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Abstract 

 

The average run length (ARL) is a criterion for measuring the efficiency of a control chart conventionally 

computed based on the assumption of type I errors for the in-control process and type II errors for the out-of-

control process. Still, the eigenvalue approach for the ARL by controlling the direction on its eigenvector is a 

good alternative. Thus, the objectives of this research are to evaluate the ARL based on the eigenvalue approach 

on an exponentially weighted moving average (EWMA) control chart and to apply ARL computation to the 

inflation rate data of the Thai economy. The methods used for ARL evaluation in a comparative study are based 

on integral equations, a numerical method, the eigenvalue approach, parameter estimation, and fitting of the 

probability density function. The findings show that the distinct eigenvalues of the ARL on an EWMA control 

chart monitoring the Thai economy inflation rate with a symmetric kernel are all real and the maximum 

eigenvalue returns the maximum values of ARL0 (the in-control process) and ARL1 (the out-of-control 

process). Moreover, an eigenvalue close to zero returns ARL0 and ARL1 values close to one. 

 

Keywords: Average run length, Exponentially weighted moving average control chart, Integral equation,  

                      Eigenvalue problem, Inflation rate data of the Thai economy 

 

1. Introduction 

 

Statistical process control based on decision-making, statistical theory, and sequential processing is used to 

monitor unexpected occurrences in industrial processes. Moreover, estimating and controlling the inflation rate 

of a national economy by using statistical process control is an interesting topic for investment and 

administration. A tool widely used in statistical process control is the exponentially weighted moving average 

(EWMA) control chart. Measuring control chart efficiency is achieved using the average run length (ARL), 

which is the mean of the number of observations before the first out-of-control observation. Methods for 

evaluating the ARL are mainly computed in three approaches: Markov chain, Monte Carlo simulation, and 

integral equations [1,2,10,16,17]. 

Control charts have been developed by many researchers. Shewhart’s control chart, initiated and released by 

[11], can detect large changes in the process mean when the observations follow a normal distribution. 

Moreover, it consists of control limits with the three-sigma value of the standard deviation of the process. 

However, in practice, observations do not necessarily follow a normal distribution because of criteria such as 

trends, seasonal variation, and autocorrelation. Hence, EWMA was developed by [12] as a statistic for control 

charts when the data have a trend and/or seasonality, especially when the observations change gradually. 

Furthermore, the EWMA control chart is advantageous for detecting small shifts in the process mean. 
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The ARL can be derived in the form of an integral equation of the second kind [4,6,16]. There have been 

several studies on integral equations for evaluating the ARL and comparing the efficiencies of control charts 

based on the ARL. An EWMA control chart for detecting a change in the observations via the Martingale 

approach for normal and non-normal distributions was proposed by [14]. In [1], the Martingale approach was 

used for the ARL of an EWMA control chart process for changes in an exponential distribution, and its 

effectiveness was compared on EWMA and cumulative sum (CUSUM) control charts with an autoregressive 

process; evaluating the ARL via the Martingale approach is a modern approach that required less computational 

time than a simulation approach. The ARL integral equation method for an EWMA control chart with given 

observations following a log-normal distribution was estimated by [12] and compared with the ARL using a 

simulation method. Integral equations were applied by [10] to determine the ARLs on an EWMA control chart 

with observations following a Laplace distribution and on a CUSUM control chart with observations following 

a hyperexponential distribution; the analytical ARLs were precise and required less computational time than the 

simulation method. [17] investigated analytical and numerical ARLs for an EWMA control chart with a long 

memory autoregressive fractionally integrated moving average (ARFIMA) process and compared their 

performances; the results showed that the analytical ARL could be computed quicker than the numerical ARL, 

thereby showing the former to be a good alternative for evaluating the efficiency of a control chart. An adaptive 

EWMA control chart with a time-varying smoothing parameter was proposed by [19]; the ARL was calculated 

on a discrete-time Markov chain with an optimal smoothing parameter and controlling the width of the control 

chart to minimize the ARL by using a nonlinear optimization method. Moreover, a comparison of the ARLs of 

the adaptive EWMA control chart and traditional control charts showed the benefits of the proposed research. 

 Inflation in the Thai economy determined by changes in the prices of products and services is classified into 

the core inflation rate and the headline inflation rate. A high inflation rate is the result of high production costs 

and retail prices. We examined the core inflation rate data reported by the Bureau of Trade and Economic 

Indices in the Ministry of Commerce of Thailand and the Bank of Thailand [3]. Thus, some researchers have 

studied the inflation rate of the Thai economy. Forecasting the core inflation rate using a method derived from 

short-term and long-term properties of time series was reported by [15]; the forecasting error is based on the 

root-mean-squared and mean-absolute errors. The effect of the inflation rate on stock prices in Thailand from 

January 2000 to March 2010, a period involving the tsunami in 2004 and the global financial crisis in 2008, was 

researched by [9]; their findings are that the inflation rate and stock price movements were not related during 

this time period. The relationship between monetary policy rules and the inflation rate in Thailand since 2000 

was studied by [18]; their findings show that the inflation rate gradually responded to the monetary policy rule 

over the long-term. 

Research related to estimating parameters for fitting distributions to inflation rate data are discussed here. 

Evaluation and risk analysis of a gold mine project in Iran were studied by [13]. The feasibility of the gold mine 

project was based on the net present value or economic valuation. They concluded that the net present value of 

the project was the most sensitive variable to gold and silver prices, while other variables such as discount rate 

and operating and capital costs all affected the feasibility of the project to a lesser extent. Meanwhile, their 

results also show that the inflation rate in Iran followed a logistic distribution with estimates of 0.154157 for the 

location parameter and 0.029245 for the scale parameter. Fitting of the monthly inflation rate distribution of the 

Nigerian economy from 1997-2014 was demonstrated by [5]. Inflation rate data collected from the Central Bank 

of Nigeria were fitted appropriately to a three-parameter log-logistic distribution and a logistic distribution, as 

was confirmed via a Kolmogorov Simonov goodness-of-fit test; the parameters of both distributions were 

estimated by applying a maximum likelihood method. 

An efficient control chart must quickly detect observations indicating an out-of-control process. Eigenvalues 

can solve this problem because they can determine the direction of the ARL, which is the measurement criterion 

for the efficiency of a control chart covering three standard deviations of observations. Determining the ARL 

direction can lead to obtaining an efficient control chart. Therefore, an integral equation method for evaluating 

the ARL and its eigenvalue on an EWMA control chart was applied to inflation rate data from the Thai 

economy. 

 

2. Materials and methods 

 

    This section presents the definitions of mathematical and statistical backgrounds research as well as the 

methodology of this research. 
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2.1 Preliminaries and definitions 

 

Definition 1  Exponentially Weighted Moving Average (EWMA) control chart is based on EWMA statistic 

tY  starting with initial value 0Y w   and   is smoothing parameter with observation tX  with mean   and 

variance 2  as 

 

                             1 0(1 ) ; 1,2,3,..., ;t t tY Y X t n Y                                                          (1) 

                                     

Definition 2 average run length (ARL) is the expected value of the number of observations until the first 

detected observation out of control. The mathematical definition for ARL is defined a stopping time with initial 

value w   of statistic tY  with the lower bound M  and upper bound N  of EWMA control chart as 

 

            
,( ) ( )M NARL w   where 

, inf{ 0: or }M N t tt Y M Y N      

 

Also, ARL can be classified to two stages: the ARL for in control process state denoted as ARL0 and the 

ARL for out of control process state denoted as ARL1. 

Definition 3 the second kind of integral equation for ARL [8] is given as  

 

                                             ( ) ( ) ( , ) ( )

N

M

ARL w g w K w y ARL y dy                                                         (2) 

where ( , )K w y  is a kernel function, ( )g w  is a given function, and ( )ARL w is an unknown ARL function,   

is an eigenvalue. 

 

Definition 4 let ( , )K w y be an infinitely differentiable function of two variables about ( , ) ( , )w y M N , the 

Taylor’ series for a function of two variables can be defined as 

 

                  
2 2

( , ) ( , ) ( , )( ) ( , )( )

1
[ ( , )( ) 2 ( , )( )( ) ( , )( ) ] ....

2!

w y

ww wy yy

K w y K M N K M N w M K M N y N

K M N w M K M N w M y N K M N y N

    

       
             (3) 

 

Definition 5 let A  be an n n  matrix. The scalar   is called eigenvalue of A  if there exist vector 0x   

such that 

                                          .Ax x                                                                                                            (4)                                                        

 

where x  is called eigenvector corresponding to eigenvalue  of matrix .A  

 

Definition 6 a complex inner product space is a complex vector space V  with inner product (denoted by 

, )x y   which a function or mapping :V V C   satisfying the followings 

 

1) , 0x x  ; , 0x x   if 0x   for x V  ,   

2)  , , ,x x z x z y z            for , C   , 

3) , ,x y z V  , , ,y x x y     for ,x y V  . 

 

Also, the norm of inner product space is defined as    norm = , ;x x x x V    . A complex inner product 

vector space with respect norm on complex vector space V is called a Hilbert space. 

 

2.2 Methodology 

 

2.2.1 Proposed integral equation for the average run length for EWMA control chart 

 

EWMA statistic is firstly presented by [12] as 1(1 ) ; 1,2,3,...,t t tY Y X t n      
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with  1 0 1(1 )Y Y X    ; 0Y  . For in control state at time t , tM X N   with an initial control state 

0Y w   such that M w N  ; but out of control state at time t ,  tY M  or tY N .  For ARL for initial 

value w , 
,( ) ( )M NARL w E  . 

For this research, the proposed integral equation for evaluating ARL is developed from the researches of [4] 

and [6]. The EWMA statistic is adapted to scale of observation tX with a scale factor 0  . That is, let 

1 2

1 1 1
, ,..., nX X X

  
 be independent and identically distributed random variables with a positive real 0   as 

follows: 

1

1
(1 ) ; 1,2,3,...,t t tY Y X t n 


     

 

Thus, there are two possibilities for 1Y  after the first observation 1X is made. 

Case 1: If 1X gives an out of control for 1Y , then 1Y M or 1Y N . Namely 0 1

1
(1 )Y X M 


    or 

0 1

1
(1 )Y X N 


   .  In this case, the run length will be 1 because there will be an immediate out of control 

signal. 

 

Case 2: If  1X gives 1Y  in an in control state, then 1M Y N  Namely, 

1

(1 ) (1 )
( ) ( )

M w N w
X

 
 

 

   
   

In this case, an observation will have been made an on average 1 1( ) ((1 ) )ARL Y ARL w X





   Also, more 

observations will be made before an out of control signal occurs.  The probability density function for 1X is 

given as 1( )f X . 

Let   be a domain of in control state: 1{ (1 ) }M w X N





    . Therefore, the expected run length can 

be formulate as 

           1( ) 1 Pr(| (1 ) | ) [1 ((1 ) )] ( )ARL w w X N ARL w x f x dx
 

 
 



                               (5) 

(1 )
( )

(1 )
( )

( ) 1 [ ((1 ) )] ( )

N w

M w

ARL w ARL w x f x dx
















 

 

     

Changing variable,  (1 )y w x





   Therefore, the integral equation representing ARL is given as 

 

                
1 (1 )

( ) 1 ( ( ) ( ) ; 0
N

M

y w
ARL w f ARL y dy


  

 

 
                                                   (6) 

 

Similarly, in case of a negative real 0  ,

(1 )
( )

(1 )
( )

( ) 1 [ ((1 ) )] ( )

M w

N w

ARL w ARL w x f x dx
















 

 

     and the 

integral equation representing ARL becomes
1 (1 )

( ) 1 ( ( ) ( ) ; 0
M

N

y w
ARL w f ARL y dy


  

 

 
       (7) 

In case of 0  ,  obviously, ( ) 1ARL u  . 
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2.2.2 Computation of the ARL on an EWMA control chart for application to the inflation rate of the Thai 

economy 

 

In this research, the ARL can be derived in the form of integral equations of the second kind is in the form in 

Equation (2). The numerical integral equation is employed to solve the un-separable kernel function of the 

integral equation. A Taylor’s series approximation is the numerical method adopted to separate the kernel and 

estimate the numerical ARL. 

An assumption in this research is that the inflation rate data of the Thai economy follows a logistic 

distribution. The ARL of an EWMA control chart can be formulated as 

 

               21 ( )
( ; , ) 1 ( ; , )sec )

4 2 2

N

M

y w w
ARL w s ARL y s h dy

s s s

 
  

  

  
   

                                    (8) 

 

where sec ( )h is a hyperbolic secant function,   is the eigenvalue of the ARL as an integral equation based on 

the average and standard deviation of the real inflation rate, M  is 3.3, and N  is 10. 

The method for approximating the kernel function of the ARL integral equation is based on a Taylor’s series. 

For this research, ( , )K w y is approximated as ( , )K w y  in Equation (3) and separable in the summation of the 

function of variable w  and y  as 

1

( , ) ( ) ( )
n

i i

i

K w y a w b y



 . 

1

( ) ( ) ( ) ( ) ( ) .

Nn

i i

i M

ARL w g w a w b y ARL y dy


     

By multiplying both sides by ( ); 1,2,...,mb w m n  and then integrating both sides, we obtain 

 

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

N N N Nn

m m m i i

iM M M M

b w ARL w dw b w g w dw b w a w dw b y ARL y dy


       

                                

1

; 1,2,...,
n

m m mi i

i

l g a l m n


                                                                      (9) 

where ( ) ( )

N

m m

M

L b w ARL w dw  , ( ) ( )

N

m m

M

g b w g w dw  , ( ) ( )

N

mi m i

M

a b w a w dw  , ( ) ( )

N

i i

M

c b y ARL y dy  . 

 

Equation (9) is a nonhomogeneous system of n  linear equations and can be written in matrix form as 

 

                                   L G AL                                                                                                (10) 

 

Equation (10) has a unique solution if det(( )) 0 I A . Otherwise, if det(( )) 0 I A , then there is either no 

solution or an infinite number of solutions of il , which is the eigenvector corresponding to 

1

( ; , ) ( ) ( )



  
n

i i

i

ARL w s g w l a w  . Moreover, the eigenvalue and eigenvector of the ARL integral equation are 

computed as a nonhomogeneous system of linear equations. 

For application to the inflation rate of the Thai economy, Equation (10) can be solved by approximating the 

kernel method based on a Taylor’s series approximation and the numerical method for evaluating the ARL as 

the solution of the integral equation. The kernel function ( , )K w y is not separable, so it can be estimated via the 

Taylor’s series as 
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2

2 4 3

2 2 2 3

4

( )
( , ; , ) sec

2 2

2 ( ) 8 ( )
1 ( ) ( ) 2( ) ( )

2 3 2 2 2 3 2 2

( ) ( ) 8 ( )
( ) 4( ) ( ) ( )( )

2 2 2 3 2 2

2 ( )
( )

3 2

y w w
K w y s h

s s

y y y w w y w w

s s s s s s

w w y w w y w w

s s s s s

w w

s

 


 

   

     

     

    

 



  
  

 

   
    

     
  

 


                      (11) 

 

The method for solving ARL of Equation (8) by approximating the kernel is applied:
7

1

( , ) ( ) ( )i i

i

K w y a w b y



  

where 

4

2
1

( )
2( )

( ) 2( ) 1 ( )
2 3

w w
w w sa w

s

 
  


 
 

   , 2

( )
( ) 2( )

2

w w
a w

s

 



 
  ,  3

3

8 ( )
( ) ( )

3 2

w w
a w

s

 



 


, 4 ( ) 1a w   , 2
5

( )
( ) 4( )

2

w w
a w

s

 



 
 , 6

8 ( )
( ) ( )

3 2

w w
a w

s

 



 
 , 7

2
( )

3
a w  ,  1( ) 1b y  , 2( )

2

y
b y

s
 ,  

3( )
2

y
b y

s
 , 2

4( ) ( )
2

y
b y

s
 ,  2

5( ) ( )
2

y
b y

s
 , 3

6( ) ( )
2

y
b y

s
 , 4

7 ( ) ( )
2

y
b y

s
 . 

 

Equation (8) becomes  
7

1

( ) 1 ( ) ( ) ( )

N

i i

iM

ARL w a w b y ARL y dy


    

                                                      
7

1

( ) 1 ( ) ( ) ( )

N

i i

i M

ARL w a w b y ARL y dy


                                              (12) 

 

Therefore,     

7

1

; 1,2,...,7m m mi i

i

l g a l m


   . 

 

It can be written in matrix form as                 L G AL   

                                                                        1( )L I A G   .                                                               (13) 

 

Therefore, for shift size  , the ARLs for the in-control and out-of-control states are 0ARL0( ; , )w s   

and 0ARL1( ; , )w s    , respectively. 

 

2.2.3 Convergence and error analysis 

  

Let ( ([ , ]), )Con M N

 be space of all continuous functions ( )ARL w  where  [ , ]w M N  and norm of 

function ( )ARL w  is defined as 
[ , ]

( ) max | ( ) |
x M N

ARL w ARL w
 
 . Let B  be an upper bound for 

, , , ,w y ww wy yyk k k k k  on region: 2(| | | |)w M y N R    . Assume that ( ) 0f w  , 

( , ) ; , [ , ]k w y B w y M N    and 
21

(| | )( )
2

B BR M N    . 

 

2 2

( , ) ( , ) ( , )( ) ( , )( )

1
[ ( , )( ) 2 ( , )( )( ) ( , )( ) ] ....

2!

w y

ww wy yy

K w y K M N K M N w M K M N y N

K M N w M K M N w M y N K M N y N

    

       
 

 

Theorem 1  Let ( )ARL w and ( )ARL w be an analytical and an estimated solutions of Equation (8) or 

numerical ARL, respectively, the solutions of Equation (8) are convergent if  0 1  . 
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Proof   

( ) ( )ARL w ARL w



[ , ]
max | [ ( ) ( , ) ( ) ] [ ( ) ( , ) ( ) ]

N N

x M N
M M

g w K w y ARL y dy g w K w y ARL y dy 


      

| ( , ) ( , ) || ( ) ( )|

N

M

K w y K w y ARL y ARL y dy    

21
[| ( , ) | {| | | ( , ) | 2 | || || ( , ) |

2

N

ww wy

M

K w y w M K M N w M y N K M N       

2| | | ( , ) |}] ( ) ( )yyy N K M N ARL y ARL y dy


    

21
(| | )( ) ( ) ( )

2
B BR N M ARL y ARL y


     

 

Thus,                                            ( ) ( ) ( ) ( )ARL y ARL y ARL y ARL y
 

    

 

where                   
21

(| | )( )
2

B BR N M    .  If  0 1  , then lim ( ) ( ) 0.
n

ARL y ARL y


                    

Therefore, the estimated solution of ARL of integral equation or numerical ARL is convergent to the 

analytical solution.  

Corollary 1 Under the assumption of Theorem 1, the error of the estimated solution of ARL of integral 

equation can be evaluated and given as: 

 

21
( ) ( ) (| | )( ) ( ) ( )

2
ARL y ARL y B BR N M ARL y ARL y

 
     . 

 

Next, considering the eigenvalues of ARL on Hilbert space is shown. 

 

2.2.4 Eigenvalue of average run length on the Hilbert space 

 

Let an operator T be a linear operator with kernel ( , )K w y  is defined by                   

                                   ( ( )) ( ) ( , ) ( ) ; 0

N

M

T ARL w g w K w y ARL y dy     

Namely, ( ( )) ( )T ARL w ARL w  for nonzero scalar factor 0  , which is the eigenvalue corresponding to 

eigenvector ( )ARL w . The equation ( )ARL g T ARL   forms a Hilbert Space. Let the set of vectors { }nARL

on the real be orthonormal on the real corresponding to the eigenvalue. 

Theorem 2 Distinct eigenvalues corresponding to orthonormal eigenvectors of the integral equation 

representing ARL with a symmetric kernel are all real. 

Proof 

Obviously, 

1

( , ) ( ) ( )
n

i i

i

K w y a w b y



  is a symmetric function, and we assume that the eigenvalue of ARL is 

a complex number. Let ARL  be defined on a complex number field as ; 1ARL j j     . i.e., 

( )ARL j    . 

 

If                                  ( ) ( ) ( ) ( )T ARL j ARL j            

,then                         (( ) ) ( )( ) ( ) ( )T ARL j ARL j             

 

To obtain two distinct eigenvalues, i.e., 0  , the two eigenvectors corresponding to the two eigenvalues 

are orthonormal. Namely, , ( ) 0ARL ARL    2 2 0    i.e., for 0,  0  , and 0ARL  , ( )j   with 

0  cannot be an eigenvalue. 

  Therefore, the eigenvalues of the integral equation representing ARL based on an EWMA control chart of 

the inflation rate data of the Thai economy with a symmetric kernel are all real.                                                        
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Theorem 3 The maximum eigenvalue returns the maximum ARL and an eigenvalue close to zero gives an 

ARL close to one. 

Proof      

From the integral equation representing ARL, 

21 ( )
( ; , ) 1 ( ; , )sec ) .

4 2 2

N

M

y w w
ARL w s ARL y s h dy

s s s

 
  

  

  
   

   

Obviously, 2 ( )
sec 0

2 2

y w w
h

s s

 

 

  
  

 
. 

Therefore, when  is the maximum value, the ARL is the maximum value, and when  tends to zero, the 

ARL approaches one.   

 

3. Results and discussion 

 

The inflation rate of the Thai economy was used to test the proposed method. Estimating the parameters of 

the Thai economy yearly inflation rate data collected from 1979 to 2019 with 2015 as the base year is illustrated 

by applying the maximum likelihood method. The ARLs for the in-control and out-of-control states along with 

the eigenvalue and eigenvector for the ARL are reported. 

Table 1 summarizes the results of the estimated location and scale parameters of the Thai economy inflation 

rate data distribution and testing whether it fits a logistic distribution using the maximum likelihood function 

and the Kolmogorov-Smirnov method, respectively. The probability density function of the inflation rate data of 

the Thai economy is demonstrated in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Distribution of the inflation rate data of the Thai economy. 
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Table 1 Estimated parameters and goodness-of-fit test of the Thai economy inflation rate data. 

Fitting of the logistic distribution by maximum likelihood 

Location parameter           
3.472884   

Scale parameter 
=1.770586s  

Goodness of fit test for Logistic distribution of inflation rate: alternative hypothesis: two-sided 

One-sample Kolmogorov-Smirnov test Data:  inflationrate 

D = 0.099769 p-value = 0.8208 

 

From the results, the Thai economy inflation rate data follow a logistic distribution with location and scale 

parameters of 3.472884 and 1.770586, respectively; D statistic = 0.099769; and p-value = 0.8208 (> 0.05). 

An example of evaluating the eigenvalue and eigenvector of the in-control state ARL is shown in matrix 

form as 

 

443836.26 216.74 -92535.95 6.70 7534.81 -288.99 4.47

9.45*10^6 3994.21 -1.90*10^6 -114.38 147656.65 -5325.61 76.25
1

9.45*10^6 3994.21 -1.90*10^6 -114.38 147656.65 -5325.61 76.25
0.78

... ... ... ... ... ... ...

1.06*10^11 3.47*

A





10^7 -1.99*10^10 -865302.99 1.43*10^9 -4.63*10^7 576868.66

 
 
 
 
 
 
 
   

 

The eigenvalues corresponding to the eigenvectors are reported in Table 2. 

 

Table 2 Eigenvalue and eigenvector for in- control state ARL. 
Eigenvalue Eigenvector 

1  41677.91 7.29465*10^-6,  0.000118397,  0.000118397,  0.00220538,  0.00220538,  0.045451, 0.998962 

2  -40949.34 1.51507*10^-6,  -0.000026518,  -0.000026518,  -0.0012991,  -0.0012991, -0.0383207, -

0.999264 

3  -2814.56 0.0000145917, 0.000240795, 0.000240795, 0.00393684, 0.00393684, 0.0635765, 0.997961 

4  1646.34 0.0000245903, 0.000240097, 0.000240097, 0.00106258, 0.00106258, -0.0268136, -0.999639 

5  451.66 -0.0000196512, -0.000312839, -0.000312839, -0.00479758, -0.00479758, -0.0706123, -

0.997481 

6  -2.48733*10^-

10 

6.63733*10^-13, -0.727744, 1.08345*10^-11, -0.230373, 1.71486*10^-10, -0.545808, -

0.34556 

7  2.41868*10^-12 7.00363*10^-16, -0.00090481, 1.1231*10^-14, -0.5547, 1.74188*10^-13, -0.000678607, -

0.83205 

 

Furthermore, the eigenvalues and corresponding ARLs based on the parameters of inflation rate data of the 

Thai economy (Table 1) are summarized in Tables 3 and 4. 

 

Table 3 Eigenvalue and its ARL for shift sizes 0.0, 0.1, and 0.3. 

0.0   0.1   0.3   

Eigenvalue ARL0 Eigenvalue ARL1 Eigenvalue ARL1 

41677.9 2867.85 41697.3 2847.6 41734.4 2807.19 

-40949.3 3395.59 -40980.9 3365.79 -41040.9 3306.66 

-2814.56 2.68033 -2810.82 2.61646 -2803.72 2.49236 

1646.34 2.52203 1657.07 2.40732 1677.39 2.27021 

451.66 2.19775 448.774 2.17853 443.416 2.14215 

-2.48733*10^-10 1 1.52216*10^-10 1 -7.34585*10^-10 1 

2.41868*10^-12 1 -2.73307*10^-12 1 -6.74905*10^-13 1 
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Table 4 Eigenvalue and its ARL for shift sizes 0.5, 0.7, and 0.9. 

0.5   0.7   0.9   

Eigenvalue ARL1 Eigenvalue ARL1 Eigenvalue ARL1 

41769.0 2766.93 41801.3 2726.82 41831.1 2686.88 

-41096.9 3248.18 -41148.8 3190.33 -41196.7 3133.11 

-2797.13 2.37288 -2791.05 2.25778 -2785.46 2.14683 

1696.21 2.227641 1713.56 2.155668 1729.47 2.12792 

438.567 2.1083 434.189 2.07675 430.249 2.04728 

1.22529*10^-9 1 -5.32924*10^-10 1 -1.40895*10^-10 1 

2.88138*10^-12 1 4.53515*10^-13 1 2.25506*10^-12 1 

 

Tables 3 and 4 show the ARLs and eigenvalue of the inflation rate data of Thailand for 3.472884,    

=1.770586, 3.3, 10, s M N and 0.11 . The results show that the ARL eigenvalues for the EWMA 

control chart of the inflation rate data of the Thai economy are all real and the maximum eigenvalue returns the 

maximum ARL0 and ARL1 values. Moreover, an eigenvalue close to zero returns ARL0 and ARL1 close to one 

and, when the shift size increases, the ARL decreases for all eigenvalues. 

In this research, we offer an alternative for evaluating the ARL of a control chart. The eigenvalue is an 

important parameter for determining the direction of the solution of integral equations representing the ARL. 

The advantage of this method is that it can quickly detect an out-of-control signal because the ARL is decreased 

and tends to one when the eigenvalues approach zero. Moreover, for real applications, the probability density 

function of the observations is complex whereas this method can be carried out numerically based on the 

computation of the matrix. In future research, we will focus on the analytical ARL for the Thai economy 

inflation rate data or other economic applications such as exchange rate, income level, GDP, etc. Other control 

charts can also be considered and their performances with our method compared with the EWMA control chart. 

A limitation of this study is that the analytical solution for the integral equation cannot be carried out due to the 

complexity of the kernel on the integral equation. 

 

4.  Conclusion 
 

Statistical process control, a very important concept for quality control of products and services, can also be 

applied to economic problems. The objectives of this research were to study integral equations and their 

eigenvalues to represent the ARL of an EWMA control chart when applied to inflation rate data of the Thai 

economy. Estimating the parameters and fitting the probability density function for the data were based on the 

maximum likelihood function and the Kolmogorov-Smirnov method, respectively. The results show that the 

appropriate probability density function of Thailand’s inflation rate is for a logistic distribution with location 

and scale parameters 3.472884   and =1.770586s , respectively. The method of ARL evaluation on an 

EWMA control chart was based on numerical integral equations via kernel approximation with a Taylor series 

and degenerating the kernel to a symmetric one in the integral equation. Moreover, the findings show that the 

maximum eigenvalue returns the maximum ARL0 and ARL1, while an eigenvalue close to zero returns ARL0 

and ARL1 close to one. In addition, the approximate ARL converges and has an upper bound if 0 1  . 

Distinct eigenvalues of the ARL of an EWMA control chart of the Thai economy inflation rate data with a 

symmetric kernel are all real. 
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