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Abstract

Rice residue from food waste contained of starch as a mainly component which could
be either hydrolyzed to be fermentable sugars or directly used as a carbon source for the
growth and high value metabolites production by various microorganisms. Therefore, this
study focused on the utilization of rice residue and rice residue hydrolysate from food
waste as a carbon source for the growth and lipids production of oleaginous yeast. Rice
residue obtained from canteen of the Faculty of Agro-Industry, Chiang Mai University,
Thailand. It composed of moisture content (76.68+0.55%), crude fat (1.76+0.47%), crude
protein (3.04+0.06%), ash content (0.46+0.07%), and carbohydrate content (18.05+0.01%),
respectively. Rice residue was then subjected to enzymatic hydrolysis using o-amylase and
amyloglucosidase (AMG), resulting the maximal reducing sugars of 168.02+0.02 g/L. The
screening of oleaginous yeast from flowers and leaves samples from Doi-Inthanon
National Park, Faculty of Agro-Industry, Chiang Mai University, the culture collection of
the Thailand Institute of Scientific and Technological Research (TISTR) and the Division
of Biotechnology, Faculty of Agro-Industry, Chiang Mai University were investigated.
Sixty-seven isolates were obtained, and only four isolates were identified as oleaginous
yeast because of containing high lipids content more than 20% (w/w), when glucose or
rice residue hydrolysate was used as a carbon source. Those oleaginous yeasts were identified
as Rhodotorula sp. C7, Rhodosporidium paludigenum C10, and the new isolate TC32,
respectively. Their growths and lipid productions were compared with Diozegia sp. TISTR5792.
The results showed that, C7, C10, TISTR5792 and TC32 produced the maximal lipids content
0f 24.26+0.56, 23.69+0.91, 22.43+1.09 and 23.07+0.80% (w/w) when cultivated in the basal
medium supplemented with enzymatic-rice residue hydrolysate. Surprisingly, we found
that TISTR5792 and TC32 could grow well in the medium supplemented with rice residue
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(without hydrolysis) and showed lipids content of 18.41+0.10 and 21.67+0.02% (w/w),
respectively. These results indicated that rice residue from food waste shows a high
potential to be an effective carbon source for the growth and lipid production of the

selected oleaginous yeasts.
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1. Introduction

Food waste, an organic solid waste
which is usually discharged from various
sources including canteen, restaurants,
commercial kitchens and cafeterias (1). The
amount of food waste has been predicted to
increase in the next 25 years due to
economic and population growth, mainly in
Asian countries. For example, the annual
amount of food waste in Asian countries
could increase from 278 to 416 million tons
from year 2005 to 2025 (2). There are
usually landfilled or incinerated which can
produce many environmental problems (3)
such as emission of greenhouse gases
especially methane and carbon dioxide (4).
The major components of the food waste is
starch, which can be hydrolyzed to
fermentable sugars (5) The fermentable
sugars can be used as a carbon source for
the growth and high value metabolites
productions e.g. ethanol (3, 5-8), hydrogen
gas (H,) (9-11), methane (12, 13), and
microbial oil a feedstock for biodiesel by
various oleaginous microorganisms.

Oleaginous yeasts are a single cell oil
(14) which can be fast synthesized and
accumulated lipid in their cell more than
20% (w/w). Lipids derived from oleaginous
yeast, known as microbial lipid, have fatty
acid compositions similar to vegetable oil
which can use as a feedstock for
biodiesel production. The production of
microbial lipid has many advantages more

than vegetable oils such as shorter culture
period, easy to harvest and no need of
agricultural land (15). In addition,
oleaginous yeast also can utilize various of
low cost substrates (16) such as crude
glycerol (15, 17), molasses (16, 18),
hydrolysate from wheat straw (19), soluble
starch (20), cassava starch hydrolysate (21)
and palm oil mill effluent or POME (22).

The objective of this study is to screen
oleaginous yeasts which are capable to use
rice residue and rice residue hydrolysate
from food waste as a carbon source for the
growth and lipids production. Moreover,
this research demonstrated the high
efficiency method using the bioconversion
of food waste to be added-value microbial
oil which can be used as a substrate for
biodiesel production.

2. Materials and methods

2.1 Raw material

Rice residue was obtained from
canteen of the Faculty of Agro-Industry,
Chiang Mai University, Chiang Mai,
Thailand, during the first semester of the
academic year 2015. It was crushed into
small size by using a blender. After that, it
was frozen at -20°C until used. Proximate
analysis of rice residue was analyzed
according to the AOAC 2002 (23). The
composition of rice residue e.g. moisture
content, crude fat, ash content and crude
protein is provided in Table 1.
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Table 1. Composition of rice residue from food waste

Parameters

Composition (%g/g)

Moisture content
Crude fat

Ash

Crude protein

Carbohydrate
(by difference)

*76.68+0.55
1.76+0.47
0.46+0.07
3.04+0.06

18.05+0.01

*Means and standard deviations of triplicate samples

2.2 Enzymatic hydrolysis of rice

residue from food waste
Rice residue from food waste was

used as a substrate for fermentable sugars
production. The substrate was subjected to
enzymatic hydrolysis by mashing with dis-
tilled water and pH was adjusted to be 4.5
by adding 10% H_SO,. Then, 183.17 U/g
rice residues or 10% (v/w) of a-amylase
(SPEZYME FRED; Genencor, USA) was
added, and the reaction was carried out at
80°C. After 2 h of reaction time, 116.67 U/g
rice residues or 1.5% (v/w) of AMG
(DISTILLASE VPH; Genencor, USA) was
added and incubated at 60°C for 72 h. The
releasing of reducing sugar was measured
using dinitrosalicylic acid (DNS) method
(24).

2.3 Acid hydrolysis of residue from
food waste

For the acid hydrolysis, the rice

residue was mixed with 3.0 M HCI at the
solid to liquid ratio of 7:3 before autoclaving
at 121°C for 15 min. After that, the pH of
hydrolysate was adjusted to neutral pH
(6.5-7.5) by adding 2.5 M NaOH. The
reducing sugar content of hydrolysate was
measured using DNS method (24).

2.4 Screening and isolation of
oleaginous yeast for lipid production
Oleaginous yeasts were screened
from flowers, fruits and leave samples
obtained from Doi-Inthanon National Park,
Faculty of Agro-Industry, Chiang Mai
University and Thailand Institute of
Scientific and Technological Research
(TISTR), Thailand. They was enriched in
yeast-malt extract medium (YM) containing
(per liter); yeast extract 4.0 g, malt extract
10.0 g and glucose 4.0 g supplemented with
100 ppm chloramphenicol to minimize
bacterial growth. The initial pH was
adjusted to 6.0 with H,PO,or 0.1 M KOH
and then, autoclaved at 121°C for 15 min.
All of samples were incubated on incubator
shaker (Kiihner, Switzerland) at 28°C, with
shaking speed 200 rpm for 3 days. After
that, the culture broth was diluted by
10-folds serial dilution technique and
spread on YM medium agar plate. The
yeasts colonies were selected and
re-streaked on YM medium agar plate. The
lipids accumulated in yeast cell was
selected by Sudan black B technique (25).
Moreover, the pure yeasts isolates was kept
on YM slant at 4°C or maintained in 60%
glycerol stock at -20°C until used (26).
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2.5 Screening of oleaginous yeast
using rice residue from food waste as a
carbon source

The glycerol stock of yeast isolate
(from selection 2.4) was transferred into
250 mL Erlenmeyer flasks containing 50
mL of YM on incubator shaker at 28°C with
a shaking speed of 200 rpm for 3 days. The
starter culture was 10.0% (v/v) inoculated
by batch fermentation. They were
cultivated in basal medium supplemented
with either glucose, enzymatic or acid-
hydrolysate from rice residue, soluble starch
(Sisco Research Laboratories Pvt. Ltd.,
India) or rice residue. The concentrations of
carbon source in each experiment were
adjusted to be 10.0 g/L as glucose content
in each carbon source. The glucose content
in each carbon source was measured by
phenol-sulfuric method (27). The basal
medium contained (per liter) of yeast extract
1.0 g, KH,PO, 5.5 g, (NH,),SO, 5.3 g,
K ,HPO, 3.7 g, MgSO,.7H,0 0.5 g, MnSO,.
H,00.2 gand NaCl 0.5 g (26). The initial pH
was adjusted to 6.0. The culture was
incubated on an incubator shaker at 28°C with
a shaking speed of 200 rpm for 5 days.

2.6 Analytical method

Dry cell weight (DCW) was
collected from 5 day-olds cultivation broth,
which was taken from each flask and
centrifuged at 6,000 rpm for 10 min. The
cell pellet was washed twice with distilled
water before drying at 80°C overnight and
transferred to desiccator until constant
weight (26).

The lipids of cell pellet was extracted
by a modified method of Bligh and Dyer
(25), which broke the yeast cell, carried out
in screw cap tube (25x150 mm) with
a mixture of chloroform : methanol (2:1,
v/v) and glass beads (size 3 mm). The
mixture was vigorously shaken in a vortex
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mixer for 30 min, and then sonicated for 15
min. The ruptured cell and extracted lipids
were centrifuged, and the clear supernatant
was collected and removed by vacuum
evaporator. After that, crude lipid was
transferred to desiccator until constant
weight (g/L). The lipids content was
expressed in the percentage of the crude
lipid in relation to the dry cell weight (%

g/g).
3. Results and discussion

3.1 The enzymatic and acid
hydrolysis of rice residue from food waste
The enzymatic-rice residue
hydrolysate contained reducing sugars of
168.02+0.02 g/L and the product yield
coefficient (p/s) of 0.960 g/g, while acid
hydrolysis method showed 128.55+0.04 g/L
and the product yield coefficient of 0.734
g/g, respectively. These results indicated that
enzymatic hydrolysis yielding high content
of glucose because of the specificity of
amylolytic enzymes (28). The acid
hydrolysis showed lower reducing sugar
than enzymatic method. The main drawback
of acid hydrolysis is formation of undesired
products e.g. furans, carboxylic acid and
phenolic compound under high temperature
and pressure conditions (19). Moreover,
those byproducts have been reported as the
microbial growth inhibitors (29).
3.2 Screening and isolation of
oleaginous yeast for lipid production
The screening of oleaginous yeast
from flowers and leaves samples and the
culture collections of TISTR and the
Division of Biotechnology, Faculty of
Agro-Industry were studied. Sixty-seven of
yeast isolates were obtained. After
cultivation in the basal medium
supplemented with glucose as a carbon
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source, found that seventeen isolates could
accumulate lipids in their cell more than
10% (w/w) as shown in Figure 1. However,
only 2 strains of Rhodotorula sp. C7 and
Rhodosporidium paludigenum C10 could
accumulate lipid in theirs cell more than
20% (w/w) and produce maximum lipids
content of 22.44+1.08 and 21.58+0.05%
(w/w), respectively.
7.
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3.3 Screening of oleaginous yeast
using rice residue hydrolysate from food
waste as a carbon source

Seventeen isolates (selected from
section 3.2) were cultivated in basal
medium supplemented either enzymatic or
acid-rice residue hydrolysate.
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Figure 1. Screening of oleaginous yeasts using glucose as a carbon source

The results from Figure 2 showed that,
Rhodotorula sp. C7, Rhodosporidium
paludigenum C10, Diozegia sp. TISTR5792
and the newly isolate TC32 could produce the
maximal lipids content of 24.26+0.56,
23.69+0.91, 22.43+1.09 and 23.07+0.80%
(w/w), respectively, when cultivated in the
basal medium supplemented with
enzymatic-rice residue hydrolysate. While,

cultivation in basal medium supplemented
with acid-rice residue hydrolysate showed the
lipids content of 21.84+0.56, 22.41+0.23,
19.32+0.80 and 19.00+0.50% (w/w) by
Rhodotorula sp. C7, Rhodosporidium
paludigenum C10, Diozegia sp. TISTR5792
and the newly isolate TC32, respectively
(Figure 3).
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Figure 2. Screening of oleaginous yeasts using enzymatic-rice residue hydrolysate as

a carbon source

From these results we found that
enzymatic-rice residue hydrolysate showed
lipids production higher than glucose and acid
hydrolysis. It might be that rice residue from
food waste contained not only carbohydrate,
but other component also found in this starchy
material (Table 1). Crude lipid, crude fat and

some trace elements in term of ash content may
enhance the growth and lipid production of
oleaginous yeast. Similar with the report of
Subramaniam et al. (30), who found that
accumulation of lipids in yeast cell takes place
under conditions of limitations caused by
a nutrient other than carbon source.
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Figure 3. Screening of oleaginous yeasts using acid-rice residue hydrolysate as

a carbon source
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Moreover, cultivation in basal medium
supplemented with enzymatic-rice residue
hydrolysate showed higher lipid content than
acid-rice hydrolysate. It might be that acid-rice
hydrolysate may contain furfural or HMF
which usually occurred during heat-process and
acid hydrolysis. These compounds have been
reported as the inhibitor of microbial growth
by reducing enzymatic and biological
activities, leading to low productivity (31).

3.4 Screening of oleaginous yeast
using rice residue from food waste as
a carbon source

The ability of directly bioconversion
of rice residue to biomass and lipids of
seventeen isolates (selected from section 3.2)
were also investigated. The results revealed
that only two isolates of Diozegia sp.
TISTR5792 and the newly isolate TC32 could
use rice residue for theirs growth and
accumulated the maximum lipid content of

KKU Res. J. 2016; 21(2)

18.00+0.83 and 21.67£0.02% (w/w),
respectively. Similar with the result of Wild et
al. (32), who reported that the lipid production
yields from Lipomyces starkeyi on starch was
higher than glucose. The ability of directly
convert of starch and rice residue was
confirmed by the a-amylase and AMG
activities as presented in Table 2. The results
found that Diozegia sp. TISTR 5792 and
newly isolate TC32 could produce
extracellular amylolytic enzymes with
a-amylase activities of 0.25+0.18 and
0.54+0.09 U/mL and AMG activities of

0.020+0.000 and 0.023+0.000 U/mL,
respectively. Moreover, the lipid accumulation
of these two strains were further confirmed by
staining with Sudan black B technique (25).
The high intensity of black color indicating
high content of lipid which accumulated in
yeast cell (Figure 4) (33).

Table 2. Characteristics of oleaginous yeast TC32 and TISTR5792 when cultivation
in basal medium supplemented with rice residue from food waste as a carbon

source

Isolate TC32 TISTR5792
Characteristic Soluble starch Rice residue Soluble starch  Rice residue
DCW (g/L) 2.49+0.22" 5.82+0.30 3.37+0.38 5.29+0.30
Lipid (g/L) 0.63+0.07 1.26+0.01 0.70+0.21 0.97+0.01
Lipid content 24.00£1.70 21.67+0.02 21.65+£3.90 18.41+0.83
(Yow/w)
a-Amylase activity 0.14+0.04 0.54+0.09 0.21£0.10 0.25+0.18
(U/mL)
AMG activity 0.036+0.00 0.023+0.00 0.031+0.00 0.020+0.00
(U/mL)

*Means and standard deviations of triplicate samples
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A
Figure 4.

Conclusion

Rice residue from food waste could be
used as a carbon source for the growth and
lipid production via a bioconversion by
some oleaginous yeast. The conventional
method needs 2 steps of hydrolysis of
starchy material to be fermentable sugars
and fermentation. The disadvantage of this
method is requirement of expensive
commercial amylolytic enzymes. So, the
result obtained in this study indicating that
the amylolytic producing oleaginous yeast,
TC32 which isolated from flower samples
obtained from Doi-Inthanon National Park,
Chiang Mai, Thailand, could overcome the
disadvantage of the traditional method by
no need an expensive enzymes and showing
high ability to directly convert starchy
material to biomass and lipid.
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