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Abstract 

 

In this paper, the expectation- maximization algorithm coupled with a Gaussian particle filter for maximum 

likelihood parameter estimation of a stochastic volatility model is investigated.  Two data sets are provided for 

demonstration purposes:  simulated data and daily foreign exchange rates data.  Simulation studies illustrate that 

the parameter estimate trajectories are likely to converge to the true ones.  When comparing the empirical results 

obtained from the conventional method and the proposed method, it can be seen that the parameter estimates from 

both methods are consistent with each other; however, the computational time is considerably reduced when using 

the method presented here. 

 

Keywords: Maximum likelihood, Parameter estimation, Bootstrap filter, Daily exchange rates 

1. Introduction 

 

Option pricing theory has been the foundation of mathematical finance and financial engineering since Black 

and Scholes [1]  published their groundbreaking paper in 1973.  They formulated a partial differential equation, 

currently known as the Black-Scholes model or BS model for short, to evaluate the fair value of options over time. 

Five parameters are required in the BS model; the volatility 𝜎, however, is the only parameter that cannot be 

directly observed from the market data and must be estimated.  In finance, volatility is a statistic measure of 

fluctuations of return process; i.e., the higher the volatility is, the more fluctuations the asset price exhibits. In the 

beginning, most options were short-lived with maturities of a few months to a year. During the option’s lifetime, 

the underlying asset prices gradually changed, and hence it seemed reasonable to assume the return volatility over 

the near future to be constant.  Therefore, the historic volatility and the implied volatility are normally applied to 

the BS model for short term forecasting.  

In recent years, most options in derivative markets are long- lived with maturities of 5 years or longer.  The 

assumption of constant volatility is inconsistent with the characteristics of the real world financial data. Evidently, 

the returns of the underlying assets in financial markets have fluctuated constantly and randomly over time, and 

typically exhibit volatility clustering.  Having a proper model for return volatility, one is able to investigate the 

behavior of asset’s return and to forecast its corresponding volatility.  Various models have been proposed in the 

econometric literature; among them, the so-called stochastic volatility (SV)  models have attracted considerable 

attention since they can be regarded as a particular type of state space models corrupted by noises, which is 

commonly used in system & control communities. The first SV model was introduced by Taylor [2] in 1982 and 

its variants have drawn extensive studies thereafter. 

Once the model is selected, it is customary to fit the model with the empirical data using parameter estimation 

methods. Several methods for parameter estimation have been increasingly developed in the time series literature; 

one of which is the expectation-  maximization (EM)  algorithm originally introduced by Dempster et al.  [3]  in 

1977 for maximum likelihood (ML)  estimation of stochastic state space models.  Basically, the EM algorithm is 
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an iterative method consisting of two steps, namely the expectation step (E-step) and the maximization step (M-

step) .  In the E- step, the algorithm computes the expectation of the likelihood of the complete data over the 

smoothing distribution using the current knowledge of the ML parameter estimates and the observed data.  This 

step may require state filtering and smoothing with current parameter estimates to get filtered and smoothed state 

estimates.  Then the M-step uses the smoothed state estimates to re-estimate the parameters by maximizing the 

lower bound of the marginal likelihood of the observed data so that the new likelihood function achieves the 

maximum.  Due to its simplicity, the EM algorithm has tremendous applications in various fields such as applied 

mathematics, statistics, economics, robotics, and signal processing. 

In state space models, state variables ( sometimes called latent variables or hidden variables)  are not directly 

observed but are rather inferred from a sequence of observations, or from a sequence output of the models. When 

the EM algorithm has been applied to such models, state variables over the smoothing distribution have to be 

estimated.  For linear models with Gaussian distribution, the celebrated Kalman filter, also known as the linear 

quadratic estimator, and the Rauch- Tung- Striebel ( RTS)  smoother are commonly applied to estimate state 

variables in the E-step due to the simplicity of algorithms and ease of implementation acquired from having the 

closed-form solutions. Besides, the Kalman filter has long been regarded as an optimal state estimator in the sense 

that the mean squared error between the true state variables and the estimated ones is minimized as compared with 

other filters.  When the linearity or the Gaussianity assumption is violated, the optimality no longer holds in 

general, see, e.g., [4–6]. The estimates obtained from the Kalman filter may lead to the quasi-maximum likelihood; 

however, it is still being employed successfully in a large number of applications, even though the models are 

nonlinear or contaminated by non-Gaussian noises. 

Apart from the Kalman filter, a sequential Monte Carlo (SMC)  method [7]  introduced in the 1960’s is an 

alternative approach to infer state variables via point mass representation of probability densities by performing 

importance sampling to get samples from the prediction distribution, computing normalized weights, and finally 

applying the re-sampling step in the filtering process.  The re-sampling step is used for solving the degeneracy 

problem by eliminating samples with small (nearly zero)  weights and regenerating a new set of samples with 

larger weights.  Since samples are mostly called particles, the filter and smoother designed via the SMC method 

are commonly called the particle filter and the particle smoother, respectively.  The simplest, and probably most 

widely used, type of particle filter is a bootstrap filter (BF)  introduced by Gordon et al.  [8]  in 1993, where the 

state model is used as the importance distribution. Since then, BF has been successfully applied to a wide variety 

of interests, from natural sciences to applied sciences and engineering. 

One major drawback of particle filters is that they are time-consuming due to the re-sampling step, which is a 

serial computation. To handle this problem, Kotecha and Djuric [9] proposed a new type of filter, called a Gaussian 

particle filter (GPF) , in 2003.  In their paper, the importance sampling is utilized to approximate the filtering 

distribution by the posterior mean and variance of a Gaussian distribution, rather than performing the re-sampling 

step. They also showed that the computational time in the filtering process can be reduced considerably; however, 

they did not take a further step to apply the GPF in the estimation problem. To the best of the authors’ knowledge, 

this is the first attempt to apply the GPF in the EM algorithm for parameter estimation of SV models. 

The main purpose of this paper is to investigate the performance of two different filters, namely the GPF and 

the BF, coupled with the EM algorithm for ML parameter estimation of the SV model.  Two sets of experiments 

are performed in this study to provide empirical estimates: (1) the experiment with simulated data generated from 

the SV model, and (2) the experiment with real data collected from foreign exchange rates markets. The remainder 

of this paper is organized as follows.  

The next section presents the SV model adopted from [ 10] , where the volatility is recast as a nonlinear 

transformation of a state variable, followed by ML estimation and an EM algorithm.  Next, particle methods for 

filtering and smoothing as well as Gaussian particle filters are briefly described. After that the experimental results 

are demonstrated, and conclusions of this work are provided.  In order to facilitate readability, a list of acronyms 

as well as a list of mathematical symbols used in this paper are presented in Section 6. 

   

2. Materials and methods 

 

2.1 Stochastic volatility models 

 

Let 𝑃𝑘 denote the asset price at time k. The log return of 𝑃𝑘 is then defined by 𝑟𝑘 ≔ log (
𝑃𝑘

𝑃𝑘−1
), which admits 

the univariate SV model: 

𝑟𝑘 = 𝜎𝑘𝜀𝑘,         (1) 

where 𝜀𝑘 is a white Gaussian noise process with zero mean and unit variance, and 𝜎𝑘 is a non-negative stochastic 

process representing the volatility of 𝑟𝑘.  According to the empirical results, 𝜎𝑘
2 is the log-normally distribution; 

i.e., there does exist a normal random variable 𝑥𝑘 so that 𝑥𝑘 = log  𝜎𝑘
2, and hence (1) becomes 
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𝑟𝑘 = exp(𝑥𝑘 2⁄ ) 𝜀𝑘.        (2) 

 

Traditionally, the log volatility 𝑥𝑘 is assumed to follow a first order autoregressive process, an AR(1) process, 

with Gaussian innovation noise: 

  

𝑥𝑘 = 𝜙𝑥𝑘−1 + 𝑐 + 𝜔𝑘,        (3) 

 

where 𝜙 and 𝑐 are constants and 𝜔𝑘 
is a white Gaussian noise process with zero mean and variance 𝑄.  It is 

normally assumed that 𝜔𝑘 and 𝜀𝑘 are mutually independent.  In addition, if |𝜙| < 1, the above process is wide-

sense stationary.  

Rather than (2) and (3) , one may introduce a scaling factor 𝛽 in (2) to remove the constant term 𝑐 from (3). 

Hence, the canonical SV model for the log return is given by 

 

𝑥𝑘 = 𝜙𝑥𝑘−1 + 𝜔𝑘,         (4a) 

𝑟𝑘 = 𝛽 exp(𝑥𝑘 2⁄ ) 𝜀𝑘,         (4b) 

 

with initial state 𝑥0. This couple of equations is a particular type of stochastic nonlinear state space models, where 

𝑥𝑘 is acting as the state variable, 𝑟𝑘 is the output of the model which is the return process in this case, 𝜔𝑘 and 𝜀𝑘 

are respectively considered as the process noise and the measurement noise in the state space terminology, and 

𝜃 = {𝜙, 𝑄, 𝛽} is the model  parameters.  Note that (4a)  and (4b)  are called the state model and the measurement 

model, respectively. 

 

2.2 ML estimation 

 

There are several approaches for parameter estimation proposed in the literature but the ML based approach 

is the most commonly employed.  In statistics, a likelihood function denoted by 𝐿(𝜃) is a function of the 

parameters 𝜃 for given data.  It is closely related to the probability density function as follows:  Given a data 

sequence of length N, say 𝑦1:𝑁 = {𝑦1, … , 𝑦𝑁}, the likelihood function is defined by 

 

𝐿(𝜃) = 𝑝(𝑦1:𝑁|𝜃).        (5) 

 

The ultimate goal of the ML estimation is to determine the best estimator, �̂�, which maximizes 𝐿(𝜃).  It is 

worthwhile to note that the logarithmic function is monotonically increasing, and hence the value of  �̂�  that 

maximizes 𝐿(𝜃) also maximizes log 𝐿(𝜃). Thus, the ML estimation problem can be restated as to determine 

 

�̂� = arg max
𝜃∈Θ

log 𝐿(𝜃) = arg max
𝜃∈Θ

log 𝑝(𝑦1:𝑁|𝜃), 

 

where Θ is the parameter space.   

 

In the state space models as in (4) , there are two processes running in parallel.  The complete data acquired 

from the model consists of the state sequence 𝑥0:𝑁 and the measurement sequence 𝑟1:𝑁, and hence the likelihood 

(5) for the complete data becomes 

 

𝐿(𝜃) = 𝑝(𝑥0:𝑁 , 𝑟1:𝑁|𝜃).        (6) 

 

Since the return volatility 𝜎𝑘 of financial assets, which in turn is a nonlinear function of the state variable 𝑥𝑘, 

cannot be directly observed from the market, the states must be integrated out from (6), which gives the marginal 

likelihood of the observed data 

 

𝑝(𝑟1:𝑁|𝜃) = ∫ 𝑝(𝑥0:𝑁 , 𝑟1:𝑁|𝜃) 𝑑𝑥0:𝑁 ,  

 

and the ML parameter estimation for state space models is to find  

 

�̂� = arg max
𝜃∈Θ

log ∫ 𝑝(𝑥0:𝑁 , 𝑟1:𝑁|𝜃) 𝑑𝑥0:𝑁.       (7)  

 

In general, the direct maximization of the marginal log- likelihood in (7)  is analytically intractable due to the 

integration over all state variables 𝑥0:𝑁.  Numerical methods, such as a grid search, a gradient-based search, a 
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Laplace approximation, and an EM algorithm, are broadly applied to approximately maximize the marginal log-

likelihood.     

 

2.3 EM algorithm 

 

The EM algorithm is an iterative method for approximating the ML estimates of unknown parameters when 

the given data is incomplete in the sense that the state variables cannot be observed directly.  Based on the fact 

that a lower bound for the marginal log- likelihood can be easily evaluated, the basic concept of the algorithm is 

to increase the bound by iteratively updating the parameter estimates, 𝜃(𝜅), and, as a consequence, increase the 

marginal log- likelihood.  The major advantage of the EM algorithm is that the monotonic increasing property 

holds, i.e., in each consecutive iteration, 𝐿(𝜃(𝜅+1)) ≥ 𝐿(𝜃(𝜅)). 

Assuming that the algorithm calculates the current parameter estimates, 𝜃(𝜅), it can be shown that ( see, e.g. , 

[11–14]), 

 

log 𝑝(𝑟1:𝑁|𝜃) ≥ log 𝑝(𝑟1:𝑁|𝜃(𝜅)) + ℓ(𝜃, 𝜃(𝜅)),      (8) 

 

where 

ℓ(𝜃, 𝜃(𝜅)) = ∫ 𝑝(𝑥0:𝑁|𝑟1:𝑁 , 𝜃(𝜅)) log
𝑝(𝑥0:𝑁,𝑟1:𝑁|𝜃)

𝑝(𝑥0:𝑁,𝑟1:𝑁|𝜃(𝜅))
𝑑𝑥0:𝑁.     (9) 

 

Obviously, the lower bound of the marginal log- likelihood is the expression on the right hand side of (8) .  The 

next step is to find 𝜃(𝜅+1) in order to increase the marginal log- likelihood by maximizing the lower bound with 

respect to 𝜃.  Note that the terms which do not depend on 𝜃 can be treated as constants, and can be dropped from 

the maximization process. The parameter estimates in the next iteration is then given by 

 

𝜃(𝜅+1) = arg max
𝜃∈Θ

𝒬(𝜃, 𝜃(𝜅)),        (10) 

                                                 

where 

𝒬(𝜃, 𝜃(𝜅)) = ∫ 𝑝(𝑥0:𝑁|𝑟1:𝑁 , 𝜃(𝜅)) log 𝑝(𝑥0:𝑁 , 𝑟1:𝑁|𝜃) 𝑑𝑥0:𝑁 , 

 = 𝔼[log 𝑝(𝑥0:𝑁 , 𝑟1:𝑁|𝜃)].         (11) 

 

In the discrete- time state space formalism, the state and the measurement sequences are normally assumed to 

follow the Markov property. Hence the log-likelihood of the complete data can be written as 

                     

log 𝑝(𝑥0:𝑁 , 𝑟1:𝑁|𝜃) = log 𝑝(𝑥0|𝜃) + ∑ log 𝑝(𝑥𝑘|𝑥𝑘−1, 𝜃)

𝑁

𝑘=1

+ ∑ log 𝑝(𝑟𝑘|𝑥𝑘 , 𝜃)

𝑁

𝑘=1

, 

 

and the 𝒬 function in (11) is given by the following  expression:  

𝒬(𝜃, 𝜃(𝜅)) = 𝒬0(𝜃, 𝜃(𝜅)) + 𝒬𝑥(𝜃, 𝜃(𝜅)) + 𝒬𝑦(𝜃, 𝜃(𝜅)),     (12) 

 

where 

  𝒬0(𝜃, 𝜃(𝜅)) = ∫ 𝑝(𝑥0|𝑟1:𝑁 , 𝜃(𝜅)) log 𝑝(𝑥0|𝜃) 𝑑𝑥0, 

  = 𝔼[log 𝑝(𝑥0|𝜃)],         (13) 

   

𝒬𝑥(𝜃, 𝜃(𝜅)) = ∑ ∫ 𝑝(𝑥𝑘 , 𝑥𝑘−1|𝑟1:𝑁 , 𝜃(𝜅)) log 𝑝(𝑥𝑘|𝑥𝑘−1, 𝜃) 𝑑𝑥𝑘𝑑𝑥𝑘−1 ,

𝑁

𝑘=1

 

 =  ∑ 𝔼[log 𝑝(𝑥𝑘|𝑥𝑘−1, 𝜃)]𝑁
𝑘=1 ,        (14) 

 

𝒬𝑦(𝜃, 𝜃(𝜅)) = ∑ ∫ 𝑝(𝑥𝑘|𝑟1:𝑁 , 𝜃(𝜅)) log 𝑝(𝑟𝑘|𝑥𝑘 , 𝜃) 𝑑𝑥𝑘 ,

𝑁

𝑘=1

 

=  ∑ 𝔼[log 𝑝(𝑟𝑘|𝑥𝑘 , 𝜃)]𝑁
𝑘=1 .        (15) 

 

It is worth noting that the expectations in (13), (14), and (15) are over the smoothing distribution of the state 

estimates given the observed data, 𝑟1:𝑁, and the current values of the parameter estimates, 𝜃(𝜅).  It turns out that 
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these expectations are much easier to calculate than the one in ( 11) , which is the expectation over the full joint 

posterior distribution.  

Taking into account the above discussion, the EM algorithm for discrete- time state space models can be 

concluded as follows: 

 

Algorithm 1 (EM algorithm)  Let 𝜃(0) be an initial guess of the model parameters.  The algorithm iteratively 

generates a sequence of parameter estimates, 𝜃(𝜅), for 𝜅 = 1,…, N through the E-step and the M-step, where the 

E-step is to evaluate the 𝒬 function in (12)  using (13) , (14) , and (15) , and the M-step is to determine the new 

parameter estimates,  1 ,



  using (10) .  These two steps continue alternately until a convergence criterion is 

fulfilled. 

 

2.4 Filters and smoothers 

 

As mentioned previously, the state estimates over the smoothing distribution are required in the E-step to 

compute the 𝒬 function. This can be done by performing the smoothing process. The classic RTS smoother is an 

effective forward-backward algorithm for fixed interval smoothing to estimate states of linear models corrupted 

by Gaussian noises. The algorithm is based on two different Kalman filters; one of which propagates in the forward 

pass to get the filtered state estimates and the corresponding error covariance matrices, while the other propagates 

in the backward pass to produce the smoothed state estimates.  

For nonlinear and/ or non-Gaussian state space models, Kalman filters and RTS smoothers are no longer 

optimal in general.  Based on a set of random particles with associated weights rather than a single estimate, 

particle filters and smoothers are commonly employed to approximate arbitrary distributions.  Several design 

methods for particle smoothers have been proposed in the literature, and successfully applied to general state 

space models. The backward-simulation particle smoother (BSPS) introduced by Godsill et al. [15] in 2004 can 

be regarded as an analogue of the RTS smoother, where filtering results obtained from the forward pass are used 

to estimate smoothed states in the backward pass.  

The aim of this section is to present the BSPS algorithm for computing smoothed state estimates of the SV 

model using the two types of filter:  the BF and the GPF.  For more details on the variation of the SMC method 

(particle filters and smoothers) and its applications, interested readers may consult [16–24] and references therein. 

 

2.4.1 Bootstrap Filter: BF 

 

The following presents the BF algorithm for the filtered state estimation of the SV model given in (4). 

 

Algorithm 2 ( BF algorithm)  Let 𝑥𝑘
𝑓(𝑖)

 and 𝑤𝑘
𝑓(𝑖)

 denote, respectively, the i- th particle and its corresponding 

normalized weight at time step k =  0,1,… , N in the filtering process, where N is the length of the measurement 

sequence, or the observed data. The BF algorithm is the following. 

 

( i)  Initialization:  Draw particles randomly from the prior Gaussian distribution with zero mean and unit 

variance, i.e., 

 

𝑥0
𝑓(𝑖)

~𝑝(𝑥0) =
1

√2𝜋
exp (−

1

2
𝑥0

2),        (16) 

 

and set initial weights: 𝑤𝑘
𝑓(𝑖)

= 1 𝑛𝑓⁄  for i = 1,…, 𝑛𝑓,  where 𝑛𝑓 is the number of particles. 

(ii) Recursive Step: For k = 1,…, N, 

 

Step 1: Predict new particles according to the state model in (4a) 

 

𝑥0
𝑝(𝑖)

~𝑝 (𝑥𝑘|𝑥𝑘−1
𝑓(𝑖)

) =
1

√2𝜋𝑄
exp (−

1

2

(𝑥𝑘−𝜙𝑥𝑘−1
𝑓(𝑖)

)
2

𝑄
).     (17) 

 

Step 2: Calculate new weights from the measurement model in (4b) 

 

�̃�𝑘
𝑓(𝑖)

∝ 𝑝 (𝑟𝑘|𝑥𝑘
𝑝(𝑖)

) =
1

𝛽√2𝜋
exp (−

1

2
[𝑥𝑘

𝑝(𝑖)
+

𝑟𝑘
2

𝛽2 𝑒−𝑥𝑘
𝑝(𝑖)

]),     (18) 

and do normalization to get 

 



6 

 

𝑤𝑘
𝑓(𝑖)

=
�̃�𝑘

𝑓(𝑖)

∑ �̃�𝑘
𝑓(𝑖)𝑛𝑓

𝑖=1

,   i = 1,…, 𝑛𝑓.        (19) 

 

Step 3: Update the particles by performing the re-sampling as follows: Consider  𝑤𝑘
𝑓(𝑖)

 as a discrete  

probability of the re-sampling. Then, for i = 1,…, 𝑛𝑓, draw new particles  𝑥𝑘
𝑓(𝑖)

according to, 

 

𝑃 (𝑥𝑘
𝑓(𝑖)

= 𝑥𝑘
𝑝(𝑖)

) = 𝑤𝑘
𝑓(𝑖)

,       j = 1,…, 𝑛𝑓.       (20) 

 

Step 4: Set 𝑥0:𝑘
𝑓(𝑖)

= {𝑥0:𝑘−1
𝑓(𝑖)

, 𝑥𝑘
𝑓(𝑖)

}, and 𝑤0:𝑘
𝑓(𝑖)

= {𝑤0:𝑘−1
𝑓(𝑖)

, 𝑤𝑘
𝑓(𝑖)

}. 

 

2.4.2 Gaussian Particle Filter: GPF  

 

The concept of the GPF algorithm for the filtered state estimation of the SV model given in (4) is as follows:  

 

Algorithm 3 (GPF algorithm) This algorithm follows the same steps as the BF, except that Step 3 of Algorithm 2 

is replaced by the following:  

 

Step 3: Calculate the posterior mean and variance according to 

 

𝜇𝑘 = ∑ 𝑤𝑘
𝑓(𝑖)

𝑥𝑘
𝑓(𝑖)𝑛𝑓

𝑖=1
, and  𝜈𝑘 = ∑ 𝑤𝑘

𝑓(𝑖)
(𝑥𝑘

𝑓(𝑖)
− 𝜇𝑘)

2𝑛𝑓

𝑖=1
.     (21) 

 

Then, for i = 1,…, 𝑛𝑓, draw new particles 𝑥𝑘
𝑓(𝑖)

 from Gaussian density: 

 

𝑥𝑘
𝑓(𝑖)

~
1

√2𝜋𝜈𝑘
exp (−

1

2

(𝑥𝑘
𝑓(𝑖)

−𝜇𝑘)
2

𝜈𝑘
).        (22) 

 

2.4.3 Backward Simulation Particle Smoother: BSPS  

 

The following presents the BSPS algorithm for the smoothed state estimation of the SV model given in (4).  

 

Algorithm 4 (BSPS algorithm)  Let 𝑥𝑘
𝑠(𝑗)

denote the particle of the j- th smoothing trajectory at time step k =  0, 

1,…, N. 

 

(i) Initialization: Collect 𝑥0:𝑁
𝑓(𝑖)

 and 𝑤0:𝑁
𝑓(𝑖)

, for i = 1,…, 𝑛𝑓, from the filtering process, and select 𝑥𝑁
𝑠(𝑗)

= 𝑥𝑁
𝑓(𝑖)

 

with probability 𝑤𝑁
𝑓(𝑖)

. 

 

(ii) Recursive Step: For k = N-1,…, 0, 

Step 1: For i = 1,…, 𝑛𝑓, calculate new weights according to 

𝑤𝑘
𝑠(𝑖)

∝ 𝑤𝑘
𝑓(𝑖)

𝑝 (𝑥𝑘+1
𝑠(𝑗)

|𝑥𝑘
𝑓(𝑖)

) =
𝑤𝑘

𝑓(𝑖)

√2𝜋𝑄
exp (−

1

2

(𝑥𝑘+1
𝑠(𝑗)

−𝜙𝑥𝑘
𝑓(𝑖)

)
2

𝑄
).    (23) 

 

Step 2:  Consider 𝑤𝑘
𝑠(𝑖)

 as a discrete probability for particle selection and choose 𝑥𝑘
𝑠(𝑗)

= 𝑥𝑘
𝑓(𝑖)

 with probability 

𝑤𝑘
𝑠(𝑖)

 .  

 

Repeat (i) and (ii) for j = 1,…, 𝑛𝑠, where 𝑛𝑠 is the number of smoothing trajectories.  

 

The smoothing trajectories, 𝑥0:𝑁
𝑠(𝑗)

, along with the observed data, 𝑟1:𝑁, will be used to estimate the parameters 

in the EM algorithm (see Algorithm 1). 

 

3. Results 

 

In this section, two sets of experiments are performed to demonstrate the performance of the proposed method 

for parameter estimation of the SV model.  The first set of experiments employs simulated data generated from 

the model in (4) to evaluate the accuracy of the algorithm by comparing the parameter estimates with the known 
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true parameters. The second set uses real data from financial markets. For validation purposes, the results of this 

study will then be compared with those obtained from the conventional method, i.e. , the EM algorithm coupled 

with the BF.  

For implementation of the EM algorithm, it is necessary to establish the 𝒬 function.  In case of the SV 

model, the 𝒬 function in (12) becomes: 

 

𝒬(𝜃, 𝜃(𝜅)) = −
1

𝑛𝑠

∑
1

2
[(𝑥0

𝑠(𝑗)
)

2

+ ∑
(𝑥𝑘

𝑠(𝑗)
− 𝜙𝑥𝑘−1

𝑠(𝑗)
)

2

𝑄

𝑁

𝑘=1

+ ∑ (𝑥𝑘
𝑠(𝑗)

+
𝑟𝑘

2

𝛽2
𝑒−𝑥𝑘

𝑠(𝑗)

)

𝑁

𝑘=1

+ 𝑁 log 𝑄 + 2𝑁 log 𝛽]

𝑛𝑠

𝑗=1

+ 𝐶 
 

where 𝑥0:𝑁
𝑠(𝑗)

, j = 1,…, 𝑛𝑠, is the smoothing trajectories of the smoothed state estimates acquired from the smoothing 

process (see previous section for more details), and 𝐶 is the constant term.  

By taking the partial derivative of  𝒬(𝜃, 𝜃(𝜅)) with respect to each parameter and setting them all to zero, 

the new parameter estimates for the next iteration 𝜃(𝜅+1) = {𝜙(𝜅+1), 𝑄(𝜅+1), 𝛽(𝜅+1)} are calculated as follows: 

𝜙(𝜅+1) = ∑ ∑ 𝑥𝑘
𝑠(𝑗)

𝑥𝑘−1
𝑠(𝑗)

𝑁

𝑘=1

𝑛𝑠

𝑗=1

∑ ∑ (𝑥𝑘−1
𝑠(𝑗)

)
2

𝑁

𝑘=1

𝑛𝑠

𝑗=1

⁄ , 

 

𝑄(𝜅+1) =
1

𝑛𝑠

∑ [
1

𝑁
∑ (𝑥𝑘

𝑠(𝑗)
− 𝜙(𝜅+1)𝑥𝑘−1

𝑠(𝑗)
)

2
𝑁

𝑘=1

]

𝑛𝑠

𝑗=1

, 

𝛽(𝜅+1) = √
1

𝑛𝑠

∑ [
1

𝑁
∑ (𝑟𝑘

2𝑒−𝑥𝑘
𝑠(𝑗)

)

𝑁

𝑘=1

]

𝑛𝑠

𝑗=1

. 

 

3.1 Simulated data 

 

To illustrate the accuracy of the proposed method, the data set of length N = 500 generated from the SV model 

in ( 4)  with true parameters 𝜃 = {𝜙, 𝑄, 𝛽 } = {0.9, 0.5, 2.2 × 10−3} is fed into Algorithm 1 for parameter 

estimation, with the use of Algorithm 3 and Algorithm 4 for filtering and smoothing processes, respectively. The 

initial guess, the number of particles and the number of smoothing trajectories are respectively set to 𝜃(0) =
{0.45, 0.25, 1.15 × 10−3}, 𝑛𝑓 = 300, and 𝑛𝑠 = 150.  

Parameter estimates in each iteration are computed and plotted as shown in Figure 1, with 200 iterations. The 

solid line represents the estimated parameters, whereas the dotted line represents the true ones.  Apparently, the 

trajectories of the parameter estimates converge to the true parameters with final estimates are �̂� =

0.9011 (0.0362) , �̂� = 0.5228 (0.1308) , and �̂� = 2.18 × 10−3 (0.004 × 10−3) , where the values in the 

parentheses indicate the standard variations of the estimates. 

 

 
Iterations 

 

Figure 1 {�̂�, �̂�, �̂� } from the simulated data  
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As a standard procedure, the experiment is conducted repeatedly with different data sets. The averages of the 

final estimates are then taken into consideration. It turns out that such averages remain close to the true parameters. 

Thus, the simulation and the numerical results experimentally validate the accuracy and effectiveness of the 

proposed method. 

 

3.2 Daily exchange rates  

 

The aim of this example is two- fold:  to estimate the SV model parameters from the daily exchange rates of 

US Dollar to Thai Baht (USD/THB) from April 10, 2014, through April 29, 2016, as a case study, and to validate 

the results by comparing with those obtained from the EM algorithm coupled with the BF.  The time plot of the 

USD/THB daily exchange rates time series and their corresponding log returns are shown, respectively, in the 

upper and lower panels of Figure 2.  

 

 
 

Figure 2 The USD/THB daily exchange rates and the corresponding log returns 

 

In this experiment, the log returns are fed into two separate EM algorithms running in parallel; one is coupled 

with the BF ( Algorithm 2) , and the other is coupled with the GPF ( Algorithm 3) .  The parameter estimate 

trajectories obtained via the two algorithms are depicted in Figure 3, with 200 iterations, and the final estimates, 

�̂� = {�̂�, �̂�, �̂� }, as well as the corresponding standard deviations indicated in the parentheses are reported in Table 

1. 

 

 
Iterations 

 

Figure 3 {�̂�, �̂�, �̂� } from the USD/THB daily exchange rates using the GPF (solid line), and the BF (dotted line)  
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Table 1 Final estimates for the USD/THB daily exchange rates 

Estimates GPF BF 

�̂� 
0.8273 

(0.0180) 

0.8291 

 (0.0204) 

�̂� 
0.1886 

 (0.0240) 

0.1808 

 (0.0291) 

�̂� 
2.40×10-3 

(0.002×10-3) 

2.41 ×10-3 

(0.002×10-3) 

 

As a by-product of the EM algorithm, the volatility can be computed via the smoothed state estimates, 𝑥𝑘
𝑠, as 

follows:  𝜎𝑘 = exp(𝑥𝑘
𝑠 2⁄ ) , where 𝑥𝑘

𝑠 =
1

𝑛𝑠
∑ 𝑥𝑘

𝑠(𝑗)𝑛𝑠
𝑗=1 .  The upper and lower panels of Figure 4 illustrate the 

volatility estimates using the two different filters: the GPF and the BF, respectively.  

 

 
 

Figure 4 The simulated volatility 

 

It is clear from Figure 3 that the estimate trajectories obtained via the two different filters are slightly different, 

and converge to the final values, which are sufficiently close to each other.  However, when the computational 

time is taken into account, the GPF is preferable since it does not require the re- sampling step, which has 

computational complexity of O(N) , as in the case of the BF ( see [9]  for more details) .   Figure 5 illustrates the 

computational time in the filtering process between the GPF and the BF when varying the number of particles,
 𝑛𝑓.  Clearly, the computational time is considerably reduced when using the GPF.  Note that all numerical 

simulations in this section are performed on a personal computer with 2.1 GHz Intel Core i3 processor with 

MATLAB.  
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Figure 5 Computational time in the filtering process using the GPF (solid line), and the BF (dotted line) 
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4. Conclusions 

 

The contribution of this work is to apply the EM algorithm coupled with a GPF to estimate the SV model 

parameters from given data.  Two sets of experiments are conducted to demonstrate the effectiveness of the 

proposed method. In the first experiment, the data set is generated from the model and fed into the algorithm. The 

simulation and the numerical results show that the parameter estimate trajectories are likely to converge to the 

true parameters, with final estimates being sufficiently close to the true ones.  

The data set in the second experiment is the log returns of the USD/THB daily exchange rates from April 10, 

2014, through April 29, 2016.  As a comparison, two EM algorithms run in parallel; one is coupled with the BF, 

and the other is coupled with the GPF.  Evidently, the experimental results indicate that the parameter estimates 

obtained via the two different filters are consistent with each other; however, the computational time in the 

filtering process is reduced dramatically when using the GPF.  Thus, it seems preferable to employ the EM 

algorithm coupled with a GPF for parameter estimation of the SV models, rather than that with the BF. 
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6. Nomenclature 

 

List of acronyms 

 

BF Bootstrap Filter 

BS Black-Scholes  

BSPS Backward-Simulation Particle Smoother 

EM Expectation-Maximization 

GPF Gaussian Particle Filter 

ML Maximum Likelihood 

RTS Rauch-Tung-Striebel 

SMC Sequential Monte Carlo 

SV Stochastic Volatility 

  

 

List of mathematical symbols 

 

k  Time step 

𝐿(𝜃)  Likelihood function 

N Length of the measurement sequence, or observed data 

𝑛𝑓  Number of particles 

𝑛𝑠  Number of smoothing trajectories 

𝑃𝑘  Asset price at time step k  

𝑟𝑘  Log return of 𝑃𝑘, which is considered as the output of the SV model 

𝑤𝑘
𝑓(𝑖)

  The i-th normalized weight at time step k in the filtering process 

𝑤𝑘
𝑠(𝑖)

  Discrete probability of particle selection in the smoothing process 

𝑥𝑘  Log volatility, which is considered as the state variable of the SV model 

𝑥𝑘
𝑓(𝑖)

  the i-th particle at time step k in the filtering process 

𝑥𝑘
𝑠(𝑖)

  Particle of the j-th smoothing trajectory at time step k in the smoothing process 

𝛽  Scaling factor 

𝜇𝑘  Posterior mean in the GPF 

𝜈𝑘  Posterior variance in the GPF  

𝜎𝑘  Volatility of the return 𝑟𝑘 

𝜀𝑘  
White Gaussian noise process with zero mean and unit variance, which is considered as 

the measurement noise 

𝜔𝑘  
White Gaussian noise process with zero mean and variance 𝑄, which is considered as the 

process noise 

𝜃 = {𝜙, 𝑄, 𝛽 }  SV model parameters 

�̂� = {�̂�, �̂�, �̂� }  Estimated parameters 
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