

Biohydrogen Production by Microalgae Isolated from the Rice Paddle Field in Thailand

Saranya Phunpruch^{1,2,*}, Amornrat Puangplub¹, Aran Incharoensakdi³

¹Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

²Bioenergy Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

³Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

*Corresponding author: saranya.ph@kmitl.ac.th

Abstract

Hydrogen produced by cyanobacteria and green algae is a very interesting energy carrier because it is produced by a photosynthetic pathway using sunlight as an energy source. In this study, 59 cyanobacterial and green algal strains were isolated from soil and water sources of rice paddle field in Thailand. Out of them, 9 cyanobacterial isolates and 9 green algal isolates were purified. Among them, unicellular cyanobacterial isolate AngS1 showed the highest H₂ production rate. Its highest H₂ production rate of 389.630±72.084 nmolH₂ mg chl⁻¹ h⁻¹ was found in cells grown in BG11 for 1 week followed by incubating cells in BG11₀ for 24 hours and adaptation under dark anaerobic condition for 2 hours. The optimal concentrations of glucose, MgSO₄·7H₂O and Fe³⁺ for H₂ production rate were 0.189 mmolC L⁻¹, 3 mM, and 20 μM, respectively. The highest H₂ accumulation of 4,174.364±278.324 nmolH₂ mg chl⁻¹ was obtained when incubating cells in the optimal medium for 11 days.

Keywords : Hydrogen production, Microalgae, Rice field

1. Introduction

Molecular hydrogen is one of the interesting energy carriers in the future. It provides a high heating value and is a clean and environmental friendly fuel. Nowadays H₂ is mainly produced by the steam reforming process from the petrochemical industry; however it can be produced by various kinds of microorganisms. Microalgae including cyanobacteria and

green algae are capable of producing H₂ from hydrogenase activity via a direct photolysis of water splitting during a photosynthetic process (1). Some N₂-fixing cyanobacteria can produce H₂ from nitrogenase activity through a nitrogen fixation process (2,3). In addition, some species of cyanobacteria can produce H₂ via the degradation of accumulated glycogen under a dark fermentation (4).

In this study, H_2 production by microalgae isolated from the rice paddle field in Thailand was investigated. There are several kinds of microorganisms living in the rice field because rice field soil and water are fertile with nutrients and elements that are essential for microalgal growth. In addition, the climate, sunlight intensity, moisture content and other environmental factors in Thailand are suitable for microalgal cultivation. These bring about the existence of diverse kinds of living and survival green algae and cyanobacteria in the rice paddle field.

Several environmental factors, such as light intensity, anaerobic adaptation time, nutrient and element compositions, play important roles in microalgal H_2 production. The important elements in the medium, i.e., nitrogen, sulfur, and carbon, are essential for algal growth. It has been reported that lack of nitrogen and/or sulfur causes an increase of H_2 production in many cyanobacterial and green algal species (5-13). In addition, H_2 production by some microalgal species is enhanced under different sugar sources such as glucose (12-16) and fructose (17,18). Because iron is a cofactor of cyanobacterial and green algal hydrogenases (19); therefore iron concentration in the medium directly affects hydrogenase activity and H_2 yield (20-26). Besides the nutritional and mineral effects, light intensity has been reported to influence cyanobacterial and green algal H_2 production (4,27).

In this study, microalgae were isolated from the rice paddle fields in 7 provinces of Thailand, purified and screened for high H_2 production under nitrogen-deprived condition. The effects of some physiological factors such as anaerobic adaptation time, nutrient and mineral compositions under

nitrogen starvation were investigated on H_2 production rate by the selected microalgal isolate.

2. Materials and Methods

2.1 Microalgal isolation

Microalgae including cyanobacteria and green algae were isolated from soil and water samples in the rice paddle fields from 7 provinces of Thailand (Angthong, Chainat, Mahasarakham, Nakhon Ratchasima, Nakhon Sawan, Pathumthani and Singburi). Soil and water samples were incubated in BG11 medium under light intensity of $30 \mu\text{mol photon m}^{-2} \text{ s}^{-1}$ at 30°C for 2 weeks. BG11 medium contains 17.6 mM NaNO_3 , $3.0 \text{ mM MgSO}_4 \cdot 7\text{H}_2\text{O}$, $0.24 \text{ mM CaCl}_2 \cdot 2\text{H}_2\text{O}$, $0.188 \text{ mM Na}_2\text{CO}_3$, $0.18 \text{ mM K}_2\text{HPO}_4$, $27.9 \mu\text{M Na}_2\text{EDTA}$, $31.2 \mu\text{M citric acid}$, $46.3 \mu\text{M H}_3\text{BO}_3$, $4.2 \mu\text{M MnCl}_2 \cdot 4\text{H}_2\text{O}$, $0.77 \mu\text{M ZnSO}_4 \cdot 7\text{H}_2\text{O}$, $1.66 \mu\text{M NaMoO}_4 \cdot 2\text{H}_2\text{O}$, $0.32 \mu\text{M CuSO}_4 \cdot 5\text{H}_2\text{O}$, $0.17 \mu\text{M Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ and $22.5 \mu\text{M FeNH}_4\text{ citrate}$ (28). Microalgae were purified by single cell isolation technique (29). The bacterial contamination of isolated microalgae was checked by streaking on LB agar.

2.2 Microalgal cultivation

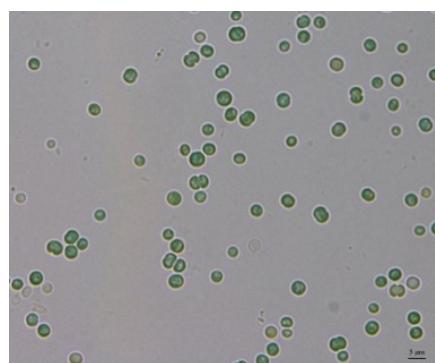
The purified microalgae were grown in a 250-mL Erlenmeyer flask containing 100 mL of BG11. They were shaken at 120 rpm under light intensity of $30 \mu\text{mol photon m}^{-2} \text{ s}^{-1}$ at 30°C for 1 week.

2.3 Hydrogen measurement

One hundred mL of cell culture was harvested by centrifugation at $7,000\times g$ at 4°C for 10 min. The cell pellet was washed twice followed by resuspension in 5 mL of the medium. The cell suspension was transferred to a 10-mL glass vial. The vial was sealed with a rubber stopper and

purged with argon gas for 10 min in darkness. Cells were incubated at 30 °C under darkness for 2 h before analyzing the gas phase. H₂ production was determined by analyzing the gas phase using the Gas Chromatograph as previously described (12).

2.4 Chlorophyll measurement


One hundred μ L of cell culture was added with 900 μ L of absolute methanol. The mixture was mixed by vortexing and incubated in darkness for 1 h before centrifugation at 12,000xg for 2 min. Chlorophyll concentration of extract was determined by measuring the absorbance at 665 nm for cyanobacteria, and at both 665 and 650 nm for green algae, and calculated followed by Lee and Shen (2004) (30).

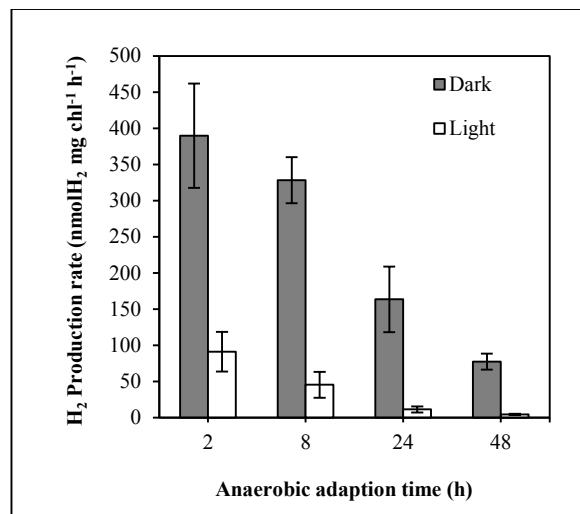
3. Results

3.1 Screening for a high H₂ producing microalgal strain

A total of 59 cyanobacterial and green algal strains were isolated from soil and water samples of rice paddle fields in 7 provinces of Thailand. Unfortunately, only 9 cyanobacterial isolates and 9 green algal isolates were purified (Table 1). They were

cultivated in BG11 medium for 2 weeks, then harvested and resuspended in BG11 and BG11₀ medium (BG11₀ has all chemical compositions similar to BG11 except that NaNO₃ is absent in the BG11₀ medium). The culture was incubated in the light for 24 h, followed by collecting the cells and incubating cells under dark anaerobic incubation for 2 h before determination of H₂ production. It was found that all cyanobacteria hardly produced H₂ under normal condition (in BG11 medium) but most cyanobacteria obviously produced H₂ under nitrogen deprivation condition (in BG11₀ medium) (Table 1). In contrast, H₂ production rate by five green algal strains was detected when incubated in BG11 medium even though it was lower than that in BG11₀ medium (Table 1). The unicellular cyanobacterial isolate AngS1 showed the highest H₂ production rate with 256.612 ± 34.267 nmol H₂ mg chl⁻¹ h⁻¹ when incubating cells in BG11₀ for 2 h. It is unicellular, has a round shape and cell diameter with 1-5 μ m (Fig. 1). Therefore, AngS1 was selected as a potential H₂ producing microalgal strain for further experiments.

Figure 1. Cell morphology of the cyanobacterium AngS1 observed under a light microscope


Table 1. Hydrogen production rate by 9 cyanobacterial and 9 green algal strains isolated from the rice field in Thailand

Isolates	Hydrogen production rate (nmolH ₂ mg chl ⁻¹ h ⁻¹)	
	BG11	BG11 ₀
Cyanobacteria		
2SinS3	-	-
A34	-	111.588±25.581
A36	-	11.916±1.083
A47.1	-	39.919±1.466
AngS1	-	256.612±34.267
B14	-	88.049±10.929
B35.1	-	152.762±18.387
ChiS5	-	6.305±0.812
Cyano	-	237.942±32.353
Green algae		
1SinS1.1	-	3.701±0.334
2SinS4	23.305±1.812	40.665±7.960
2TKS2.1	-	5.973±0.385
2TKS2.2	6.605±1.913	8.618±0.636
2TKW1	-	51.006±0.135
A27	19.139±2.852	23.633±0.531
ChiS4	21.666±2.008	53.248±1.229
ChiW1	12.648±0.019	15.924±1.040
NakS4	-	15.785±2.202

3.2 Effect of anaerobic adaptation time and light on H₂ production

The cyanobacterium AngS1 grown in BG11 for 1 week followed by incubating cells in BG11₀ for 24 h and adaptation under dark anaerobic condition for 2 h yielded the highest H₂ production rate with 389.630±72.084 nmolH₂ mg chl⁻¹

h⁻¹ (Fig. 2). H₂ production rate in the dark was obviously higher than that in the light (Fig. 2). Longer duration of incubation up to 48 h did not increase H₂ production rate. In this study, incubation of cells for 2 h under anaerobic dark condition before H₂ analysis was used for further experiments.

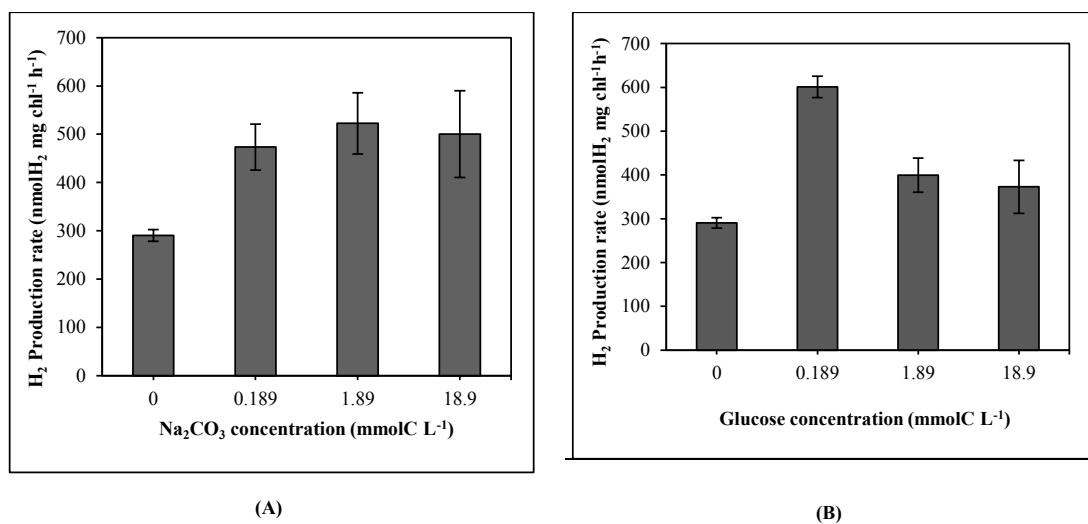


Figure 2. H_2 production rate by AngS1 under various anaerobic adaptation time in the light and dark

3.3 Effect of carbon sources and concentrations on H_2 production

In general, cyanobacteria can fix CO_2 in the atmosphere to generate their own carbon sources via Calvin-Benson cycle. Therefore carbon sources used in this experiment (0-18.9 mmolC L⁻¹ Na_2CO_3 and glucose) are not utilized for cyanobacterial growth but are used as electron donors for hydrogenase enzyme. BG11 medium

normally contains 0.189 mmolC L⁻¹ Na_2CO_3 . In this study, the highest H_2 production rate with 601.052 ± 24.288 nmolH₂ mg chl⁻¹ h⁻¹ was found in AngS1 incubated in BG11₀ containing 0.189 mmolC L⁻¹ glucose (Fig. 3B), followed by H_2 production rate with 522.513 ± 63.335 nmolH₂ mg chl⁻¹ h⁻¹ obtained from cells incubated in BG11₀ containing 1.89 mmolC L⁻¹ Na_2CO_3 (Fig. 3A).

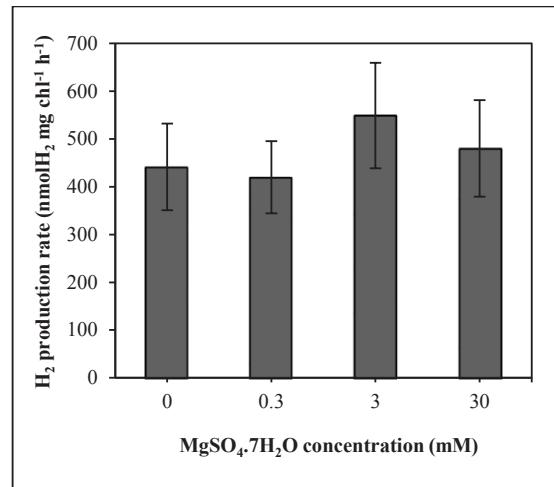


Figure 3. Effect of Na_2CO_3 concentrations (A) and glucose concentrations (B) on H_2 production rate by AngS1

3.4 Effect of sulfate concentrations on H₂ production

The main source of sulfate in BG11 medium is MgSO₄·7H₂O that contains 30 mM. Under various MgSO₄·7H₂O concentrations, the highest H₂ production rate with 549.066±110.482

nmolH₂ mg chl⁻¹ h⁻¹ was obtained in AngS1 incubated in BG11₀ containing 3.0 mM MgSO₄·7H₂O (Fig. 4). However, it did not show much difference with other MgSO₄·7H₂O concentrations.

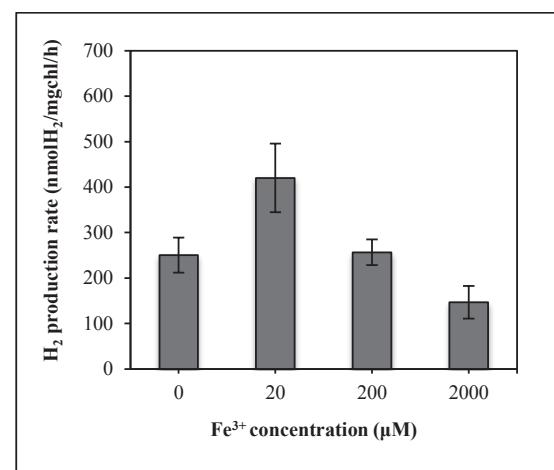


Figure 4. Effect of MgSO₄·7H₂O concentrations on H₂ production rate by AngS1

3.5 Effect of Fe³⁺ concentrations on H₂ production

Under various Fe³⁺ concentrations, the highest H₂ production rate with 420.199±75.530 nmolH₂ mg chl⁻¹ h⁻¹ was found in cells incubated in BG11₀ medium

containing 20 μ M Fe³⁺ (Fig. 5). This Fe³⁺ concentration is 5-fold higher than that in BG11 medium. H₂ production rate was reduced in cells incubated in Fe³⁺-free BG11₀ medium and BG11₀ medium containing 200 and 2,000 μ M Fe³⁺.

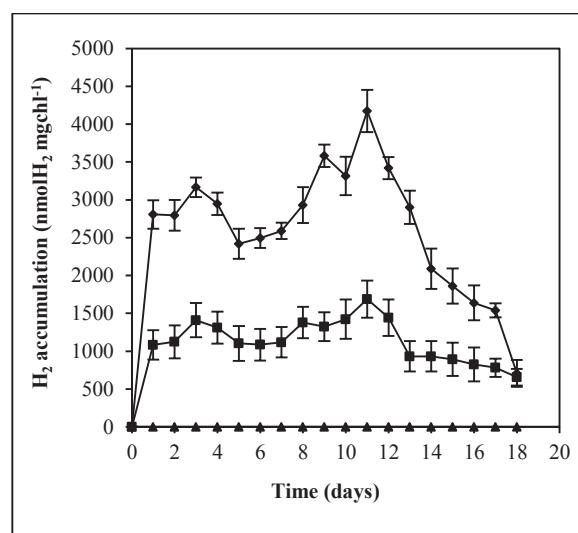


Figure 5. Effect of Fe³⁺ concentrations on H₂ production rate by AngS1

3.6 Long-term dark fermentative H_2 accumulation by AngS1 in optimal medium

The cyanobacterium AngS1 was grown in BG11 for 1 week. The culture was harvested by centrifugation, washed and resuspended in BG11, BG11₀ and optimal BG11₀ (containing 0.189 mmolC L⁻¹ glucose, 3.0 mM MgSO₄·7H₂O and 20 μ M Fe³⁺). The cells were purged with argon gas for 10 min and incubated in the indicated medium under darkness for 18 days. The result showed that H_2 production rate by

cells incubated in optimal BG11₀ medium was 996.165 \pm 71.349 nmolH₂ mg chl⁻¹ h⁻¹ or 0.996 \pm 0.071 μ molH₂ mg chl⁻¹ h⁻¹. It was rapidly increased within 24 h of incubation. The H₂ accumulation reached the maximum yield with 4,174.364 \pm 278.324 nmolH₂ mg chl⁻¹ at day 11th of dark anaerobic incubation (Fig. 6), approximately 3-fold higher than that by cells incubated in BG11₀ medium. After 11 days of incubation, H₂ yield from cells in both media was significantly decreased.

Figure 6. Long-term H₂ accumulation by AngS1. Cells, initially grown in BG11 for 7 days, were harvested, resuspended in BG11 (▲), BG11₀ (■) and optimal BG11₀ (◆), and further incubated at 30 °C for 24 h in the light. Then cells were harvested again and resuspended in the same medium before transferring to a glass vial. H₂ was measured in darkness.

4. Discussions

In this study, only 9 cyanobacterial isolates and 9 green algal isolates were purified from 59 microalgal strains isolated from the rice paddle field in Thailand. It was rather difficult to purify microalgal strains from their contamination because there were a numerous bacteria and fungi in soil

and water samples. Among cyanobacterial strains, seven strains were filamentous whereas two strains were unicellular. Unexpectedly, unicellular cyanobacterium AngS1 isolated from Angthong province showed the highest H₂ production rate with 256.612 \pm 34.267 nmolH₂ mg chl⁻¹ h⁻¹ when incubating cells in BG11₀ under darkness for 2 h (Table 1). Under normal condition

(in BG11 medium) its H_2 production rate could not be detected. Normally there are 2 hydrogenase enzymes involved in H_2 evolution in cyanobacteria; nitrogenase found in filamentous N_2 -fixing cyanobacteria and bidirectional hydrogenase found in all types of cyanobacteria. The unicellular cyanobacterium AngS1 was assumed to contain only bidirectional hydrogenase from the cellular structure. Under nitrogen deprivation, the fermentative glycogen in cells is accumulated in the light. At that time O_2 occurred during photosynthesis inhibited hydrogenase resulting in halting the H_2 evolution. When cells were transferred into the dark anaerobic condition, the accumulated glycogen was degraded and utilized as electron and proton donors for generating H_2 via a reactivated bidirectional hydrogenase.

H_2 production rate of AngS1 was highest after 2 h of dark anaerobic incubation (Fig. 2), indicating that AngS1, like most non N_2 -fixing cyanobacteria, produced H_2 after entering anaerobic phase at a short period of time (12,14). When incubating cells under the light anaerobic incubation, cells produced lower H_2 production rate. It was suggested that O_2 produced during photosynthesis in the light inhibited bidirectional hydrogenase activity.

To investigate the effect of carbon sources and concentrations on H_2 production rate by AngS1, 0-18.9 mmol C L⁻¹ Na_2CO_3 and glucose were added in the medium. AngS1 could produce H_2 in condition without carbon sources in the medium (Fig. 3). It was resulted from the existence of other electron and proton sources within cells. However, the addition of Na_2CO_3 or glucose caused the increased H_2 production rate by AngS1. The highest H_2 production rate with 601.052 ± 24.288

nmol H_2 mg chl⁻¹ h⁻¹ was found in AngS1 incubated in BG11₀ containing 0.189 mmol C L⁻¹ glucose (Fig. 3B), indicating that AngS1 could metabolize glucose as a good substrate for H_2 production rather than Na_2CO_3 . Under darkness the glucose metabolism led to an increase of NAD(P)H which was utilized as substances for H_2 production in the cells. Similar results have already been reported in the unicellular cyanobacteria *Microcystis aeruginosa*, *Synechocystis* sp. PCC 6803, the N_2 -fixing cyanobacterium *Nostoc muscorum* where glucose was a good H_2 producing substrate (14-16). In addition, H_2 production rate was decreased when glucose concentration was higher than 0.189 mmol C L⁻¹ (Fig. 3B), suggesting that too high glucose concentration inhibited hydrogenase activity by using energy for driving the excessive sugar out of the cells.

Under various $MgSO_4 \cdot 7H_2O$ concentrations, the highest H_2 production rate was obtained in AngS1 incubated in BG11₀ containing 3.0 mM $MgSO_4 \cdot 7H_2O$ (Fig. 4); however it was not obviously higher than other $MgSO_4 \cdot 7H_2O$ concentrations. In cyanobacteria, lack of sulfate in medium did not show much effect compared to lack of nitrate (13) whereas in green algae lack of sulfate affected cells by reduction of photosystem II activity, resulting in a decrease of O_2 and subsequently reactivation of hydrogenase activity (8).

The highest H_2 production rate was found in AngS1 incubated in BG11₀ medium containing 20 μM Fe^{3+} (Fig. 5). It was about 2-fold higher than that of cells incubated in Fe^{3+} -free BG11. Iron is known as a cofactor of many enzymes including nitrogenase and hydrogenase involving in H_2 evolution in cyanobacteria (3,19).

Higher concentration of Fe^{3+} up to 200 μM increased H_2 production rate by promoting the electron flow towards hydrogenase. Similar results have been reported in many cyanobacteria (12,23). However, at too high Fe^{3+} concentration H_2 production rate by AngS1 was decreased due to the toxicity of Fe^{3+} in cells.

In optimal BG11₀ medium (containing 0.189 mmolC L⁻¹ glucose, 3.0 mM $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ and 20 μM Fe^{3+}), the H_2 production rate by AngS1 was $996.165 \pm 71.349 \text{ nmolH}_2 \text{ mg chl}^{-1} \text{ h}^{-1}$ or $0.996 \pm 0.071 \mu\text{molH}_2 \text{ mg chl}^{-1} \text{ h}^{-1}$. Compared with H_2 production rate by other cyanobacteria, this rate is higher than that in other unicellular cyanobacteria but lower than filamentous N_2 -fixing cyanobacteria (10). The highest long-term dark fermentative H_2 accumulation by AngS1 was obtained in cells incubated in optimal BG11₀ medium (containing 0.189 mmolC L⁻¹ glucose, 3.0 mM $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ and 20 μM Fe^{3+}) with the H_2 yield of $4,174.364 \pm 278.324 \text{ nmolH}_2 \text{ mg chl}^{-1}$ at day 11th of dark anaerobic incubation (Fig. 6). It is approximately 3-fold higher than H_2 accumulation by cells incubated in BG11₀ medium (containing 0.189 mmolC L⁻¹ Na_2CO_3 , 30 mM $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ and 4 μM Fe^{3+}), indicating that carbon sources, the decreased sulfate concentration and the increased iron concentration resulted in the higher H_2 production in AngS1. The proper adjustment of nutrient and minerals compositions in medium could promote long-term H_2 accumulation.

5. Conclusion

In conclusion, unicellular cyanobacterium AngS1 isolated from the rice paddle field in Thailand is one of high potential H_2 producing cyanobacterial

species. It produced H_2 via a dark fermentation under anaerobic condition. The highest H_2 accumulation with $4,174.364 \pm 278.324 \text{ nmolH}_2 \text{ mg chl}^{-1}$ was obtained in cells incubated in BG11₀ medium containing 0.189 mmolC L⁻¹ glucose, 3.0 mM $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ and 20 μM Fe^{3+} at day 11th of dark anaerobic incubation.

6. Acknowledgement

This study was financially supported by research grant from the Faculty of Science, King Mongkut's Institute of Technology Ladkrabang.

7. References

- (1) Prince RC, Kheshgi HS. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. *Crit Rev Microbiol*. 2005 Jan;31(1):19-31.
- (2) Reddy PM, Spiller H, Albrecht SL, Shammugam KT. Photodissimilation of fructose to H_2 and CO_2 by a dinitrogen-fixing cyanobacterium, *Anabaena variabilis*. *Appl Environ Microbiol*. 1996 Apr;62(4):1220-6.
- (3) Chen PC, Fan SH, Chiang CL, Lee CM. Effect of growth conditions on the hydrogen production with cyanobacterium *Anabaena* sp. strain CH3. *Int J Hydrog Energy*. 2008 Mar;33(5):1460-4.
- (4) Ananyev G, Carrieri D, Dismukes GC. Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium "*Arthrosphaera maxima*". *Appl Environ Microbiol*. 2008 Oct;74(19):6102-13.

(5) Weissman JC, Benemann JR. Hydrogen production by nitrogen starved cultures of *Anabaena cylindrica*. *Appl Env Microbiol*. 1977 Jan;33(1):123-31.

(6) Serebryakova LT, Sheremeteva M, Tsygankov AA. Reversible hydrogenase activity of *Gloeocapsa alpicola* in continuous culture. *FEMS Microbiol Lett*. 1998 Sep 1;166(1):89-94.

(7) Serebryakova LT, Sheremeteva M, Lindblad P. Hydrogenase activity of the unicellular cyanobacterium *Gloeocapsa alpicola* CALU743 under conditions of nitrogen limitation. *Microbiology* 1999 68:249-53.

(8) Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga *Chlamydomonas reinhardtii*. *Plant Physiol* 2000 Jan;122(1):127-36.

(9) Troshina O, Serebryakova LT, Sheremeteva M, Lindblad P. Production of H₂ by the unicellular cyanobacterium *Gloeocapsa alpicola* CALU743 during fermentation. *Int J Hydrog Energy*. 2002 Nov;27(11): 1283-9.

(10) Antal TK, Lindblad P. Production of H₂ by sulphur-deprived cells of the unicellular cyanobacteria *Gloeocapsa alpicola* and *Synechocystis* sp. PCC 6803 during dark incubation with methane or at various extracellular pH. *J Appl Microbiol*. 2005 Jan;98(1):114-20.

(11) Tsygankov AA, Kosourov SN, Tolstygina IV, Ghirardi ML, Seibert M. Hydrogen photoproduction by sulfur-deprived *Chlamydomonas reinhardtii* under photoautotrophic conditions. *Int J Hydrogen Energy*. 2006 Jun 24;31(11): 1574-84.

(12) Taikhao S, Junyapoon S, Incharoensakdi A, Phunpruch S. Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium *Aphanothece halophytica*. *J Appl Phycol*. 2013 Apr;25(2):575-85.

(13) Taikhao S, Incharoensakdi A, Phunpruch S. Dark fermentative hydrogen production by the unicellular halotolerant cyanobacterium *Aphanothece halophytica* grown in seawater. *J Appl Phycol*. 2015 Feb;27(1): 187-96.

(14) Baebprasert W, Lindblad P, Incharoensakdi A. Response of H₂ production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium *Synechocystis* sp. strain PCC 6803. *Int J Hydrog Energy*. 2010 Jul;35(13):6611-6.

(15) Rashid N, Song W, Park J, Jin H-F, Lee K. Characteristics of hydrogen production by immobilized cyanobactrium *Microcystis aeruginosa* through cycles of photosynthesis and anaerobic incubation. *J Ind Eng Chem*. 2009 Jul 25;15(4):498-503.

(16) Shah V, Garg N, Madamwar D. Ultrastructure of the cyanobacterium *Nostoc muscorum* and exploitation of the culture for hydrogen production. *Folia Microbiol.* 2003 Jan;48(1):65-70.

(17) Dawar S, Mohanty P, Behera BK. Sustainable hydrogen production in the cyanobacterium *Nostoc* sp. ARM 411 grown in fructose- and magnesium sulphate-enriched culture. *World J Microbiol Biotechnol.* 1999 Apr;15(2): 329-32.

(18) Khetkorn W, Lindblad P, Incharoensakdi A. Enhanced biohydrogen production by the N_2 -fixing cyanobacterium *Anabaena siamensis* strain TISTR 8012. *Int J Hydrog Energy.* 2010 Dec;35(23): 12767-76.

(19) Vignais PM, Billoud B, Meyer J. Classification and phylogeny of hydrogenases. *FEMS Microbiol Rev.* 2001 Aug;25(4):455-501.

(20) Carrieri D, Ananyev G, Garcia Costas AM, Bryant DA, Dismukes GC. Renewable hydrogen production by cyanobacteria: nickel requirements for optimal hydrogenase activity. *Int J Hydrog Energy.* 2008 Apr;33(8):2014-22.

(21) Daday A, Mackerras AH, Smith GD. The effect of nickel on hydrogen metabolism and nitrogen fixation in the cyanobacterium *Anabaena cylindrica*. *J Gen Microbiol.* 1985 131:231-8.

(22) Gutekunst K, Hoffmann D, Lommer M, Egert M, Suzuki I, Schulz-Friedrich R, Appel J. Metal dependence and intracellular regulation of the bidirectional NiFe-hydrogenase in *Synechocystis* sp. PCC 6803. *Int J Hydrog Energy.* 2006 Sep;31(11):1452-9.

(23) Jeffries TW, Timourian H, Ward RL. Hydrogen production by *Anabaena cylindrica*: effect of varying ammonium and ferric ions, pH and light. *Appl Environ Microbiol.* 1978 Apr;35(4):704-10.

(24) Kumar S, Polasa H. Influence of nickel and copper on photobiological hydrogen production and uptake in *Oscillatoria subbrevis* strain 111. *Proc Indian Natl Sci Acad.* 1991 B57:281-5.

(25) Oxelfelt F, Tamagnini P, Salema R, Lindblad P. Hydrogen uptake in *Nostoc* strain PCC 73102: effects of nickel, hydrogen, carbon and nitrogen. *Plant Physiol Biochem.* 1995 33:617-23.

(26) Xiankong Z, Tabita FR, Van Baalen C. Nickel control of hydrogen production and uptake in *Anabaena* spp. strains CA and 1F. *J Gen Microbiol.* 1984 Jul;130: 1815-8.

(27) Philips EJ, Mitsui A. Role of light intensity and temperature in the regulation of hydrogen photoproduction by the marine cyanobacterium *Oscillatoria* sp. strain Miami BG7. *Appl Environ Microbiol.* 1983 Apr;45(4): 1212-20.

(28) Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. *J Gen Microbiol*. 1979 Feb;111(2): 1-61.

(29) Hoshaw RW, Rosowksi JR. Methods for microscopic algae. In *Handbook of Phycological Methods. Culture Methods and Growth Measurements* (Stein, J., editor), 1973 53-67. Cambridge University Press, New York.

(30) Lee YK, Shen H, Basic culturing techniques. In: Richmond, A. [Eds], *Handbook of microalgal culture*. IS Press. 2004.