

Screening of Fungi Producing Ligninolytic Enzymes by Plate test Technique

Zecarias Ghebreslasie¹, Duangporn Premjet^{1, 2} and Siripong Permjet^{3*}

¹Department of Agricultural Science, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, Muang, Phitsanulok, 65000 Thailand

²Center for Agricultural Biotechnology, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, Muang, Phitsanulok, 65000 Thailand

³Department of Biology, Faculty of Science, Naresuan University, Muang, Phitsanulok, 65000 Thailand

*Corresponding author. E-mail: siripongp@nu.ac.th

Abstract

A total of 61 fungi isolate were subjected for screening of ligninolytic enzyme by dye decolorization plate test. The results presented the diversity of 8 orders belonging to 17 families, 30 genera and 25 unidentified cultures. Seven families of Agaricales, three families of Polyporales, two families of Russulales and one family represent for each of the orders, Boletales, Cantharellales, Phallales, Tremellales and Xylariales. The plate test perceived seven categorical groups as: strains decolorizing a single dye implies for secreting only one of the three main enzymes ; a) Phenol red for LiP, b) Azure B for MnP c) RBBR for Lacc; strains decolorizing two of the organic colors relays for secreting only two enzymes as; d) Phenol red and Azure B, e) Phenol red and RBBR, f) Azure B and RBBR; and g) strains which decolorize three organic dyes produce three of the ligninolytic enzymes.

Keywords : Phenol red, Azure B and RBBR, Decolorization, Fungi

1. Introduction

The diversity of the kingdom fungi was the target of great academic and industrial interest, particularly Macromycetes, Ascomycetes and Basidiomycetes which are expansively studied in various aspects¹³. Screening of fungi for their potential ligninolytic applications demonstrated the resistance and metabolic effects of ligninolytic enzymatic activities in almost all corners

of the world^{1, 5, 6, 18} were 315 fungal strains in Tunisia⁸, 156 strains in Mexico^{13, 27}, 63 strains in Indonesia¹⁰, 200 strains in Brazil²², 30, 220 strains in Australia²³ 296 strains in Thailand²⁹, and 57 strains in United kingdom¹⁴ were investigated by dye decolorization assay^{6, 11, 12, 17}. In addition, dye assay helps to understand the physicochemical features and deepen the core knowledge of promising ligninolytic enzymes for industrial and biotechnological

applications to reduce effect of chemical process and dirty fuel applications by adopt green technology^{4, 24}. Many efforts were done to apply, design and develop the application of the major ligninolytic enzymes; Lignin peroxidase (LiP), manganese dependent peroxidase (MnP) and Laccase, and found positive impact in degradation of lignin and environmental toxic, recalcitrant pollutants such as pesticides, polychlorinated biphenyls, organochlorines, DDT, and various synthetic dyes^{2, 3, 5, 26}. Therefore, the purpose of this experimentation was to screen indigenous Thailand fungi for selection the highest ligninolytic producer for degrading recalcitrant pollutants like polychlorinated biphenyls (PCBs).

2. Materials and methods

2.1 Chemicals

All the chemicals used were analytical and reagent graded. Synthetic dyes Remazol Brilliant Blue R (RBBR), Azure B. and Phenol red were purchased from Sigma and Fluka, L-Asparagine and NH_4NO_3 from Acros-organic Company. The organic dyes were overnight UV sterilized and all medium were autoclaved prior to use.

2.2 Fungal strains

Sixty one fungal strains were preserved in Biotechnology research unit Faculty of Science, Naresuan University. Pure mycelium were obtained after aseptically transferred to PDA and incubated at 25°C for extensive mycelia growth. Reference strains *Phanerochaete chrysosporium* (NBRC 31249) and *Trametes versicolor* (NBRC6422) were purchased from the culture collection division, Biological Resource Center

(NBRC) National Institute of Technology and Evaluation, Chiba, Japan.

2.3 Plate assay

Plate assay was the most common technique used to perform screening of fungal isolates for detecting their ability to grow and decolorize the organic dyes. The screening media was prepared, in a liter of basal medium 1.0g of yeast extract and 25.0mg of thiamine. HCl and 1ml of trace element³¹ and 24g $^{-1}$ of PDA, 20g $^{-1}$ of agar, 10g $^{-1}$ of glucose and NH_4NO_3 and L-asparagine with an amount of 2.4 mM and 24mM for low and high nitrogen media, respectively^{19,31}. The pH of the screening media was adjusted to 5.5^{15,17,26}. 0.8cm cork plug of active mycelium from a periphery of fresh culture of petri dish was taken and inoculated at 25°C in triplets in 9cm diameter plate, medium of high and low nitrogen supplemented with three separate organic dyes of Azure B (0.003%), Phenol red (0.003%) and Remazol Brilliant Blue R (0.006%)^{16,21}. Finally inoculants inspected until they totally colonized and decolorized otherwise for 15 days. The extent of clear zone growth zone diameters were quantitatively measured via scientific ruler and visualized in contrast with Uninoculated plates as a negative control. The decolorization rate per day was expressed as average rate of clear zone to growth zone for 15 days.

3. Result and discussion

In this experimentation a diversity of eight orders belonging to 17 families, 30 genera and 25 unidentified cultures of mushrooms were investigated to dye decolorization plate test. 13 genera from Agaricales, 7 genera of Polyporales, 5 genera of Russulales and one specie for

each of the orders, Boletales, Cantharellales, Phallales, Tremellales and Xylariales were studied. Orders Agaricales and Polyporales, represent 24.59% and 18.03% of the fungal strains respectively. Primary screening of 61 fungal strains was carried out by adopting dye decolorization to confirm ligninolytic enzyme production. Decolorization and growth rate were recorded and analyzed in two nitrogen medium supplemented with synthetic dyes. Positive isolates started decolorization activities in 2nd to 5th day of inoculation and reached maximum diameter in 7th day in Phenol red and RBBR but 11th day in Azure B. Finally considering on their reaction to decolorization test, all the strains fall in to eight groups as follows: A) Isolates with negative decolorization test: 12 isolates from four orders and six unidentified strains showed slow and retarded growth

and no sign of decolorization over 15 days in two mediums and the three organic dyes. Isolates *Lepiota pseudohelvella* *Boletus appendiculatus*, *Dictyophora indusiata*, *Oligoporus caesius*, *Trichaptum biforme*, *Lentinus similis* and some unidentified strains did not produce ligninolytic enzymes; manganese peroxidase, lignin peroxidase and laccase^{7, 10, 11}. B) Positive plate test: single dye decolorization: 22 out of 61, 36.06% of the isolates were able to degrade either phenol red, Azure B. or RBBR which infers production of a single ligninolytic enzyme^{19, 28} (table1). Order Agaricales dominated the phenolic oxidation out of which five families and seven genera show color change when grown (metabolize) phenol red. Fast decolorization rate was noticed even with slow mycelia growth of the isolates.

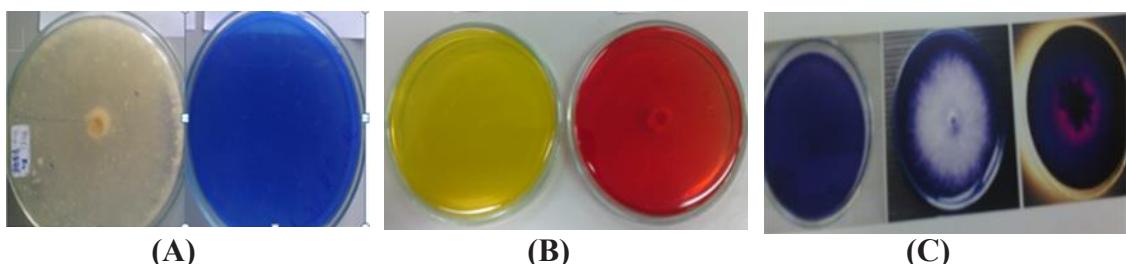
Table 1. Fungal diversity with decolorization potential of single dye.

Order	Family	Scientific name	Phenol red		Azure B.		RBBR	
			H.N	L.N	H.N	L.N	H.N	L.N
Agaricales	Agaricaceae	<i>Leucocoprinus bresadolae</i> *	2.3	0.2	-	-	-	-
	Clavariaceae	<i>Scytinopogon</i> sp.	0.8	0.7	-	-	-	-
	Cortinariaceae	<i>Inocybe lanuginosa</i>	0.6	-	-	-	-	-
	Hydnangiaceae	<i>Laccaria laccata</i> *	1.9	1.6	-	-	-	-
Cantharellales	Ganodermatace	<i>Ganoderma lucidum</i>	1.1	0.9	-	-	-	-
		<i>Lenzites</i> sp.*	2.2	2.3	-	-	-	-
Russulaceae	Stereaceae	<i>Stereum complicatum</i>	1.5	-	-	-	-	-
	-	PH13044B*	2.4	-	-	-	-	-
Unidentified	-	PH13049(2)	0.4	0.4	-	-	-	-
	-	PH13053	1.6	1.0	-	-	-	-
	-	KLCU*	2.1	0.7	-	-	-	-
	Agaricaceae	<i>Leucocoprinus cepaestipes</i>	-	-	0.7	1.2	-	-
	Russulaceae	<i>Russular alboareolata</i>	-	-	0.5	0.6	-	-
Agaricales	Lycoperdaceae	<i>Cyathus striatus</i>	-	-	-	-	-	1.5
		<i>Amanita cokeri</i> *	-	-	-	-	1.0	1.3
Agaricales	Amanitaceae	<i>Hygrocybe calyptrofomis</i>	-	-	-	-	0.8	-
		<i>Ganoderma australes</i> *	-	-	-	-	1.1	1.3
		K228	-	-	-	-	0.5	-
Polyporales	Fomitopsidaceae							
Unidentified								

Numerical values is average ratio of clear zone to growth zone in diameter rounded to one decimal place, - stands to no visible clear zone, * = good performance of decolorization

Leucocoprinus bresadolae, *Scytinopogon* sp., *Scytinopogon* sp., *Ganoderma lucidum*, *Lenzites* sp., *Stereum complicatum* start their growth at 2nd day of inoculation and decolorize phenol red fully (9cm) diameter from 3th - 7th day of their incubation time. RBBR, a light blue synthetic dye was decolorized by fungal mycelia more commonly due to common existence of Laccase in most of the isolates. *Ganoderma austral* (TM2) was one of the strongest degrader of RBBR with an average decolorization rate of 1.14cm diameter per day as compared to control strains *Phanerochaete chrysosporium* which is 0.54cm diameter per day. C) Positive plate test for two dyes: 19 isolates (31.14%) decolorize only two dyes,

and fall in to three categorical properties. Isolates which decolorized both Azure B and RBBR (6 strains), both Phenol red and RBBR (11 strains) and both Phenol red and Azure B (2 strains) (Table2). *P. chrysosporium* was cited as strong degrader in many researches but *Psilocybe coprophila* (PH201) of Agaricales and *Grifola gigantea* (NKS10) of Ganodermataceae were among the leading two dye decolorizers. D) colonies which show a metabolic oxidation of the three synthetic dyes either totally decolorize or show a halo of color change as in RBBR from light blue to cloudy brown or no color (Fig 1.A),


Table 2. Fungal isolates with decolorization potential of two synthetic dyes.

Order	Family	Average clear zone/ growth zone for 15 days (cm)						
		Scientific Name		Phenol red		Azure B.		
		H.N	L.N	H.N	L.N	H.N	L.N	
Agaricales	Lycoperdaceae	<i>Calvatia craniiformis</i>	-	-	1.0	1.0	1.0	-
Russulales	Stereaceae	<i>Stereum guaspertum</i>	-	-	0.4	0.8	0.4	
Xylariales	Xylariaceae	<i>Daldinia concentrica</i>	-	-	0.3	0.8	1.0	1.1
Unidentified	-	PH13045C*	-	-	0.7	1.0	1.8	1.3
	-	PH101	-	-	-	0.3	-	0.6
	-	1001	-	-	1.0	1.1	0.3	0.8
Agaricales	Agaricaceae	<i>Entolomata</i> sp	0.6	0.9	-	-	0.9	1.0
	Lycoperdaceae	<i>Psilocybe coprophila</i> *	2.1	1.8	-	-	1.6	-
	Tricholomataceae	<i>Mycena</i> sp.	0.7	0.6	-	-	0.6	0.6
Polyporales	Fomitopsidaceae	<i>Fomitopsis dochmius</i>	0.7	0.6	-	-	-	0.7
	Ganodermataceae	<i>Grifola gigantea</i> *	0.7	0.9	-	-	1.1	1.0
Russulales	Russulaceae	<i>Russula fellea</i>	1.0	-	-	-	0.1	-
Cantharellales	Cantharellaceae	<i>Creterellus cornucopioides</i>	0.9	1.6	-	-	1.1	-
Unidentified	-	PH35	1.6	-	-	-	-	0.1
	-	K812	1.3	0.7	-	-	-	1.3
	-	PRK2	0.4	0.5	-	-	1.2	1.0
	-	TV	0.5	0.3	-	-	0.8	0.7
Unidentified		PH19	1.8	-	-	0.6	-	-
		1118	0.9	0.8	0.9	0.9	-	-

Numerical values is average ratio of clear zone to growth zone in diameter rounded to one decimal place, - stands to no visible clear zone, * = good performance of decolorization

Phenol red from light yellow to red (Fig 1.B) and Azure B from dark blue to pink or clear it to white radiation (Fig1.C). Observation of color change was done by comparing with a control media supplemented with dyes without inoculant strain as indicated below. Decolorization of three synthetic dyes stand for production of three of the ligninolytic enzymes ^{11, 25}. In this decolorization test eight isolates and two control strains were found to show positive result and highest decolorization activity was achieved by order Agaricales of the family, Tricholomataceae, *Megacollybia platyphylla* (PRK16) and

K127, PH176 of Unidentified strains. These isolates show decolorization activities in three organic dyes in both high and low nitrogen media in the specific culture duration, 15days (table3). The Average clear zone growth zone ratios was expressed and overall, result in decolorization of 3 organic dyes, and two media of low and high nitrogen indicates that Phenol red (93.3%), RBBR (78.3%) and Azure B. (56.7%) of the isolates decolorize them. The range of decolorization was from zero to 9cm in diameter were 22 isolates in Phenol red.

Fig.1 Plate test of *Megacollybia platyphylla* (PRK16) decolorizing three synthetic dyes (A) against control RBBR (B) against Phenol red (C) against Azure B.

Table 3. Potential isolates with Positive plate test for degrading three of the organic dyes

Order	Family	Scientific name	Phenol red		Azure B.		RBBR	
			H.N	L.N	H.N	L.N	H.N	L.N
Polyporales	<i>Phaerochaetaceae</i>	<i>Phaerochaete chrysosporium</i> *	-	0.5	0.7	0.8	0.8	0.7
	<i>Polyporaceae</i>	<i>Trametes versicolor</i> *	0.1	0.5	0.9	0.9	0.8	0.7
Agaricales	Tricholomataceae	<i>Megacollybia</i> sp.*	0.7	0.7	0.2	0.6	1.0	1.0
Polyporales	<i>Ganodermataceae</i>	<i>Ganoderma</i> sp.	0.7	0.5	-	0.2	1.2	1.2
		<i>Polyporus sulphureus</i>	0.3	0.4	-	0.2	1.4	1.2
Tremellales	Exidiaceae	<i>Pseudohydnum</i> sp.	0.9	-	0.5	0.7	-	0.6
	-	176*	0.5	0.7	0.4	0.6	0.5	0.8
Unidentified	-	PH176*	0.5	0.9	0.4	0.6	0.5	0.8
	-	K127**	0.3	0.5	0.9	0.9	0.9	0.8
	-	NO.51	-	0.6	-	0.2	0.9	0.1

Numerical values is average ratio of clear zone to growth zone in diameter rounded to one decimal place, - stands for no visible clear zone, * = good performance of decolorization

and 4 isolates in Azure B in high nitrogen seen to decolorize the disk fully (table 5). Comparing the two screening media high nitrogen is favorable to be metabolized as the colonies express nitrogen to metabolize in both Phenol red and RBBR but Azure B was decolorized more in low nitrogen by percentage of fungal population under study as it is replaced in instead of metabolized. The isolates which are able to decolorize phenol red, RBBR and Azure B are compared with each other and with the control strains, were effect of nitrogen was clearly noticed (figure 2.A & B) and most of the strains

found to grow favorably in high nitrogen. The clear zone growth zone ratio obtained in 15 days culture time and found that strains *Megacollybia platyphylla* (PRK16), *Pseudohydnum getatinosum* (PH106), No. 51 and PH 176 from unidentified species were best decolorizers in both low and high nitrogen in three of the organic dyes and identified as future promising isolates for biodegradation of recalcitrant anthropogenic products like polychlorinated biphenyls (PCBs) and other organo-pollutants as they are expected to produce highly concentrated ligninolytic enzymes²⁹.

Table 5. Comparing decolorization of the three synthetic dyes by the fungal isolates.

Characteristic feature	Phenol red		RBBR		Azure B.	
	H.N.	L.N.	H.N.	L.N.	H.N.	L.N.
Number of positive strain (n)	31 (22)	25 (15)	23 (18)	24 (15)	15 (4)	19 (7)
Percentage of total (%)	51.7 (35)	41.7 (36)	38.3 (30)	40(25)	20.6 (6)	31.6 (11.7)

% was expressed by number of isolates decolorized each dye to total number of isolates, 61 and () indicates number of isolates decolorizing full (9cm) in diameter.

Figure 2. Histogram comparing effect of nitrogen to degrade 3 dyes

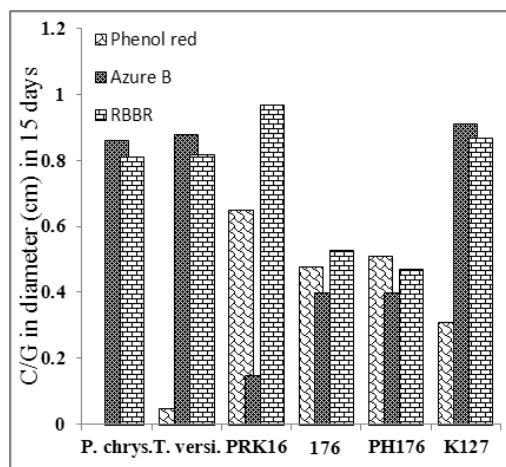


Figure (A)

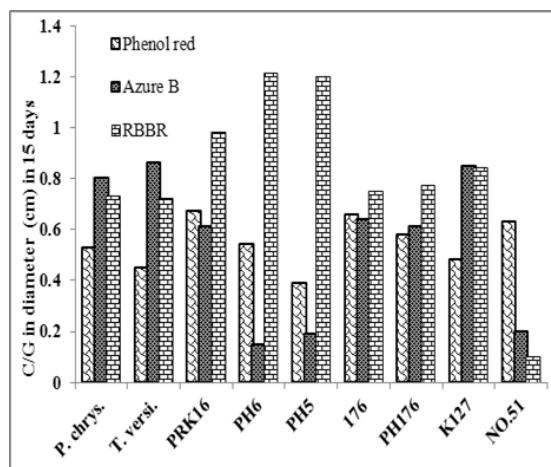


figure (B)

Figure 2. Decolorization rate of Potential isolates to degrade 3 dyes against control *Phanerochaete chrysosporium* in (A) high nitrogen; (B) Low nitrogen.

4. Conclusion

Quantitative screening using different dye indicators was found effective strong positive technique for large number of mushroom population to clear up about their extracellular ligninolytic activities. 49 isolates showed a positive decolorizing activity and their rate of decolorization was comparably favorable with those previously reported as the fastest dye-degrading *T. versicolor* and *P. chrysosporium*. Over half of the isolates (52.8%) showed a decolorization potential over *P. chrysosporium* in RBBR and 18.9% in Azure B. The intensity and patterns of decolorization was varied (scattered, diffused, deposited and radiated) even among same genus which indicates family, genus, and species diversity among isolates. Azure B was found to inhibit growth of strains unless combination of enzymes (coexistence) was found. Isolates *Megacollybia platyphyll*, *Laccaria laccata*, *Lenzites spe.*, and KLCU, PH176, PRK 25, and 1001 from unidentified stains were novel degraders each group by performing strong activity than the control strains *P. chrysosporium* and *T. versicolor*.

5. Acknowledgement

Grateful thank to Faculty of Agriculture Natural Resources and Environment and Faculty of Science, Department of Biology for creating conducive research atmosphere and Special thanks to Associate professor Dr. Siripong Permjet, who provided stock culture mushrooms under the project funded by national research council in the fiscal year 2013-2014 with project no. R2557B060.

Additionally, the author would like to thank Thailand International Development Cooperation Agency (TICA) for providing full scholarships in Agricultural Biotechnology in Naresuan University.

6. References

- (1) Acevedo F., Pizzul L., Castillo P., Cuevas R., & Diez C. Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus *Anthracophyllum discolor*. *J. of Haz. Materials.* (2011); 185(1), 212-219.
- (2) Ali A., Khalil M., & El-Ghany A. Biodegradation of some polycyclic aromatic hydrocarbons by *Aspergillus terreus*. *African J. of Microbiol. Research.* 2012; 6(16), 3783-3790.
- (3) Ali Hazrat. Biodegradation of synthetic Dyes, a Review. *J. of Water Air soil pollutant*, 2010; 213, 251-273.
- (4) Bhattacharyya C. & Banerjee R. *Environmental biotechnology*: Oxford university press; 2007.
- (5) Borokhov O. & Rothenburger S. Rapid Dye Decolorization Method for Screening Potential Wood Preservatives. *J of Appl. Environ. Microbiol.* 2000; 66(12), 5457-5459.
- (6) Casieri L., Anastasi A., & Prigione V. Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity. *Antonie van Leeuwenhoe.* 2010; 98(4), 483.

(7) Deveci T., Unyayar A., & Mazmanci A. Production of Remazol Brilliant Blue R decolourising oxygenase from the culture filtrate of *Funalia trogii* ATCC 200800. *J. of Mol. Catalysis B: Enzymatic.* 2004; 30(1), 25-32.

(8) Dhouib, A., Hamza, M., Zouari, H., Mechichi, T., Hmidi, R., Labat, M., ... Sayadi, S. (2005). Screening for Ligninolytic Enzyme Production by Diverse Fungi from Tunisia. *World Journal of Microbiology and Biotechnology*, 21(8-9), 1415-1423.

(9) Diano, N. et al. Non- isothermal bioreactors in enzymatic biodegradation of water polluted by endocrine disruptors: BPA as a model of pollutant. *Applied Catalysis B: Environmental.* 2007;69: 252-261.

(10) Djarwanto, & Tachibana, S. (2009). Screening of Fungi Capable of Degrading Lignocellulose from Plantation Forests. *Pakistan Journal of Biological Sciences,,* 12: 669-675.

(11) Field A., Jong D., Costa F., & Bont D. Biodegradation of Polycyclic Aromatic Hydrocarbons by new Isolates of White Rot Fungi. *Appl. and environ. Microbiology.* 1992; 2219-2226.

(12) Haritash A.K. and Kaushik C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. *Journal of hazardous materials,,* 2009; 169 (1-3): 1-15.

(13) Hernández-Luna, E., Gutiérrez-Soto, & Salcedo-Martínez. Screening for decolorizing basidiomycetes in Mexico: Screening and selection of ligninolytic basidiomycetes with decolorizing ability in Northeast Mexico. *World j. of micro.biotech.* 2007; 28, 465-473.

(14) Ja'afaru, M. I. (2013). Screening of Fungi Isolated from Environmental Samples for Xylanase and Cellulase Production. *ISRN Microbiology, 2013*, 283423.

(15) Kalımlı E., Yasa D., Kalyoncu F., Pazarbas B., & Kobyigit A. Ligninolytic enzyme activities in mycelium of some wild and commercial mushrooms. *African J. of Biotechno.* 7 (23), 4314-4320.

(16) Kiiskinen L., Ratto M., & Kruus K. (2004). Screening for novel laccase-producing microbes. *J. of Appl. Microbiol.* 2008; 97(3), 640-646.

(17) Knapp S., Newby S., & Reece, P. (1995). Decolorization of dyes by wood-rotting basidiomycete fungi. *J. of Enzyme and Microbial Techno.* 1995; 17(7), 664-668.

(18) Kuhad, R.C., A.S., 2007. Ligninocellulose Biotechnology Future Prospects. I.K.International publishing house Pvt.

(19) Kumari B., Upadhyay C., & Atri S. Screening and Evaluation of Extra-Cellular Oxidases in Some Termitophilous and Lepiotoid Mushrooms. *W. J. of Agric. Sci.* 2012; 8(4), p409.

(20) Levin, L., Melignani, E., & Ramos, M. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. *J. of Biores. Techno.* 2010;101(12), 4554-4563.

(21) Machado G., & Matheus R. Biodegradation of RBBR by ligninolytic enzymatic complex produced by *Pleurotus ostreatus*. *Brazilian J. of Microbiol.* 2006;37, 468-473.

(22) Machado G., Matheus I R., & Bonon I R. Ligninolytic enzymes production and RBBR, decolorization by tropical brazilian basidiomycetes fungi. *Brazilian J. of Microbiol.* 2005; 36(3).

(23) Mann, J., Markham, L., Nair, P., & Spooner-Hart. (2010). Screening and selection of fungi for bioremediation of olive mill wastewater .*World J of Microbiol Biotechnol*, 26:567-571.

(24) Miguel A., Manuel F., Plou J., & Ballesteros. A. *J. of Environ. biocatalysis: from remediation with enzymes to novel green processes. Trends in Biotechnol.* 2006: vol. 24, 281-287

(25) Palmieri G., Cennamo G., & Sannia G. (). Remazol Brilliant Blue R decolourisation by the fungus *Pleurotus ostreatus* and its oxidative enzymatic system. *J. of enzyme and microbial Technol.* 2004; 36, 17-24.

(26) Purnomo S., Mori T., Kamei I., Nishii T., & Kondo R. Application of mushroom waste medium from *Pleurotus ostreatus* for bioremediation of DDT-contaminated soil. *International Biodeterioration & Biodegradation.* 2010: 64(5), 397-402.

(27) Ramírez, C., Rivera-Ríos, Téllez-Jurado, Gálvez, M., Mercado-Flores, & Arana-Cuenca. (2010). Screening for thermotolerant ligninolytic fungi with laccase, lipase, and protease activity isolated in Mexico. *J Environ Manage.*

(28) Ryu R., Shim H., Jang Y., Jeon J., Oh K., & Cho H. Biodegradation of Pentachlorophenol by White Rot Fungi under Ligninolytic and Nonligninolytic Conditions. *J. of Biotechnol.* 2000; 5: 211-214.

(29) Siripong P., Oraphin B., Sanro T., & Duanporn P. Screening of Fungi from Natural Sources in Thailand for Degradation of Polychlorinated Hydrocarbons. *American-Eurasian J. of Agri. & Environ. Sci.* 2009; 5 (4): (466-472,).

(30) Takahashi, J. A., Castro, M. C. M. d., Souza, G., Lucas, F., Bracarense, P., Abreu, L. M., Oliveira, T. S. (2008). Isolation and screening of fungal species isolated from Brazilian cerrado soil for antibacterial activity against *Escherichia coli*, *Staphylococcus aureus*, *Salmonella typhimurium*. *Journal of Medical Mycology*, 18(4), 198-204.

(31) Theodorus H., De k, Jiong Z., Cullen D. and Bernard J. H. Janse., Biochemical and molecular characterization of South African strains of *Phanerochaete chrysosporium*. *J. of microbial resources*. 1998; 102 (1): 88- 92.