at upstream 
and downstream of the test duct were  
measured by 2 RTD PT-100. All of the 
temperature readings from the measurement 
system were consistently recorded using  
a data logger. The pressure drop across the 
test section was measured by two static 
pressure taps, mounted on the upper wall at 
upstream and downstream positions of the 
test section and observed measurable value 
from a digital manometer. Reynolds  
numbers for the air flowing through the test 
section were controlled in the range of 4000 
to 26,000.

To quantify the uncertainties of  
measurements, the reduced data obtained 
experimentally were determined. The  
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uncertainty in the data calculation was based 
on ref. (15). The maximum uncertainties of 
non-dimensional parameters were ±5% for 
Reynolds number, ±7% for Nusselt number 
and ±8% for friction. The uncertainty in the 
axial velocity measurement was estimated 

to be less than ±5%, and pressure has  
a corresponding estimated uncertainty  
of ±5%, whereas the uncertainty in temperature 
measurement at the duct wall was about 
±0.5%.

Figure 1. Schematic diagram of experimental apparatus.

A detail of the test duct inserted with 
45º V-downstream winglet turbulator is 
depicted in Figure. 2. All winglet made of 
aluminum strip were 0.3 mm thick. As seen 
in figure, the V-downstream winglet  
elements are mounted on the core flow with 
attack angle of 45° with respect to the main 

flow direction on both side of straight tape. 
The V-downstream winglet were inserted in 
the test duct with four different pitch 
lengths; P=22.5, 33.75, 45 and 90 mm 
(PR=P/H=0.5, 0.75, 1 and 2) and three  
different winglet heights, e=6.75, 9 and 
11.25 mm (BR=e/H=0.15, 0.2 and 0.25).
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Figure 2. V-downstream winglet with straight tape inserted into test section.

4. Results and Discussion

4.1 Validation of smooth tube
	   The present experimental results 

on the heat transfer and friction character-
istics in a smooth wall duct were first  
validated in terms of Nusselt number (Nu) 
and friction factor (f), respectively. The Nu 
obtained from the present smooth duct was 
compared with that from correlations of 
Dittus-Boelter and Gnielinski while the f 
was compared with data from correlations 
of Blasius and Petukhov found in the open 
literature (16).
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Figure 3 shows a comparison of the 
Nu and f obtained from the present work 
with those from correlations from previous 
works available for steady state flow  
conditions for smooth duct. As shown in the 
figure, the present results are in good  
agreement with those from available  
correlations within ±4% and ±5% in  
comparison with Dittus-Boelter and  
Gnielinski correlations, respectively, for Nu 
and ±3% and ±5% in comparison with both 
Blasius and Petukhov for f.
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Figure 3. Verification of Nusselt number and friction factor for smooth duct.

4.2 Effect of V-downstream 
winglet on heat transfer

The relationships between heat  
transfer (Nu) and Reynolds numbers (Re) 
of the square-duct heat exchanger inserted 
with 45º V-downstream winglet are  
demonstrated in Figure 4. According to the 
figure, the heat transfer enhancement values 
of the inserted duct are found to be better 
than that the smooth duct. This is due to the 
interruption of the flow by the turbulators 
which results in the destruction of thermal 
boundary layer near the duct wall. The Nu 
increases with the rise of Re and the BR and 
with the decreasing of the PR.

The Nusselt number ratio (Nu/Nu0) 
plotted against the Re values is displayed in 
Figure 5. The figure present, the Nu/Nu0 

tends to slightly decrease with the rise of 
Re for all case study. Under the present 
experimental conditions, the increases in 
heat transfer over the smooth duct for using 
the V-downstream winglet with PR of 0.5, 
0.75, 1 and 2 are approximately 7.41–7.52, 
7.11–7.28, 6.68–6.77 and 6.00–6.09 times 
for BR=0.15, 8.34–8.44, 8.16–8.24, 7.87–
7.97 and 7.02–7.17 times for BR=0.2 and 
8.53–8.65, 8.40–8.51, 8.20–8.33 and 
7.39–7.48 times for BR=0.25. The mean Nu 
values for BR=0.15, 0.2 and 0.25 are about 
7.41–7.52, 8.34–8.44 and 8.53–8.65 times 
for PR=0.5, 7.11–7.28, 8.16–8.24 and 
8.40–8.51 times for PR=0.75, 6.68–6.77, 
7.87–7.97 and 8.20–8.33 times for PR=1 and 
6.00–6.09, 7.02–7.17 and 7.39–7.48 times 
for PR=2 over the smooth duct.
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winglet gives rise to the  f  values higher 
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with the rise of the PR and increases with 
the increasing of the BR. The higher friction 
loss mainly comes from the increased  
surface area and higher swirl intensity.

The variation of the friction factor 
ratio (f/f0) with the Re values are presented 
in Figure 7. It is observed that the f/f0 tends 
to increase with raising the Re for all case 
study. Under the present experimental  
conditions, the increases in f for using the 
V-downstream winglet with PR of 0.5, 0.75, 
1 and 2 are approximately 59–99, 52–85, 

40–64 and 37–61 times for BR=0.15,  
79–133, 70–118, 58–95 and 54–88 times 
for BR=0.2 and 101–169, 94–157, 78–129 
and 72–120 times for BR=0.25. The mean  
f values for BR=0.15, 0.2 and 0.25 are about 
59–99, 79–133 and 101–169 times for 
PR=0.5, 52–85, 70–118 and 94–157 times 
for PR=0.75, 40–64, 58–95 and 78–129 
times for PR=1 and 37–61, 54–88 and  
72–120 times for PR=2 over the smooth 
duct.
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4.4 Effect of V-downstream winglet 
on thermal performance

	 Figure 8 shows the variation of 
the thermal performance (h) with Reynolds 
number (Re). For all, the data obtained by 
the measured Nu and f values are compared 
at the constant pumping power. It can be 
seen in the figure that the h generally are 
above unity for 45º V-downstream winglet 
inserted insert, indicating that the use of 45º 
V-downstream winglet turbulators is  
advantageous over the smooth duct. The h 
for using the 45º V-downstream winglet 
turbulators with PR of 0.5, 0.75, 1 and 2 are 
approximately 1.60–1.92, 1.61–1.94,  
1.64–1.97 and 1.52–1.82 times for BR=0.15, 

1.63–1.96, 1.66–1.99, 1.72–2.06 and  
1.58–1.89 times for BR=0.2 and 1.54–1.85, 
1.55–1.87, 1.62–1.95 and 1.50–1.79 times 
for BR=0.25. The mean f values for BR=0.15, 
0.2 and 0.25 are about 1.60–1.92, 1.63–1.96 
and 1.54–1.85 times for PR=0.5, 1.61–1.94, 
1.66–1.99 and 1.55–1.87 times for PR=0.75, 
1.64–1.97, 1.72–2.06 and 1.62–1.95 times 
for PR=1 and 1.52–1.82, 1.58–1.89 and 
1.50–1.79 times for PR=2 over the smooth 
duct. The maximum h of using 45º V-down-
stream winglet turbulators for BR=0.15, 0.2 
and 0.25 are 1.97, 2.06 and 1.95, respectively 
at Re=5300 and PR=1 used in the present 
work. 13 
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5. Conclusion

An experimental study has been  
performed to investigate the heat transfer 
enhancement and thermal performance in a 
square-duct heat exchanger inserted with 
45º V-downstream winglet turbulator with 
different pitch lengths and winglet heights 
for the turbulent regime, Re=4000–26,000 
under uniform heat flux condition. From the 
experimental results of the present study can 
be conclude that the heat transfer rates and 
pressure loss are increased with the rise of 
the winglet heights and with the decreasing 
of the pitch lengths. The square-duct inserted 
with 45º V-downstream winglet is augmented 
the mean heat transfer rate higher than the 
smooth tube around 6.0 to 8.7 times,  
depending upon operating conditions. The 
maximum thermal performance for using 
45º V-downstream winglet turbulator under 
the present experimental conditions is 2.06 
at Re=4100, BR=0.2 and PR=1.0 in this 
experiment.    
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