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Abstract

Not only is a well-specified model required in estimation of financial market
volatility, sample period used in such estimation is needed to represent only one
economic condition. This paper uses the ARCH-class models to show that using
symmetric model over sample period covering more than one economic condition
could mislead the volatility estimates. This is because investors perceive differently
between good and bad news, which are factors determining volatility. During period
full of good news as Thai economic was stellar, another good-news would not
surprise investor as much as bad news. On the other hand, over period market clouded
by many bad news as in recession period, investors are pessimistic and do not expect
any good news. Using the day Thailand floated the baht as change in economic
condition, this paper finds evidence suggesting that the impact of good and bad news
are diverse under different economic conditions. As a result, to predict market
volatility, practitioners and researchers need to be careful in selecting the sample
period by excluding sample under one economic condition from another. Moreover,
the volatility estimators used in such estimation should be asymmetric in which
difference between good and bad news is captured. Otherwise, the volatility
estimates could be misleading.

1. INTRODUCTION

For several years, practitioners and researchers in the field of finance and
economics have developed estimators in order to forecast volatility in financial
market. Precision in volatility estimation is very crucial for portfolio selection, asset
management, and asset pricing. For instance, Markowitz (1952) constructs an
efficient frontier of common stocks by minimizing portfolio volatility for each level
of expected return. The asset pricing model, especially the CAPM of Sharpe (1964)
and Lintner (1965), states the relation between expected return of asset and its
associated systematic risk. Such risk is expressed as the co-movement between the
volatility of the asset's return and that of the market. Moreover, the option-pricing
model of Black and Schole (1976) suggests that price of an option could be derived
using volatility of the underlying asset.

In the first stage of development, volatility models were static. They had been
contemporaneous since Engle (1982) introduced the autoregressive conditional
heteroskedasticity (ARCH) model. Under the ARCH framework, current volatility is
determined by shocks or news occurred previously. Subsequently, numbers of
literatures studying conditional volatility have applied the class of ARCH models.
Among those, the most popular one is Bollerslev (1986)'s generalized ARCH (or
GARCH) model.
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This section discusses specification of each model.

GARCH(1,1)
hy=o+ ph,_, +a(e,._)’ (1)

where h, is the conditional variance of stock return estimated at time t; g,_, is the
unexpected shock at time 7-/; and @, fand « are constant parameters.

GJR
h=w+ph_ +a(s ) +7D,_(s_)] (2)

where D, , is the dummy variable whose value equals one if &,,1s negative; and y is
another constant parameter. The term D, (¢, ,)* is aimed to capture the impact of bad
news on volatility. As a result, good news has an impact of «, while bad news has
an impact of @ + y .

EGARCH(1,1)?
log(h,) = @ + Blog(h, ) +a[ \I;l‘-"]-w[ jh—] 3)

The term ¢,_,/\/h,_, is aimed to capture the impact of bad news on volatility.
Comparing to GJR, the impact of bad news in this model is exponential, rather than
quadratic.

2.2 Measurement of Impact of News and the News Impact Curve

We use the process suggested in Engle and Ng (1993) in measuring the impact of
news. In their paper, the impact of news is defined as the relation between past return
shock (g, ,)and current conditional variance (h,), holding constant the information
dated t-2 and earlier; and is illustrated using the curve so-called the "news impact
curve". This curve shows how volatility estimates take into account new information.

For the GARCH model, the news impact curve is symmetric, quadratic, and
centers on the point where, | = 0. For the GJR model, the curve is also quadratic, but
has different slope parameters for the positive and negative shocks. For the EGARCH
model, the curve is exponentially increasing in both directions but with different
parameters. The curves for the GIR and EGARCH reach their minimum at £.,=0.

2.3 Estimation of News

News is measured by the unexpected part (or shock) of the stock returns. Engle
and Ng (1993) use the procedure similar to that of Pagan and Schwert (1990) to find
unexpected return. They remove the expected part of the return series by adjusting
day-of-the-week effect and an autocorrelation. They first regress stock return (Y,) on
four day-of-the-week dummy variables (Tuesday to Friday) and get the primary
residual, u,. Then, the primary residual is regressed on its own lag to obtain the
secondary residual, &,, which is the unexpected stock return or shock. The regression
equations are expressed as follows:

*Note that the EGARCH model used in this paper differs slightly from Nelson's original model.
Howe it will yield identical estimates except for the intercept term, @, which will differ by
al2/7]
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Day-of-the- Week Effect Adjustment
Y, =p,+ BTUE + B,WED + B,THU + B,FRI +u, 4)

Autocorrelation Adjustment

u, = Ps+ Peu,_, + ¢, (5)

where f,to f are regression coefficients. The dummy variables, TUE, WED, THU,
and FRI, represent Tuesday to Friday, respectively.

They, then, use the unexpected return series to estimate conditional variance
using the model described in Equations (1) to (3).

Since volatility is dynamic, expected return should also be time-varying given
information on conditional variance. Instead of using static (unconditional) model like
Equation (4) and (5) to estimate return shocks or residuals, we use the conditional
mean equation in which information on the conditional variance (4,) and the previous
return (Y,.;) are incorporated. This model is known as the GARCH in mean (or
GARCH-M) in which mean (or the expected part), residual (or the unexpected part),
and variance are time-varying and conditional to their previous values. The model
can be specified as follows:

Conditional Mean Equation
Y, = B, + BTUE + B,WED + B,THU + B,FRI + B;h, + B,Y,_, +¢&, (6)

The conditional variance () can then be obtained through one of the three
ARCH-class model expressed in Equations (1) to (3). For comparison, the results of
the analyses using the model of Engle and Ng (1993) are also shown with the suffix
(E&N).

2.4 Diagnostic Tests

To investigate whether the volatility model is well specified, we use three tests
proposed by Engle and Ng (1993). These tests include the Sign Bias Test, the
Negative Size Bias Test, and the Positive Size Bias Test as well as a joint test of the
three.

The basic concept of these tests is that if there are some variables, which are
observed in the past and are not included in the volatility model, that can predict the
squared standardized residual (g,/./h,); the volatility model under consideration is
misspecified. The test statistics are actually the t-statistics of coefficients on these
variables.

For the Sign Bias test, we regress the squared standardized residual on a dummy
variable, D, ,, whose value equals one if &, is negative, zero otherwise. If the
dummy variable can significantly explain the shock, it suggests that the model being
used does not capture the different impacts of good and bad news on volatility.

For the Negative Size Bias test, we regress the squared standardized residual on
the interaction of variables (D,_and ¢,_,). If the interaction variable can significantly
explain the shock, it suggests that the model being used does not take into account
whether the bad news occurred previously is small or large.

For the Positive Size Bias test, we regress the squared standardized residual on
the interaction of variables (D,_,(+) and ¢,_,), where D, (+)=1-D, . Similar to the
Negative Size Bias test, if the interaction vanable can significantly explain the shock, it
suggests that the model being used does not capture well the difference in size of the
good news.
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For the joint test, we regress the squared standardized residual on the three
variables mentioned above. The test statistic for the joint test is the LM test statistic
with Chi-Square distribution and three degrees of freedom; and is equal to number of
observations multiplied by the R-squared from the regression.

In addition to the tests above, we also employ the Ljung-Box test to test whether
the model can capture well the previous news or shocks. Since the model forecasts
expected return and conditional variance using previous news, if the model works
well, the residual which are not predicted by the model should not be explained by
such news or shocks. In contrast, if the autocorrelation of the squared standardized
residual, and hence the Ljung-Box statistic, is significant, it suggests that the model
being used is misspecified. The Ljung-Box test is conducted for the sixth-, twelfth-,
and twenty-fourth- orders serial correlation. ’

3. DATA

The stock returns series used in this paper is the daily returns series of the Thai
SET index from January 4, 1994 to December 30, 1999. The total observations are
1,470 daily returns. The total sample is divided into two subsample periods. The first
subsample period is from January 4, 1994 to June 30, 1997 (855 observations). This
subsample represents the period of bubble economy in Thailand when investors had
high expectation about future growth and price. During this period, market was full
of good news. The second subsample starts from July 2, 1997, the day the Thai Baht
was floated, to December 30, 1999 (615 observations). This subsample represents the
period the Thai financial market was clouded by mostly bad news. The first and the
second subsamples are named "Before-Float" and "After-Float", respectively.

4. EMPIRICAL RESULTS

4.1 Estimations of Unexpected Return (¢,)

Table 1 presents the unexpected return estimation using GARCH-M, GJR-M, and
EGARCH-M models, along with the model used in paper of Engle and Ng (1993) for
the whole sample (Jan 4, 1994 - Dec 30, 1999). The results suggest statistical
significances of the day-of-the-week and autoregressive variables. The lower panel
shows the summary statistics of the unexpected return obtained from each model. All
models generate very similar unexpected return distribution. The £, obtained using
the model of Engle and Ng (1993) is perfectly center around 0.0000% mean, whereas
ones obtained from the others model are slightly deviated.

Overall, the &, obtained from all models are normally distributed around zero
mean; with no autocorrelations (the Ljung-Box statistics and Jarque-Bera statistics
are statistically insignificant).

For the two subsamples: Before-Float and After-Float, the results are shown in
Table 2 and 3, respectively. The distribution of &, generated using model of Engle
and Ng (1993) is normal and center on 0.000%.

For the Before-Float subsample, the distribution of &, obtained using GARCH-
M model shows higher deviation from zero mean to -0.1 147%, while the distributions
of £, from the other two asymmetric models do not change.

For the After-Float subsample, the EGARCH-M model yields obviously different
result from other models. The average unexpected return is 0.1505%. GARCH-M and
GJR-M generate the ¢, series similar to that of Engle and Ng (1993).
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In summary, except for GARCH-M in the Before-Float subsample and
EGARCH- M in the After-Float subsample, the zero mean distribution of ¢, is
consistent with the assumption of the GARCH class models’.

4.2 Estimations of Conditional Variances

The Overall Period

The conditional variances estimation results and diagnostic tests for the overall
period are presented in Table 4. The results shows that the parameters corresponding
to the term D, (¢, ,)’ in GIR and GJIR(E&N) are almost insignificant and positive;
the parameters corresponding to the term ¢_,/,h_, in EGARCH and
EGARCH(E&N) are insignificantly negative at all levels. These results indicate that
bad news does not cause higher volatility than good news. As a result, the symmetric
model, like GARCH (1, 1), should be used in estimating volatility.

The diagnostic tests also confirm the results. Even though all models fails the
Positive Size Bias test and the joint test, as well as showing the existence of
autocorrelation, GARCH(1,]) almost passes the joint test, whereas GJR and EGARCH
show strongly significance.

At this point, it seems to be that using GARCH(L,]) is the best way to estimate
volatility for the Thai stock returns. Yet, another story is revealed after the sample is
divided into two subsamples representing two different economic conditions.

The Before-Float Period

Table 5 shows the volatility estimation results and diagnostic tests for period
from January 4, 1994 to June 30, 1997. The term D,_,(¢,_,)”in GIR and GJR (E&N)
now has positive and strong ignificant parameters. Also, the parameters
corresponding to the term ¢,_,/,/h,_, in EGARCH and EGARCH (E&N) models are
negative and strongly significant. These results strongly indicate that negative return
shocks (or bad news) cause higher volatility than positive return shocks (or good
news). Moreover, the log likelihood value of the GARCH(,]) is much lower than
those of GJR and EGARCH. Therefore, the model used in predicting volatility should
be asymmetric.

Note that the diagnostic tests show interesting results. All models using method
of Engle & Ng (1993) in estimating &, fails the Negative Size Bias and Joint tests,
while all of our models passes all tests, except for EGARCH in the Positive Size Bias
test.

The After-Float Period

Table 6 shows the volatility estimations results and diagnostic tests for period
from July 2, 1997 to December 30, 1999. The parameters corresponding to the term
D, (¢,,)" in.GJR and GIR(E&N) is significant, however, negative. In addition, the
term ¢&,_,/4/h_, in EGARCH has positively, statistically insignificant parameter.
This parameter in EGARCH(E&N) is also positive and significant. The results
indicate that good news have higher impact on volatility than bad news. Again, the
model used to estimate volatility should be asymmetric. The GJR, comparing to
others, has the highest log likelihood value of -1,414.392.

The diagnostic tests reveal that all models pass most of the tests. They show
similar results between our models and those of Engle and Ng (1993). The EGARCH,
again, fail the Positive Size Bias test, as well as the Negative Size Bias test.

*Even though the distribution is not normal, one can use the quasi-maximum likelihood estimation method
proposed by Bollerslev and Wooldridge (1992). The method employs the BHHH numerical optimization
algorithm to estimate the conditional variances. The quasi-maximum likelihood estimates will be consistent
and asymptotically normal, whether or not the assumption that &, is normally distributed is violated
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S. INTERPRETATION

Empirical results in Section 4 clearly shows that estimating volatility without
separation between the normal period and the turmoil period will lead to misspecified
model and wrong variance estimates. More specifically, if we estimate volatility of
stock’s return using sample of the returns from two different economic conditions: 1)
the one full mostly of good news during economic stellar period and 2) the other full
mostly of bad news during economic recession period; the model we select must be
the GARCH-M model because bad and good news have about the same impact on
volatility.

However, when volatility is estimated over subsample period in which different
market condition is excluded, the empirical results support our hypothesis. That is
bad news causes higher volatility than good news in the normal period (Before-Float),
while good news causes higher volatility in the recession period (After-Float). Figure
1 and 2 illustrate these evidences by showing the news impact curves estimated by the
GJR model and GARCH-M model before and after the Bank of Thailand floated the
baht, respectively. Clearly, before Thailand floated the baht, previous negative return
shock which is considered bad news results in higher return volatility, 1-day
consequent. In contrast, the impact is opposite after the bath was floated.

Finally, I present summary statistics of the conditional variance estimated from
each model for the overall, Before-Float, and After-Float periods in Table 7. The
conditional variance of stock return is approximately 2 percent for Before-Float
period, 6 percent for After-Float period, and 4 percent for overall period.

6. SUMMARY AND CONCLUSION

This paper shows evidence that estimation of conditional variance could be
misleading if the data being used belongs to different economic conditions. We
analyze the conditional variance of the Thai SET Index returns and define the news as
the unexpected part of such returns. The unexpected returns or news are estimated
using the GARCH-M and other modified models, EGARCH-M and GJR-M, in
comparison with those estimated using the model used in Engle and Ng (1993). The
empirical results suggest that, when estimating volatility from the pooled sample
belonging to different economic conditions and investors’ perception to news;
negative and positive return shocks are of similar magnitude of impact on volatility.
As a result, the best-specified volatility estimation model is GARCH-M. However,
after separating sample into two subsample periods, using July 2, 1997 (when the
Thai Baht was floated) as a cutting date, the results reveal another story. For the
Before-Float period, bad news cause higher volatility than good news. For the A fter-
Float period, the impacts are on positive direction. The results found in this paper
suggest that not only the model specification should be considered to estimate
volatility, but also the direction and magnitude of the impact of good and bad news.
They clearly show that impacts of bad and good news on volatility are different from
one market condition to others.
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TABLE 1

Estimations and Summary Statistics of the Unexpected Returns for
the Total Sample (Jan 4, 1994 to Dec 30, 1999)

This table reports the results of four adjustment procedures to remove day-of-the-week and autocorrelation effects
from the daily return of the SET index. These procedures consist of the GARCH-M, GJR-M, EGARCH-M, and
that analogous to the one in Engle and Ng (1993).

Y, is the rate of return of the SET index from day #-/ to day r. TUE, WED, THU, and FRI are dummy
variables for Tuesday, Wednesday, Thursday, and Friday respectively. Each of these dummy variables takes a
value of 1 on the corresponding day and a value of 0 otherwise. u, is the primary residual of the day-of-the-week
adjustment regression. €, is the secondary residual or the unexpected return after the day-of-the-week and

autocorrelation effects are removed. The t-values are in parentheses. Ljung-Box(x) is the Ljung-Box statistics for
x"-order serial correlation.

Mean Adjustment Regressions

GARCH-M
Y. =-0.421"" + 0.015h,+ 0.379""TUE + 0.511 " "WED + 0.289" THU + 0.544""'FRI + 0.186"" Y., +5
(-4.099)  (0.788) (3.351) (3.759) (2.241) (4.391) (5.955)
GJR-M
Y. =-0.408™" +0.005 h, +0.360™" TUE + 0.495" WED + 0.247 THU + 0.504"""FRI + 0.188"*" Yo+
(-3.932) (0.238)  (3.188) (3.756) (1.950) (4.199) (6.115)
EGARCH-M
Y, =-0.363""+0.002 h, +0.329™ TUE +0.460"" WED +0.189 THU + 0.472""FRI + 0.185"" Yu+e
(-3.512)  (0.122)  (2.990) (3.417) (1.441) (3.997) (6.085)
Engle and Ng (1993)
Day-of-the-Week Effect Adjustment
Y, =-0446"" +0.325" TUE + 0.538"" WED + 0.413" THU + 0.612""FRI + U
(-3.667) (1.915) (3.173) (2.435) (3.606)
Autocorrelation Adjustment
U =-0.004+0.177"" u., + g,
(-0.055) (6.920)
Summary Statistics for the Unexpected Stock Returns
GARCH-M GJR-M EGARCH-M Engle & Ng
Mean -0.0593 -0.0066 -0.0083 0.0000
Median -0.2011 -0.1585 -0.1628 -0.1436
Maximum 10.6278 10.6902 10.6818 10.6631
Minimum -10.1179 -9.8672 -9.8204 -9.7838
Standard Deviation 2.0019 2.003 2.0038 2.0022
Skewness 0.6593 0.6952 0.7057 0.7248
Kurtosis 6.6553 6.6753 6.6825 6.7365
Ljung-Box (6) 1.7015 1.4809 1.3529 1.3799
Ljung-Box (12) 10.081 10.421 10.54 11.101
Ljung-Box (24) 27.969 28.369 28.454 28.646
Jarque-Bera 9248631 945.7504 952.6111 983.8436
Number of Observations 1470 1470 1470 1470

*Significant at 90% confidence level
**Significant at 95% confidence level
***Significant at 99% confidence level
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TABLE 2

Estimations and Summary Statistics of the Unexpected Returns for
the Before-Float Subsample (Jan 4, 1994 to Jun 30, 1997)

This table reports the results of four adjustment procedures to remove day-of-the-week and autocorrelation effects
from the daily return of the SET index. These procedures consist of the GARCH-M, GJR-M, EGARCH-M, and
that analogous to the one in Engle and Ng (1993).

Y, is the rate of return of the SET index from day ¢-/ to day +. TUE, WED, THU, and FRI are dummy
variables for Tuesday, Wednesday, Thursday, and Friday respectively. Each of these dummy variables takes a
value of 1 on the corresponding day and a value of 0 otherwise. u, is the primary residual of the day-of-the-week
adjustment regression. €, is the secondary residual or the unexpected return after the day-of-the-week and
autocorrelation effects are removed. The t-values are in parentheses. Ljung-Box(x) is the Ljung-Box statistics for
x™-order serial correlation.

Mean Adjustment Regressions

GARCH-M
Y, =-0.714™" +0.128"h, + 0.418""TUE + 0.617""WED + 0.288""THU + 0.537"""FRI + 0.205™" Y., +&,
(-5.495)  (2.321)  (3.354) (4.318) (2.060) (3.753) (4.880)
GJR-M
Y, =-0.451""+0.000 h, +0.382"" TUE + 0.547""" WED + 0.239" THU + 0.488""'FRI + 0.188"" Y, + &,
(-3.736)  (0.009) (3.123) (3.852) (1.797) (3.779) (4.766)
EGARCH-M
Y, =-0.3917" - 0.015h, +0.358"" TUE + 0.493"° WED + 0.211 THU + 0.444""FRI + 0.172"" Y., + &
(-3.269)  (-0.299) (2.952) (3.313) (1.564) (3.545) (4.207)

Engle and Ng (1993)
Day-of-the-Week Effect Adjustment
Y, =-0.493"" +0.472"" TUE + 0.518""" WED + 0.288" THU + 0.539""FRI + u,
(4.201) (2.889) (3.187) (1.774) (3.309)

Autocorrelation Adjustment

whe

u, =-0.006+0.145 " u,, +¢
(-0.098) (4.304)
Summary Statistics for the Unexpected Stock Returns

GARCH-M GJR-M EGARCH-M Engle & Ng

Mean -0.1147 -0.0137 -0.0051 0.0000
Median -0.1195 -0.0531 -0.0560 -0.0199
Maximum 5.2793 6.0138 6.1063 5.8834
Minimum -8.9934 -8.1489 -8.0091 -7.8950
Standard Deviation 1.4701 1.4651 1.4650 1.4629
Skewness -0.4313 -0.1097 -0.0818 -0.0981
Kurtosis 5.9644 5.6733 5.6389 5.5562
Ljung-Box (6) 9.3370 7.7910 7.2770 6.3650
Ljung-Box (12) 17.1530 15.8690 15.0860 14.2450
Ljung-Box (24) 29.5000 28.9720 28.4620 27.7390
Jarque-Bera 339.5691 256.3087 249.0403 234.1586
Number of Observations 855 855 855 855

*Significant at 90% confidence level
**Significant at 95% confidence level
***Significant at 99% confidence level
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TABLE 3

Estimations and Summary Statistics of the Unexpected Returns for
the After-Float Subsample (Jul 2, 1997 to Dec 30, 1999)

This table reports the results of four adjustment procedures to remove day-of-the-week and autocorrelation effects
from the daily return of the SET index. These procedures consist of the GARCH-M, GJR-M, EGARCH-M, and
that analogous to the one in Engle and Ng (1993).

Y, is the rate of return of the SET index from day ¢-1 to day . TUE, WED, THU, and FRI are dummy
variables for Tuesday, Wednesday, Thursday, and Friday respectively. Each of these dummy variables takes a
value of 1 on the corresponding day and a value of 0 otherwise. u, is the primary residual of the day-of-the-week
adjustment regression. €, is the secondary residual or the unexpected return after the day-of-the-week and

autocorrelation effects are removed. The t-values are in parentheses. Ljung-Box(x) is the Ljung-Box statistics for
x™-order serial correlation. 2

Mean Adjustment Regressions

GARCH-M
Y. =-0.854" +0.072h, + 0.255TUE + 0.421WED + 0.444THU + 0.646""FRI + 0201 Y,, +g
(-2.360) (1.329) (0.965) (1.513) (1.534) (2.235) (4.075)
GJR-M
¥y =-0.565+0.021h +0.317TUE +0.569"WED + 0.537" THU + 0.718""FRI + 0.184"" Yut&
(-1.566) (0.400) (1.189) (2.015) (1.868) (2.529) (3.221)
EGARCH-M
Yi =-0.318 - 0.075h, +0.287TUE + 0.568'WED + 0.634"" THU + 0.961"""FRI + 0.145"* Yu+sg
(-0.205) (-0.638)  (1.026) (1.943) (2.105) (3.299) (2.326)
Engle and Ng (1993)
Day-of-the-Week Effect Adjustment
Y, =-0.384 + 0.125TUE + 0.571" WED + 0.594"THU + 0.716""FRI + u,
(-1.603) (0.374) (1.697) (1.767) (2.135)
Autocorrelation Adjustment
u=-0.015+0.190"" u,, + ¢,
(-0.121) (4.828)
Summary Statistics for the Unexpected Stock Returns
GARCH-M GJR-M EGARCH-M Engle & Ng

Mean -0.0551 -0.0224 0.1505 0.0000

Median -0.3046 -0.3244 -0.1891 -0.3228
Maximum 10.6317 10.5816 11.9313 10.5562
Minimum -10.2801 -10.0771 -9.3270 -9.9065
Standard Deviation 2.5486 2.5507 2.5598 2.5476
Skewness 0.6090 0.7076 0.8908 0.7589
Kurtosis 4.8280 4.9446 5.3042 5.0389
Ljung-Box (6) 2.8940 1.5510 2.4530 0.9120
Ljung-Box (12) 10.9310 10.1900 14.6110 10.0710
Ljung-Box (24) 23.4230 22.3580 25.9560 21.3160
Jarque-Bera 123.4487 147.9817 217.0321 165.2872
Number of Observations 615 615 615 615

*Significant at 90% confidence level
**Significant at 95% confidence level
***Significant at 99% confidence level
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TABLE 4

Estimation Results and Diagnostic Tests for
the Total Sample (Jan 4, 1994 to Dec 30, 1999)

This table reports the estimation and diagnostic test results of various volatility estimator models for the daily
return of the SET index. Day-of-the-week and autocorrelation effects are removed using either the class of
GARCH in mean procedure or Engle and Ng (1993)’s procedure (presented by E&N) in Table 1. The volatility
estimation is performed by the method of quasi maximum likelihood using the BHHH numerical optimization
algorithm.

h, is the conditional variance on day t. &, is the unexpected return on day -/ after the day-of-the-week and
autocorrelation effects are removed. The t-values are in parentheses. Ljung-Box(x) is the Ljung-Box statistics for
x"-order serial correlation.

Estimation Results

GARCH(1,1)
h, = 0.0295" +0.9152""h,, +0.0802""(g,.\)*
(2.1368) (57.0046)  (5.0865)
LogL = -2924.252

GJR
h,=0.0347" +0.89517" hy; +0.0714" " (g.1)*+ 0.0659" [D, (£01)*]
(2.2883) (49.6823) (3.4061) (1.7487)
_LogL =-2918.715
EGARCH(1,1)
log(h) =-0.1322""" + 0.9879™ log(h,,) + 0.1918""[|e,, | Alh,; ] - 0.0379 [e,, /Vhey]

(-5.5392) (186.3478) (5.8209) (-1.6361)
LogL =-2913.112
GARCH(1,1)(E&N)

L)

h,=0.0305"" +0.9175""h, + 0.0767 " (g,.1)*
(2.2570) (59.7988) (5.0604)
LogL = -2923.574
GJR (E&N)

h,=0.0294"" +0.9079" h,, +0.0631 " (g,.,)*+ 0.0542" [Dy, (e.1)"]
(2.1601) (54.7294) (3.2814) (1.6454)
LogL =-2918.383
EGARCH(1,1)(E&N)
log(h) =-0.1241""" + 0.9874™ 1og(h,,) + 0.1820""[|e,, | Afh,; ] - 0.0326 [e,., /Vhy]
(-5.2903)  (191.3566) (5.6623) (-1.4555)
LogL = -2913.769

Diagnostic Test Results

LjBllol;g- Ljung-Box  Ljung-Box Negiazt:ve Po;»it:;ve
Model (6) (12) (24) Sign Bias Bias Bias Joint Test
GARCH(1,1) 1454 17.462° 31.445 -1.169 0.745 2,673 7.35°
GIR 12.216™ 16.088 29.444 -1.263 1.428 3.071 10.28"
EGARCH(1,1) 17 881" 237327 36.439™ -1.626 1.381 38517 1469
GARCH(1,1 J(E&N) 13.41™ 16.894 31.59 -0.987 0.687 2.546" 7.35°
GJR(E&N) 12.784™ 17.557 32.02 -1.423 1.385 3215™ 10.28™
EGARCH(1,1 J(E&N) 16.592"" 2367 36985 -1.684" 1.421 3.804™" 14.69™"
*Significant at 90% confidence level **Significant at 95% confidence level

***Significant at 99% confidence level
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TABLE 5

Estimation Results and Diagnostic Tests for
the Before-Float Subsample (Jan 4, 1994 to Jun 30, 1997)

This table reports the estimation and diagnostic test results of various volatility estimator models for the daily
return of the SET index. Day-of-the-week and autocorrelation effects are removed using either the class of
GARCH in mean procedure or Engle and Ng (1993)’s procedure (presented by E&N) in Table 2. The volatility
estimation is performed by the method of quasi maximum likelihood using the BHHH numerical optimization
algorithm.

h, is the conditional variance on day . ¢, is the unexpected return on day -/ after the day-of-the-week and
autocorrelation effects are removed. The t-values are in parentheses. Ljung-Box(x) is the Ljung-Box statistics for
x"-order serial correlation.

Estimation Results

GARCH(1,1)
h,=0.4690"" + 0.5259""h,, + 0.2585""" (¢, ,)?
(4.3090) (7.2122) (4.9839)
LogL = -1476.754
GJR

e

he=0.1020"" +0.8462""" h, + 0.0293(g,.,)>+ 0.1596"" [D,, (81)%]
(2.7329)  (21.0052) (1.1994) (2.8459)
LogL = -1467.954

EGARCH(1,1)
log(h) =-0.0790"" +0.9721"" log(he,) + 0.1238 [ |e,, | AV, - 0.0963" [e,., /heq]
(-2.7783) (67.1301) (3.0859) (-3.0538)
LoglL = -1462.142
GARCH(1,1)(E&N)

h=0.0845" + 0.8666 " h,, + 0.0909™" (g, ,)?
(2.2977) (22.5159) (3.3490)
LogL =-1475.106

GJR (E&N)
he=0.1083"" +0.8465 "h,, + 0.0307 (g,.,)* + 0.1388""" [D,, (£.1)%)
(27145)  (19.6073)  (1.2649) (2.6531)

LogL = -1465.265

EGARCH(1,1)(E&N) .
log(hy) =-0.0485™ +0.9724 " log(h, ) + 0.836™"" [le,, | Vh,, ] - 0.0817" (&1 /Nhe]
(-2.2141) (104.8132) (2.7632) (-3.4189)

LogL = -1456.882

Diagnostic Test Results

Lj;;:;g_ Ljung-Box  Ljung-Box Nesgi:;!:ve P?&:“

Model (6) (12) (24) Sign Bias Bias Bias Joint Test
GARCH(1,1) 55717 8.3297 2035 -0.067 -0.09 -0.235 0.09
GIR 9.1369° 11.354 21.887 -0.926 0.019 1.444 2.56
EGARCH(1,1) 14.417™ 16.093 30.658 -1.027 -0.494 20417 5.98
GARCH(1,1 (E&N) 11.844° 13.047 21981 0.536 -3.385™ 1.336 18.79""
GJR(E&N) 8.8847 10.955 21.686 0.36 -2.822"" 0.901 12.81°"
EGARCH(1,1 E&N) 15.739™ 17.335 31.647 0.278 278" 0.871 11.96™

*Significant at 90% confidence level **Significant at 95% confidence level

**#*Significant at 99% confidence level
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TABLE 6

Estimation Results and Diagnostic Tests for
the After-Float Subsample (Jul 2, 1997 to Dec 30, 1999)

This table reports the estimation and diagnostic test results of various volatility estimator models for the daily
return of the SET index. Day-of-the-week and autocorrelation effects are removed using either the class of
GARCH in mean procedure or Engle and Ng (1993)’s procedure (presented by E&N) in Table 3. The volatility
estimation is performed by the method of quasi maximum likelihood using the BHHH numerical optimization
algorithm.

h, is the conditional variance on day t. €, is the unexpected return on day -/ after the day-of-the-week and
autocorrelation effects are removed. The t-values are in parentheses. Ljung-Box(x) is the Ljung-Box statistics for
x"-order serial correlation.

Estimation Results

GARCH(1,1)
h,=3.2633""" + 0.2640h,, + 0.2156"" (&)’
(3.1372)  (1.4697)  (2.9262)
_LogL = -1419.345

GJR
h,=3.2194"" +0.2770" h,, + 0.3483"" (&,,)*- 0.3008"" [Dy, (£:1)*]
(3.8241)  (2.0448) (3.2589) (-2.1638)

_LogL = -1414.392

EGARCH(1,1)

log(h) = 0.5421 +0.5686"" log(h,,) + 0.2802 [ le., | /Nhey ]+ 0.0182 [£,, /vh,]
(1.1679) (2.0139) (2.1315) (0.2401)
LogL = -1426.280
GARCH(1,1)(E&N)

h,=2.6873"" + 0.3769 " 'h,, + 0.1926 " (g,,)*
(2.9159) (2.2444) (2.5304)
LogL =-1419.034

GJR (E&N)
h,=3.2027""" +0.2867"" h, +0.3320""" (£,)*- 0.2928"" [Dy (£1)°]
(3.7790)  (2.0454) (3.2494) (-2.2131)
LogL =-1413.416
EGARCH(1,1)(E&N)
log(h) = 0.5318 +0.5862"" log(h) + 0.2543 [ |, | /by ]+ 0.1305 e /vy ]

(1.5860) (3.1839) (2.3201) (1.8020)
LogL =-1417.554

Diagnostic Test Results

Ljung-Box  Ljung-Box  Ljung-Box Nesgiaz l:ve P[;ﬁ"

Model (6) (12) 24) Sign Bias Bias Bias Joint Test
GARCH(1,1) 5.8627 11.944 23.462 -1.193 2.182" 1.562 6.13
GJR 4.1358 8.8867 19.568 0.232 0.551 0.182 0.61
EGARCH(1,1) 72272 17.100 27.849 -1.488 1.854° 2,146 6.13
GARCH(1,1 (E&N)  4.9986 12.533 23.334 -0.932 2213" 1478 6.74"
GIR(E&N) 4.1861 9.1013 18.83 0.27 0.542 -0.182 1.23
EGARCH(L,1 JE&N)  5.1241 9.8619 19.393 0.158 0.729 0.682 2.45

*Significant at 90% confidence level **Significant at 95% confidence level
***Significant at 99% confidence level
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TABLE 7

Summary Statistics of the Conditional Variance Estimates
This table reports the summary statistics of the estimated conditional variance of the SET index daily return under
various models. The data period is from January 4, 1994 to December 30, 1999. This data set is divided into two
subperiods: the Before-Float period is from January 4, 1994 to June 30, 1997 and the After-Float period is from
July 2, 1997 to December 30, 1999,

h, GARCH, h, GIR, h, EGARCH, h, GARCH(E&N), h, GIR(E&N), h, EARCH(E&N) are the conditional
variances estimated from the GARCH-M, GIR-M, EGARCH-M, GARCH(1,1), GJR, and EGARCH(1,1) in Table
4 to 6. For the last three models, the estimation processes are from Engle and Ng (1993). Therefore, we put
(E&N) after these models.

Total Sample (Jan 4, 1994 to Dec 30, 1999)

Mean Std. Dev. Min Max Skewness Kurtosis
hGARCH 4.1518 3.5644 0.6646 29.7250 2.3649 11.3677
hGIR 4.1462 3.5696 0.6341 31.0329 2.4305 12.3288
hEGARCH 4.0223 3.0973 0.5170 24.4453 1.8515 8.1865
hGARCH(E&N) 4.1886 3.6481 0.6857 29.2546 2.2987 10.3591
hGIR(E&N) 4.1462 3.5439 0.6551 28.5201 2.2737 10.4976
hEGARCH(E&N) 4.0367 3.1709 0.5284 23.3752 1.9507 8.2182

Before-Float Subsample (Jan 4, 1994 to Jun 30, 1997)

Mean Std. Dev. Min Max Skewness Kurtosis
h/GARCH 2.1709 1.8219 1.0253 25.1727 5.3895 48.8085
hGIR 2.1786 1.8129 0.7779 18.4639 3.8496 24.5627
hEGARCH 2.0735 1.3461 0.5559 9.6441 2.0500 9.2702
h,GARCH(E&N) 2.1565 1.7081 0.8087 15.1617 4.1846 25.1583
hGIR(E&N) 2.1576 1.9359 0.8138 19.7798 4.3219 279137
REGARCH(E&N) 2.1402 1.7964 0.6403 15.1771 3.9992 23.7191

After-Float Subsample (July 2, 1997 to Dec 30, 1999)

Mean Std. Dev. Min Max Skewness Kurtosis
h,GARCH 6.3384 3.0407 4.4539 29.3529 4.0059 23.5352
hGIR 6.4744 4.4626 4.4610 47.6266 5.0029 34.7484
hEGARCH 6.0025 1.8937 3.8635 20.2757 2.9027 15.3467
hGARCH(E&N) 6.3460 3.0733 4.3560 32.5981 4.0296 24.1065
hGIR(E&N) 6.4708 4.4442 4.4976 50.1535 5.0626 36.0175

hEGARCH(E&N) 6.1520 2.6683 3.9443 28.6825 3.5269 20.7579
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Figure 1

The News Impact Curves of the GARCH-M Model and the GJR Model for the
Before-Float Subsample (Jan 4, 1994 to Jun 30, 1997)

The solid line represents the GJR news impact curve. The equation for the GJR news impact curve is from GJR
equation in Table 5. By giving previous conditional variance, A, ;, constant at 1; the equation for the GJR news
impact curve can be expressed as follows:

h, = 0.9482+ 0.0293(g,.,)*+ 0.1596 [Dy, (£..1)*]

where D, , is a dummy variable whose value is 1 when €,.; is negative.

The dashed line represents the GARCH-M news impact curve. The equation for the GARCH-M news
impact curve is from GARCH(1,1) equation in Table 5. By giving previous conditional variance, A, ,, constant at
1; the equation for the GARCH-M news impact curve can be expressed as follows:

h, = 0.9949 + 0.2585 (g...)°
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Figure 2

The News Impact Curves of the GARCH-M Model and the GJR Model for the
After-Float Subsample (Jul 2, 1997 to Dec 30, 1999)

The solid line represents the GIR news impact curve. The equation for the GJIR news impact curve is from GJR

equation in Table 6. By giving previous conditional variance, h, ;, constant at 1; the equation for the GJR news
impact curve can be expressed as follows:

h, = 3.4964+ 0.3483(¢, )’ - 0.3008[D,, (£,,)*]
where Dy is a dummy variable whose value is 1 when &, ; is negative.
The dashed line represents the GARCH-M news impact curve. The equation for the GARCH-M news

impact curve is from GARCH(1,1) equation in Table 6. By giving previous conditional variance, A, ;, constant at
1; the equation for the GARCH-M news impact curve can be expressed as follows:

h,=3.5273 + 0.2156 (g,.;)°
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