Abstract

Chi river basin is large river basin in northeastern region of Thailand which is major agricultural area of the country. Majority of agricultural activity in Chi river basin is rain-fed system, which is directly exposed to climate risk. Climate change from global warming effect may have impact on crop production in various aspects. Change in temperature, rainfall distribution and solar radiation could affect crop yield, however, impact of climate change on evapotranspiration of plant could alter water demand for agricultural sector, which could
be driven by projected longer and warmer summertime in the river basin. This study aims to understand change in water demand to support agricultural activities in the future by study change in balance between annual precipitation and water loss from evapotranspiration under climate change scenario, ECHAM4 A2 which was downscaled using PRECIS regional climate model. The study compares change in water availability and evapotranspiration between the period of 1980-2009 (baseline) and 2010-2039 (future). The analysis based on land use and land cover of 5 mixed vegetations; rice, maize, sugarcane, cassava and forest area. Results from analysis shown 3% increasing in total annual rainfall and 2% increasing of evapotranspiration and water availability will increase about 2% in a future. In conclusion, current crop production pattern and land use in the Chi river basin still be able to cope with influence of climate change, but water management may become more complicate during the dry season.

คำสำคัญ: ลุ่มน้ำชี, ปริมาณน้ำที่สามารถนำมาใช้, Water availability

Keywords: Chi basin, climate change, crop evapotranspiration, water availability
จำลองสภาพอากาศตาม A2 scenario ในช่วงปี ค.ศ.2010 - 2059 จะมีความต้องการใช้น้ำเพิ่มขึ้นประมาณ 20% โดยผลการจำลองของการเปลี่ยนแปลงของสภาพอากาศที่มีอยู่ในปัจจุบัน ซึ่งเป็นผลจากปริมาณหารีมาที่สูงขึ้นในการใช้น้ำเพิ่มขึ้น

วิธีการศึกษา

ข้อมูลการจำลองสภาพอากาศในอนาคต ภายใต้การเปลี่ยนแปลงทางเศรษฐกิจและสังคมที่มีการใช้ในการศึกษาเป็นการจำลองโดยแบบจำลอง IPCC ตามแนวทาง A2 Scenario โดยข้อมูลที่นำมาใช้ จากผลการจำลองสภาพอากาศระดับภูมิภาคที่ความละเอียด 0.2 องศา ซึ่งคำว่าดำเนินการจำลองสภาพภูมิอากาศระดับภูมิภาค PRECIS (Providing REgional Climates for Impacts Studies) และใช้ผลการจำลองสภาพภูมิอากาศระดับโลก (Global Circulation Model) จากแบบจำลองECHAM4 เป็นข้อมูลจำลองแบบจำลองที่จัดทำขึ้นโดยศูนย์วิจัยทางภูมิศาสตร์วิทยา และศึกษาการเปลี่ยนแปลงของโลกที่อยู่ภูมิภาคซี อังกฤษ ในการศึกษา

ได้แบ่งช่วงที่ใช้ในการศึกษาเป็น 2 ช่วง คือ ค.ศ. 1980 - 2009 ซึ่งกำหนดให้เป็นปัจจุบัน และช่วงปี ค.ศ. 2010 - 2039 เป็นช่วงอนาคต โดยผลการจำแนกการศึกษาของค่าเฉลี่ยและทบทวนการศึกษา (2551) พบว่าการเปลี่ยนแปลงของสภาพอากาศในอนาคตจะมีผลต่อการเกษตร และภูมิภาคที่มีการเปลี่ยนแปลง

ในการศึกษาผลของการเปลี่ยนแปลงสภาพอากาศที่มีอยู่ในอนาคต โดยการจำลองโดยแบบจำลอง IPCC ตามแนวทาง A2 Scenario โดยข้อมูลที่นำมาใช้ เป็นการจำลองโดยแบบจำลอง IPCC (Intergovernmental Panel on Climate Change) ตามแนวทาง A2 Scenario (IPCC,2000) โดยผลการศึกษา นักการใช้ประโยชน์ที่มี 5 ประเภท คือ น้ำที่จะปลูกขึ้นพืชที่ปลูกขึ้นของพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขึ้นพืชที่ปลูกขื
ET = Kc.ET0

คำปรีบราวณ์ที่สามารถนำมาใช้ (Water availability หรือ Water yield) ในการงานนี้จะใช้ตามคำานวณของ Sun et al. (2002) คือ ผลค้างระหว่างปริมาณฝนรวม (P) กับการสูญเสียเนื่องจากการกระแทกของลม แสดงสภาวะ ดังนี้

Water yield (Q) = P - AET

โดยคำปรีบราวณ์ที่ (AET) สำหรับพืชใช้จะใช้ค่า ETc อย่างไรก็ตามเมื่อจำกัดค่า Water availability คำานวณโดยใช้คำปรีบราวณ์จากการใช้ประโยชน์ที่ดิน 4 ปีแรก เท่านั้น จึงไม่เท่ากัน
ผลการศึกษา

1. ผลการเปรียบเทียบการใช้น้ำของพืชจากการเกษตร

เนื่องจากการค้นหาค่าศักยภาพการเกษตรของพืชจากภูมิศาสตร์ที่อยู่ในผลการค้นหา PRECIS ดังนั้นจึงจำเป็นต้องมีการเปรียบเทียบปริมาณการใช้น้ำของพืชจากเกษตรและการค้นหาปริมาณการใช้น้ำของพืชจากเกษตรโดยแสดงผลการเปรียบเทียบตามชนิดพืช ตามรูปที่ 2

รูปที่ 2. ปริมาณเปลี่ยนแปลงการใช้น้ำของพืชจากการเกษตร

โดยการใช้น้ำของพืชตลอดฤดูกาลได้จากการคำนวณโดยข้อมูลสภาพอากาศแบบจำลอง (คำนวณข้างต้นของข้าว, ข้าวโพด และข้าวโพดถิ่นจีนจาก http://water.rid.go.th/hwm/cropwater/CWRdata/ET&ETO/cwr-a_east.htm และประมาณค่าการใช้น้ำของพืชจากมันสำรั่งหลังจากรายงานของ Attarod et al. (2006))

2. การเปลี่ยนแปลงของปริมาณฝน

และการค้นหาสภาพอากาศ

จากรูปที่ 3 และ 4 แสดงปริมาณฝนรวมรายปีในช่วงปีฐานโดยปริมาณฝนเฉลี่ยในช่วงปีนี้จะมีถึง 1346 มิลลิเมตร และมีแนวโน้มที่จะเพิ่มขึ้นประมาณ 3% โดยเฉลี่ยพื้นที่กระจายตามช่วง 3 เดือน คือ ช่วงเดือน ธ.ค.-ก.พ. (DJF), มี.-พ.ย. (MAM), มิ.-ธ.-ค. (JJA) และช่วงเดือน ก.ย.-ธ.ค. (SON) โดยจากรูปที่ 4 แสดงแนวโน้มการเพิ่มขึ้นในช่วง MAM และ SON โดยเพิ่มขึ้นประมาณ 6% และ 14 ในขณะที่ปริมาณฝนในช่วง JJA มีแนวโน้มลดลงประมาณ 2%
รูปที่ 3. ปริมาณฝนรวมรายปีในช่วงปีฐาน ค.ศ.1980-2009 (บนล่าง) และช่วงปีอนาคต ค.ศ.2010-2039 (บนบน) และเปรียบเทียบการเปลี่ยนแปลงของปริมาณฝนรวมรายปีของปีอนาคตกับปีฐาน (ล่าง)

รูปที่ 4. ปริมาณฝนรวมราย 3 เดือน คือ ช่วงเดือน ธ.ค.-ก.พ. (DJF), มี.ค.-พ.ค. (MAM), มิ.ย.-ส.ค. (JJA) และช่วงเดือน ก.ย.-ต.ค. (SON) ปรียบเทียบระหว่างปีฐาน และปีอนาคต

คำศัพท์ภูมิอากาศขณะที่เป็นคำที่แสดงถึงความสามารถในการควบคุมสภาวะอากาศที่สูงขึ้นจากสภาพอากาศที่จะเกิดขึ้นได้ โดยผลที่แสดงในรูปที่ 5 แสดงให้เห็นว่าคำศัพท์ภูมิอากาศในช่วงปีฐานนี้มีค่าเฉลี่ยประมาณ 1900 มิลลิเมตร โดยการเปลี่ยนแปลงของค่าที่เกิดวันใหม่ที่จะเพิ่มขึ้นประมาณ 2% ตลอดทั้งสุดปี ในช่วงปีอนาคต โดยเมื่อแยกพิจารณาในช่วงเวลา 3 เดือน แล้วพบว่ามีค่าเพิ่มขึ้นเล็กน้อยในทุกช่วงเดือน (รูปที่ 6) โดยคำศัพท์ภูมิอากาศช่วงปีฐานสูงในช่วงเดือน MAM.
รูปที่ 5. ค่าสัดส่วนการกระจายช่วงร้อยละปีในช่วงปีฐาน ค.ศ.1980-2009 (ขาว) และช่วงปีอนาคต ค.ศ.2010-2039 (เข้ม)

รูปที่ 6. ค่าสัดส่วนการกระจายเปอร์เซ็นต์ 3 คืน คือ ช่วงคืน มี.ค.-พ.ย. (DJF), มี.ค.-พ.ค. (MAM), มิ.ย.-ส.ค. (JJA) และช่วงคืน ก.ย.-ธ.ค. (SON) เปรียบเทียบระหว่างปีฐาน และปีอนาคต

ตารางที่ 1. ปริมาณฝน (มม.ต่อ 3 เดือน) และค่าสัดส่วนการกระจาย (มม.ต่อ 3 เดือน) ในช่วงปีฐานและช่วงปีอนาคต

<table>
<thead>
<tr>
<th></th>
<th>ช.ต.-ก.พ. (DJF)</th>
<th>มี.ค.-พ.ค. (MAM)</th>
<th>มิ.ย.-ส.ค. (JJA)</th>
<th>ก.ย.-ธ.ค. (SON)</th>
<th>รวมร้อยละปี</th>
</tr>
</thead>
<tbody>
<tr>
<td>ปริมาณน้ำตก (มม.ต่อ 3 เดือน)</td>
<td>13</td>
<td>245</td>
<td>855</td>
<td>233</td>
<td>1346</td>
</tr>
<tr>
<td></td>
<td>2010-2039</td>
<td>18</td>
<td>259</td>
<td>838</td>
<td>265</td>
</tr>
<tr>
<td>%เปลี่ยนแปลง</td>
<td>38</td>
<td>6</td>
<td>-2</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>ค่าสัดส่วนการกระจาย</td>
<td>366</td>
<td>602</td>
<td>511</td>
<td>431</td>
<td>1909</td>
</tr>
<tr>
<td>ระหว่างฐานสูงสุด (มม.ต่อ 3 เดือน)</td>
<td>2010-2039</td>
<td>369</td>
<td>607</td>
<td>526</td>
<td>1941</td>
</tr>
<tr>
<td>%เปลี่ยนแปลง</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
3. ปริมาณการใช้น้ำของพืช

จากการศึกษาพบว่าปริมาณการใช้น้ำของพืช ที่ได้จากปริมาณการใช้ประโยชน์ที่ได้ 5 ประเภท คือ การแช่สูงชั่วๆ ขาวโพด มีส่วนประกอบ และดื่มน้ำรวมทั้งที่ได้มา ให้มีปริมาณเฉลี่ย 3.4 ตันต่อชั่วโมงในช่วงปี 2010-2039 โดยแนวโน้มของการเปลี่ยนแปลงจะถูกแสดงในรูปที่ 7.

![Image](chart.png)

รูปที่ 7. การใช้น้ำรวมในภาคเกษตรกรรมในแต่ละช่วง 3 เดือน คือ ร.ก.-ค. (DIF) มีค. พ.ค. (MAM) มิ.ย.-ธ.ค. (JJA) และ ก.ย.-พ.ย. (SON)

ตารางที่ 2. ปริมาณการใช้น้ำของพืชรวมในช่วงปีฐาน และช่วงปีอนาคต

<table>
<thead>
<tr>
<th>ปริมาณการใช้น้ำ</th>
<th>ร.ก.-ค. (DIF)</th>
<th>มีค. พ.ค. (MAM)</th>
<th>มิ.ย.-ธ.ค. (JJA)</th>
<th>ก.ย.-พ.ย. (SON)</th>
<th>รวมรายปี</th>
</tr>
</thead>
<tbody>
<tr>
<td>ปริมาณการใช้น้ำ</td>
<td>ปีฐาน</td>
<td>3961</td>
<td>14153</td>
<td>18249</td>
<td>7715</td>
</tr>
<tr>
<td>ของพืช</td>
<td>2010-2039</td>
<td>3996</td>
<td>14216</td>
<td>18748</td>
<td>7873</td>
</tr>
<tr>
<td>(ตัว ลบม. คร.)</td>
<td>% เปลี่ยนแปลง</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

4. ปริมาณน้ำที่สามารถนำมาใช้ (Water availability)

ปริมาณน้ำที่สามารถนำมาใช้ หรือ Water availability เป็นค่าที่จะทำขึ้นหลังจากการเปลี่ยนแปลงสภาพอากาศโดยสมดุลปริมาณน้ำที่จะเข้าสู่กลุ่มน้ำ โดยจะต้องขึ้นอยู่กับปริมาณน้ำ ที่จะเข้าสู่กลุ่มน้ำ โดยจะต้องกระทำที่มีน้ำ สำหรับที่สูงสุดไปเรื่อยๆจากปริมาณการใช้น้ำของพืช โดยจากการเปลี่ยนแปลงในช่วงปี ก.ศ.2010-2039 เมื่อเทียบกับปีฐาน พบว่า ปริมาณน้ำที่สามารถนำมาใช้ (Water availability) มีแนวโน้มจะเพิ่มขึ้นประมาณ 4 % โดยมีการเปลี่ยนแปลงของปริมาณน้ำที่สามารถนำมาใช้ได้ในแต่ละช่วง 3 เดือน แต่จะพบว่าในช่วงมิ.ย.-ธ.ค. JJA มีแนวโน้มจะลดลงประมาณ 6 % ในขณะที่ในช่วง ร.ก.-ค. (DIF) มีค. พ.ค. (MAM) และ ก.ย.-พ.ย. (SON) มีแนวโน้มที่จะเพิ่มขึ้น (รูปที่ 8)
ผลการเปลี่ยนแปลงสภาพอากาศที่มีต่อทรัพยากรน้ำ ในระบบอุทกวัตถุให้มีความสูงขึ้น ซึ่งอาจทำให้ใช้แบบจำลองชั่งอุทกวัตถุช่วยในการศึกษาจึงเป็นที่ต้องการต่อไป

เอกสารอ้างอิง

เกียรติ ปึ่งเหงียนพร และ นิมิต วรอสสูตร. 2548. อัตราการขยายตัวและการจ่ายน้ำได้ โดยได้สภาพแวดล้อมในระยะเดิมมีแต่ละจุดของข้าวสาลี หน้า 105. วารสารวิจัยข้าว 10(3): ก.ค. - ก.ย. 2548


Library Nine Publishing. กรุงเทพฯ
