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Abstract

Hydrogen produced by cyanobacteria and green algae is a very interesting energy 
carrier because it is produced by a photosynthetic pathway using sunlight as an energy 
source. In this study, 59 cyanobacterial and green algal strains were isolated from soil and 
water sources of rice paddle field in Thailand. Out of them, 9 cyanobacterial isolates and 
9 green algal isolates were purified. Among them, unicellular cyanobacterial isolate AngS1 
showed the highest H2 production rate. Its highest H2 production rate of 389.630±72.084 
nmolH2 mg chl-1 h-1 was found in cells grown in BG11 for 1 week followed by incubating 
cells in BG110 for 24 hours and adaptation under dark anaerobic condition for 2 hours. The 
optimal concentrations of glucose, MgSO4.7H2O and Fe3+ for H2 production rate were 0.189 
mmolC L-1, 3 mM, and 20 μM, respectively. The highest H2 accumulation of 
4,174.364±278.324 nmolH2 mg chl-1 was obtained when incubating cells in the optimal 
medium for 11 days. 
Keywords : Hydrogen production, Microalgae, Rice field

1.  Introduction

Molecular hydrogen is one of the  
interesting energy carriers in the future. It 
provides a high heating value and is a clean 
and environmental friendly fuel. Nowadays 
H2 is mainly produced by the steam  
reforming process from the petrochemical 
industry; however it can be produced by 
various kinds of  microorganisms.  
Microalgae including cyanobacteria and 

green algae are capable of producing H2 

from hydrogenase activity via a direct  
photolysis of water splitting during  

a photosynthetic process (1). Some N2- 
fixing cyanobacteria can produce H2 from 
nirogenase activity through a nitrogen  
fixation process (2,3). In addition, some 
species of cyanobacteria can produce H2 via 
the degradation of accumulated glycogen 
under a dark fermentation (4).  
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In this study, H2 production by  
microalgae isolated from the rice paddle 
field in Thailand was investigated. There 
are several kinds of microorganisms living 
in the rice field because rice field soil and 
water are fertile with nutrients and elements 
that are essential for microalgal growth. In 
addition, the climate, sunlight intensity, 
moisture content and other environmental 
factors in Thailand are suitable for microalgal 
cultivation. These bring about the existence 
of diverse kinds of living and survival green 
algae and cyanobacteria in the rice paddle 
field. 

Several environmental factors, such as 
light intensity, anaerobic adaptation time, 
nutrient and element compositions, play 
important roles in microalgal H2 production. 
The important elements in the medium, i.e., 
nitrogen, sulfur, and carbon, are essential 
for algal growth. It has been reported that 
lack of nitrogen and/or sulfur causes an 
increase of H2 production in many  
cyanobacterial and green algal species  
(5-13). In addition, H2 production by some 
microalgal species is enhanced under  
different sugar sources such as glucose  
(12-16) and fructose (17,18). Because iron 
is a cofactor of cyanobacterial and green 
algal hydrogenases (19); therefore iron 
concentration in the medium directly affects 
hydrogenase activity and H2 yield (20-26). 
Besides the nutritional and mineral effects, 
light intensity has been reported to influence 
cyanobacterial  and green algal H2  
production (4,27).

In this study, microalgae were isolated 
from the rice paddle fields in 7 provinces of 
Thailand, purified and screened for high H2 
production under nitrogen-deprived  
condition. The effects of some physiological 
factors such as anaerobic adaptation time, 
nutrient and mineral compositions under 

nitrogen starvation were investigated on H2 
production rate by the selected microalgal 
isolate. 

2.  Materials and Methods

2.1 	Microalgal isolation
	 M i c r o a l g a e  i n c l u d i n g  

cyanobacteria and green algae were isolated 
from soil and water samples in the rice 
paddle fields from 7 provinces of Thailand 
(Angthong, Chainat, Mahasarakham,  
Nakhon Ratchasima, Nakhon Sawan, 
Pathumthani and Singburi). Soil and water 
samples were incubated in BG11 medium 
under light intensity of 30 µmol photon m-2 
s-1 at 30 oC for 2 weeks. BG11 medium 
contains 17.6 mM NaNO3, 3.0 mM  
MgSO4.7H2O, 0.24 mM CaCl2.2H2O, 0.188 
mM Na2CO3, 0.18 mM K2HPO4, 27.9 µM 
Na2EDTA, 31.2 µM citric acid, 46.3 µM 
H3BO3, 4.2 µM MnCl2.4H2O, 0.77 µM  
ZnSO4.7H2O, 1.66 µM NaMoO4.2H2O, 0.32 
µM CuSO4.5H2O, 0.17 µM Co(NO3)2.6H2O 
and 22.5  µM FeNH 4.c i t ra te  (28) .  
Microalgae were purified by single cell 
isolation technique (29). The bacterial  
contamination of isolated microalgae was 
checked by streaking on LB agar.

2.2 	Microalgal cultivation
	 The purified microalgae were 

grown in a 250-mL Erlenmeyer flask  
containing 100 mL of BG11. They were 
shaken at 120 rpm under light intensity of 
30 µmol photon m-2 s-1 at 30 oC for 1 week.

2.3 	Hydrogen measurement
	 One hundred mL of cell culture 

was harvested by centrifugation at 7,000xg 
at 4oC for 10 min. The cell pellet was 
washed twice followed by resuspension in 
5 mL of the medium. The cell suspension 
was transferred to a 10-mL glass vial. The 
vial was sealed with a rubber stopper and 
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purged with argon gas for 10 min in  
darkness. Cells were incubated at 30 oC 
under darkness for 2 h before analyzing the 
gas phase. H2 production was determined 
by analyzing the gas phase using the Gas 
Chromatograph as previously described 
(12). 

2.4 	Chlorophyll measurement
	 One hundred µL of cell culture 

was added with 900 µL of absolute  
methanol. The mixture was mixed by  
vortexing and incubated in darkness for 1 h 
before centrifugation at 12,000xg for 2 min. 
Chlorophyll concentration of extract was 
determined by measuring the absorbance at 
665 nm for cyanobacteria, and at both 
665and 650 nm for green algae, and  
calculated followed by Lee and Shen (2004) 
(30).  

3.  Results

3.1 	 Screening for a high H2 producing 
microalgal strain

	 A total of 59 cyanobacterial and 
green algal strains were isolated from soil 
and water samples of rice paddle fields in 7 
provinces of Thailand. Unfortunately, only 
9 cyanobacterial isolates and 9 green algal 
isolates were purified (Table 1). They were 

cultivated in BG11 medium for 2 weeks, 
then harvested and resuspended in BG11 
and BG110 medium (BG110 has all chemical 
compositions similar to BG11 except that 
NaNO3 is absent in the BG110 medium). The 
culture was incubated in the light for 24 h, 
followed by collecting the cells and  
incubating cells under dark anaerobic  
incubation for 2 h before determination of 
H2 production. It was found that all  
cyanobacteria hardly produced H2 under 
normal condition (in BG11 medium) but 
most cyanobacteria obviously produced H2 
under nitrogen deprivation condition (in 
BG110 medium) (Table 1). In contrast, H2 
production rate by five green algal strains 
was detected when incubated in BG11  
medium eventhough it was lower than that 
in BG110 medium (Table 1). The unicellular 
cyanobacterial isolate AngS1 showed the 
h ighes t  H 2 p roduc t ion  r a t e  w i th 
256.612±34.267 nmolH2 mg chl-1 h-1 when 
incubating cells in BG110 for 2 h. It is  
unicellular, has a round shape and cell  
diameter with1-5µm (Fig. 1). Therefore, 
AngS1 was selected as a potential H2  
producing microalgal strain for further  
experiments. 

Figure 1.	 Cell morphology of the cyanobacterium AngS1 observed under a light  
	 microscope
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Table 1. 	Hydrogen production rate by 9 cyanobacterial and 9 green algal strains isolated  
		  from the rice field in Thailand

Isolates
Hydrogen production rate

(nmolH2 mg chl-1 h-1)

BG11 BG110 

Cyanobacteria
2SinS3 - -

A34 - 111.588±25.581 
A36 - 11.916±1.083 

A47.1 - 39.919±1.466 
AngS1 - 256.612±34.267 

B14 - 88.049±10.929 
B35.1 - 152.762±18.387
ChiS5 - 6.305±0.812
Cyano - 237.942±32.353

Green algae  

1SinS1.1 - 3.701±0.334
2SinS4 23.305±1.812 40.665±7.960 

2TKS2.1 - 5.973±0.385 
2TKS2.2 6.605±1.913 8.618±0.636 
2TKW1 - 51.006±0.135 

A27 19.139±2.852 23.633±0.531 
ChiS4 21.666±2.008 53.248±1.229 
ChiW1 12.648±0.019 15.924±1.040 
NakS4 - 15.785±2.202 

3.2 	Effect of anaerobic adaptation 
time and light on H2 production 

	 The cyanobacterium AngS1 
grown in BG11 for 1 week followed by 
incubating cells in BG110 for 24 h and  
adaptation under dark anaerobic condition 
for 2 h yielded the highest H2 production 
rate with 389.630±72.084 nmolH2 mg chl-1 

h-1 (Fig. 2). H2 production rate in the dark 
was obviously higher than that in the light 
(Fig. 2). Longer duration of incubation up 
to 48 h did not increase H2 production rate. 
In this study, incubation of cells for 2 h 
under anaerobic dark condition before H2 
analysis was used for further experiments.
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The main source of sulfate in BG11 medium 
is MgSO4.7H2O that contains 30 mM. Under 
various MgSO4.7H2O concentrations, the 
highest H2 production rate with 
549.066±110.482 nmolH2 mg chl-1 h-1 was 
obtained in AngS1 incubated in BG110 
containing 3.0 mM MgSO4.7H2O (Fig. 4). 
However, it did not show much difference 
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Figure 2. 	 H2 production rate by AngS1 under various anaerobic adaptation time in the  
	 light and dark

3.3	 Effect of carbon sources and 
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growth but are used as electron donors for 
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3.4 	Effect of sulfate concentrations 
on H2 production

	 The main source of sulfate in 
BG11 medium is MgSO4.7H2O that  
con ta ins  30  mM.  Under  va r ious  
MgSO4.7H2O concentrations, the highest H2 
production rate with 549.066±110.482  

nmolH2 mg chl-1 h-1 was obtained in AngS1 
incubated in BG110 containing 3.0 mM 
MgSO4.7H2O (Fig. 4). However, it did not 
show much difference with  other  
MgSO4.7H2O concentrations.  
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3.6	 Long-term dark fermentative 
H2 accumulation by AngS1 in optimal 
medium

	 The cyanobacterium AngS1 was 
grown in BG11 for 1 week. The culture was 
harvested by centrifugation, washed and 
resuspended in BG11, BG110 and optimal 
BG110 (containing 0.189 mmolC L-1  
glucose, 3.0 mM MgSO4.7H2O and 20 μM 
Fe3+). The cells were purged with argon gas 
for 10 min and incubated in the indicated 
medium under darkness for 18 days. The 
result showed that H2 production rate by 

cells incubated in optimal BG110 medium 
was 996.165±71.349 nmolH2 mg chl-1 h-1or 
0.996±0.071 µmolH2 mg chl-1 h-1. It was 
rapidly increased within24 h of incubation. 
The H2 accumulation reached the maximum 
yield with 4,174.364±278.324 nmolH2 mg 
chl-1 at day 11th of dark anaerobic incubation 
(Fig. 6), approximately 3-fold higher than 
that by cells incubated in BG110 medium. 
After 11 days of incubation, H2 yield from 
cells in both media was significantly  
decreased.
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(Fig. 6), approximately 3-fold higher than 
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Figure 6 Long-term H2accumulation by AngS1. 
Cells, initially grown in BG11 for 7 days, were 
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Figure 6. 	 Long-term H2accumulation by AngS1. Cells, initially grown in BG11 for  
	 7 days, were harvested, resuspended in BG11 (), BG110 () and optimal  
	 BG110 (), and further incubated at 30 °C for 24 h in the light. Then cells were  
	 harvested again and resuspended in the same medium before transferring to  
	 a glass vial. H2 was measured in darkness.

4.  Discussions

In this study, only 9 cyanobacterial 
isolates and 9 green algal isolates were 
purified from 59 microalgal strains isolated 
from the rice paddle field in Thailand. It was 
rather difficult to purify microalgal strains 
from their contamination because there 
were a numerous bacteria and fungi in soil 

and water samples. Among cyanobacterial 
strains, seven strains were filamentous 
whereas two strains were unicellular.  
Unexpectedly, unicellular cyanobacterium 
AngS1 isolated from Angthong province 
showed the highest H2 production rate with 
256.612±34.267 nmolH2 mg chl-1 h-1 when 
incubating cells in BG110 under darkness 
for 2 h (Table 1). Under normal condition 
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(in BG11 medium) its H2 production rate 
could not be detected. Normally there are 2 
hydrogenase enzymes involved in H2  
evolution in cyanobacteria; nitrogenase 
found in filamentous N2-fixing cyanobacteria 
and bidirectional hydrogenase found in all 
types of cyanobacteria. The unicellular 
cyanobacterium AngS1 was assumed to 
contain only bidirectional hydrogenase 
from the cellular structure. Under nitrogen 
deprivation, the fermentative glycogen in 
cells is accumulated in the light. At that time 
O2 occurred during photosynthesis inhibited 
hydrogenase resulting in halting the H2 
evolution. When cells were transferred into 
the dark anaerobic condit ion,  the  
accumulated glycogen was degraded and 
utilized as electron and proton donors for 
generating H2 via a reactivated bidirectional 
hydrogenase.

H2 production rate of AngS1 was  
highest after 2 h of dark anaerobic  
incubation (Fig. 2), indicating that AngS1, 
like most nonN2-fixing cyanobacteria,  
produced H2 after entering anaerobic phase 
at a short period of time (12,14). When  
incubating cells under the light anaerobic 
incubation, cells produced lower H2  
production rate. It was suggested that O2 
produced during photosynthesis in the light 
inhibited bidirectional hydrogenase activity.

To investigate the effect of carbon 
sources and concentrat ions on H2  
production rate by AngS1, 0-18.9 mmolC 
L-1 Na2CO3 and glucose were added in the 
medium. AngS1 could produce H2in  
condition without carbon sources in the 
medium (Fig. 3). It was resulted from the 
existence of other electron and proton 
sources within cells. However, the addition 
of Na2CO3 or glucose caused the increased 
H2 production rate by AngS1. The highest 
H2 production rate with 601.052±24.288 

nmolH2 mg chl-1 h-1 was found in AngS1 
incubated in BG110 containing 0.189 
mmolC L-1 glucose (Fig. 3B), indicating that 
AngS1 could metabolize glucose as a good 
substrate for H2 production rather than  
Na2CO3. Under darkness the glucose  
metabolism led to an increase of NAD(P)H 
which was utilized as substances for H2 
production in the cells. Similar results have 
already been reported in the unicellular 
cyanobacteria Microcystis aeruginosa,  
Synechocystis sp. PCC 6803, the N2-fixing 
cyanobacterium Nostoc muscorum where 
glucose was a good H2 producing substrate 
(14-16). In addition, H2 production rate was 
decreased when glucose concentration was 
higher than 0.189 mmol C L−1 (Fig. 3B), 
suggesting that too high glucose concentration 
inhibited hydrogenase activity by using 
energy for driving the excessive sugar out 
of the cells.

U n d e r  v a r i o u s  M g S O 4. 7 H 2O  
concentrations, the highest H2 production 
rate was obtained in AngS1 incubated in 
BG110 containing 3.0 mM MgSO4.7H2O 
(Fig. 4); however it was not obviously  
h igher  than  o ther  MgSO 4.  7H 2O  
concentrations. In cyanbacteria, lack of  
sulfate in medium did not show much effect 
compared to lack of nitrate (13) whereas in 
green algae lack of sulfate affected cells by 
reduction of photosystem II activity,  
result ing in a decrease of O 2 and  
subsequently reactivation of hydrogenase 
activity (8).

The highest H2 production rate was 
found in AngS1 incubated in BG110  
medium containing 20 μM Fe3+ (Fig. 5). It 
was about 2-fold higher than that of cells 
incubated in Fe3+-free BG11. Iron is known 
as a cofactor of many enzymes including 
nitrogenase and hydrogenase involving in 
H2 evolution in cyanobacteria (3,19).  
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Higher concentration of Fe3+ up to 200 µM 
increased H2 production rate by promoting 
the electron flow towards hydrogenase. 
Similar results have been reported in many 
cyanobacteria (12,23). However, at too high 
Fe3+ concentration H2 production rate by 
AngS1 was decreased due to the toxicity of 
Fe3+ in cells. 

In optimal BG110 medium (containing 
0.189 mmolC L-1 glucose, 3.0 mM  
MgSO4.7H2O and 20 μM Fe3+), the H2  
p r o d u c t i o n  r a t e  b y  A n g S 1  w a s 
996.165±71.349 nmolH2 mg chl-1 h-1or 
0 .996±0.071 µmolH 2 mg chl -1 h -1.   
Compared with H2 production rate by other 
cyanobacteria, this rate is higher than that 
in other unicellular cyanobacteria but lower 
than filamentous N2-fixing cyanobacteria 
(10). The highest long-term dark fermentative 
H2 accumulation by AngS1 was obtained in 
cells incubated in optimal BG110 medium 
(containing 0.189 mmolC L-1 glucose, 3.0 
mM MgSO4.7H2O and 20 μM Fe3+) with the 
H2 yield of 4,174.364±278.324 nmolH2 mg 
chl-1 at day 11th of dark anaerobic incubation 
(Fig. 6). It is approximately 3-fold higher 
than H2 accumulation by cells incubated in 
BG110 medium (containing 0.189 mmolC 
L-1 Na2CO3, 30 mM MgSO4.7H2O and 4 μM 
Fe3+), indicating that carbon sources, the 
decreased sulfate concentration and the 
increased iron concentration resulted in the 
higher H2 production in AngS1. The proper 
adjustment of nutrient and minerals  
compositions in medium could promote 
long-term H2 accumulation. 

5.  Conclusion

I n  c o n c l u s i o n ,  u n i c e l l u l a r 
cyanobacterium AngS1 isolated from the 
rice paddle field in Thailand is one of high 
potential H2 producing cyanobacterial  

species. It produced H2 via a dark  
fermentation under anaerobic condition. 
The highest H2 accumulation with 
4,174.364±278.324 nmolH2 mg chl-1 was 
obtained in cells incubated in BG110  
medium containing 0.189 mmolC L-1  
glucose, 3.0 mM MgSO4.7H2O and 20 μM 
Fe3  at day 11thof dark anaerobic incubation.
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