Choice of Methodologies to Estimation of Total Factor

Productivity Growth'

ABSTRACT

This study presents two
methodologies to estimation of total factor
productivity (TFP) growth. One is
referred to a Tornqvist index number
technique and the other is a parametric
technique using a dual approach of a
stochastic cost frontier function. This
study provides a discussion of their
relative merits and illustrates the use of
these two techniques in an empirical
analysis using panel data (1986-1998) on
61 U.S. electricity generation businesses.
The main purpose is to examine the
sensitivity of the estimates obtained to the
choice of TFP measurement methodology.

The results indicate that the TFP growth
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indices between these two techniques are
quite different. Therefore, researches who
are interested in measuring TFP growth
must choose the choice of alternative
methodologies to estimation of TFP

growth with care.

1. INTRODUCTION

Productivity is used to measure the
performance of firms which convert inputs
into outputs. Theoretically, it is defined as
the ratio of the outputs produced to the
inputs used by a firm in the production
process. When the production process
involves only a single output and a single
input, the productivity can be easily

calculated to compare the performance of
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an industry over time or across
geographical regions. However, most of
the productions involve more than one
output and one input in the production
process. Then, a method for aggregating
the outputs into a single output index and
aggregating the inputs into a single input
index must be used to obtain a ratio
measure of productivity. The productivity
measured within the multi-output and
multi-input production technology is
referred as total factor productivity (TFP)
which is productivity measure involving
all factors of production.

In early studies of productivity, index
number techniques were used to construct
a TFP index. The TFP index is defined as
the ratio of an aggregate output quantity
index to an aggregate input quantity index.
TFP growth occurs when an index of
outputs changes at a different rate than an
index of inputs. The first and foremost of
productivity measurement was the use of
the Fisher (1922) and Tornqvist (1936)
indices. It was subsequently developed
and based upon the idea of Malmquist
(1953) and Shephard (1953) who
independently introduced the notion of a

distance function. The input and output

quantity index numbers, and productivity
indices are all based on the ideas of
Malmquist and the distance function.
Although the index number techniques are
easy to compute but they carry some
shortcomings. They require quantity and
price information, as well as assumptions
concerning the structure of technology and
the behavior of producers. Moreover, they
cannot provide the sources that contribute
to productivity growth which are of broad
interest for researchers. These problems
lead to the development of new empirical
techniques known as nonparametric and
parametric approaches to measure the TFP
These two

growth  decomposition.

techniques do not require price

information or  technological  and
behavioral assumptions.

The nonparametric approach applied
in the literature to measure TFP growth
decomposition is based upon the previous
work of Fére et al. (1994). They extended
the Malmquist TFP index defined in
Caves et al. (1982) and illustrated how the
Malmquist TFP index can be computed
linear

using  the  nonparametric,

programming  techniques of  data

envelopment analysis (DEA) to fit



distance functions. Fére et al. (1994)
computed the TFP growth as the
geometric mean of two Malmquist TFP
index without using price data and
defining a specific functional form. They
showed how the resulting TFP index
could be decomposed into two sources
which consist of technical change (or
frontier shifts) and efficiency change (or
catching up effects). Their approach
requires a constant returns to scale (CRS)
restriction on the frontier technology. The
DEA based Malmquist TFP index to
measure the TFP growth decomposition is
extensively applied in the empirical
literature. However, the issue concerning
statistical noise in the analysis became one
of the main criticisms in the DEA. Since
the DEA is nonstochastic, all departures
from the frontier technology are attributed
to inefficiency so that noise is excluded in
the measure of efficiency change.

The parametric approach to measure
TFP growth decomposition has been
extensively applied using both primal and
dual representations. The primal approach
relates the conventional TFP measure to
the characteristics of the production
technology based on the aggregate

production, while the dual approach uses

the inverse relationship between the
production and cost functions to establish
the link between the conventionally
measured TFP growth to the shift of
aggregate cost function. These two
approaches differ only in that the primal
approach is developed to disentangle the
contribution of factors other than
technological progress from shifts in the
production function, while the dual
approach relates the observed growth to
shift of the cost function.

The primal approach to the
econometric estimation of productivity
growth originated with Solow (1957), who

assumed constant returns to scale and

technical efficiency, and associated
productivity growth  with  technical
change. The conventionally measured

productivity growth can be decomposed
through the explicit specification of the

structure
(1963, 1964).

approach allows decomposition of TFP

production

Griliches

originated with

The primal

growth into a number of components by
explicitly using the production function
framework. TFP growth is decomposed
into components associated with technical

change and non-constant scale effects.



The dual approach to the
econometric estimation of productivity
growth originated with Ohta (1974), who
derived the relationships between primal
and dual cost measures of scale economies
and technical change. Caves, Christensen,
and Swanson (1980), Denny, Fuss, and
Waverman (1981), and Nadiri and
Schankerman (1981) used a flexible cost
function and applied the duality theory to
improve and refine the measurement of
sources of TFP growth.

Nishimizu and Page  (1982)
originally presented a measurement of
TFP growth decomposition in the
presence of inefficiency. The efficiency
change is presented as a source of TFP
growth. They used a translog production
frontier to decompose TFP growth into
technical change and technical efficiency
change. Extending the study of Nishimizu
and Page (1982), Bauer (1990a) derives
detailed primal and dual decompositions
of TFP growth in the presence of
inefficiency.

The purpose of this study is to apply
two methods— a Tornqvist index number
technique and a parametric technique

using a dual approach of stochastic cost

frontier function to measure TFP growth—

as well as providing a discussion of their
relative merits. This study illustrates the
use of these methods in an empirical
analysis that uses panel data on 61 US
electricity generation businesses, observed
over a 13-year period from 1986 to 1998.
The outline of this paper is as
follows. In the next section the two
performance measurement methods to
measure TFP growth are presented. This
is followed in Section 3 with a discussion
of the data set used in this study and key
assumptions underlying the construction.
The next section provides the estimation
results of the two

performance

measurement  methods, and  then

conclusions follow in the final section.

2. METHODOLOGY
The methods that are wused to
measure the TFP growth can be roughly
classified into two groups according to the
types of prices employed, i.e. market price
and shadow prices. Market prices are the
actual prices that people must pay for the
goods and services while shadow prices
(internal prices to the firms) are derived
from the of the

shape underlying

production  technology. Three TFP

measurement approaches that are widely



applied in the literature are: the Tornqvist
price-based index number, a parametric
technique known as stochastic frontier
analysis (SFA) and a nonparametric
technique known as data envelopment
analysis (DEA). The Tornqvist
price-based index number approach uses
market prices, while the SFA and the
DEA approaches involve the estimation of
a production technology, and hence the
use of shadow prices derived from the
shape of the estimated frontier.
The Tornqvist price-based index
number approach has the advantage that it
can be used when limited data are
available (e.g. aggregate industry-level
data). The SFA and DEA frontier
approaches require more data (i.e. firm-
level panel data), however they have the
advantage that they allow one to identify
various components of the TFP growth
(such as technical change, efficiency
change and scale effects), which are often
of particular interest to regulators. The
SFA approach has an advantage over the
DEA approach when analyzing data in a

stochastic environment. This is because

DEA typically does not attempt to take

statistical noise into account (and

consequently may provide inaccurate
efficiency measures), while the parametric
approach does attempt to accommodate
statistical noise.

This study applies the SFA approach
of cost frontier function, in a TFP analysis
of panel data on 61 U.S. electric utilities
observed over the time period of
1986-1998, and compares the results with
traditional

those obtained wusing the

Tornqvist price-based index number
approach. The main objective is to
examine the sensitivity of the estimates
of TFP

obtained to the choice

measurement methodology.

2.1 The Tornqvist Price-Based
Index Number (TPIN) Approach

Following Caves, Christensen and
Diewert (1982), a Tornqvist TFP index
can be constructed as the ratio of a
Tornqvist output index to a Tornqvist
input index. The logarithmic form of the
Tornqvist TFP growth index between

periods ¢ and ¢+1 is defined as
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where the 7T  superscript refers to
Torngvist, i=1,..,1 indexes firms;
t=1..,T indexes time periods;
k=1,.,K indexes input variables;

m =1,..,M indexes output variables; x,,,

is the log of the k-th input quantity, X,

it

Vuiy 18 the log of the m-th output quantity,

InTFPC" = ln(TFR‘,m/TFR,t)T = (yi,t+l _yi,t)_

As noted earlier, the Tornqvist TFP
index approach has the advantage that it
can be used to measure the TFP growth
when limited data is available. However,
it requires information on both quantities
and prices of outputs and inputs. In
addition, it cannot provide the sources that
contribute to productivity growth and
which are of broad interest for researchers.
This problem can be addressed by gaining
access to panel data and using a frontier

technique such as a stochastic cost frontier

(1)
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1s the observed revenue share of
the m-th output; and s,,, is the observed

cost share of the &-th input.

For the single-output case, which is
considered in the empirical part of this
rewritten  as

study, equation (1) is

Z [(Ski,t+1 + Sk Xxki,tﬂ Xy )] (2)
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(SFA) to decompose the measured TFP
growth into its components.
2.2 The Stochastic Cost Frontier
Approach
2.2.1 Derivations of Total
Factor Productivity Decomposition

TFP growth is defined as the
residual growth in outputs growth (I? )
not explained by input growth ()A( ). For
the multiple-output and multiple-input

case, TFP growth (7FP) can be defined

as



TFP =

where “*” denotes the percentage rate of

growth over time, 7, is the observed

m

revenue share of m-th output and s, is the

observed cost share of k-th input.
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where i=1,...,/ index of firms; ¢t =1,...,T

Y

m

index of time periods; is the m-th

output quantity; W, is the k-th input price;
¢t is a time trend index serving as a proxy
for a technical change; £ s are unknown

parameters to be estimated; v,s are the

two-side random statistical noise

lnE:lnC(Ym,%,t;ﬂ)+v+u .

The measurement of TFP growth
associated with the cost frontier function

is derived by totally differentiating the
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Following Kumbhakar and
Lovell (2000), a stochastic cost frontier
function incorporating a time trend can be

written as

(4)

accounting for measurement error or other

random factors such as weather, luck,

strike, etc. and the u,s are non-negative

random errors associated with the cost
inefficiency effects.

The stochastic cost frontier function
in logarithm form (omitting the firm index

i and the time index ¢) is written as
)

stochastic cost frontier function in

equation (5) with respect to time. This

)

yields
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Substituting equation (6) into equation (3) yields
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Defining ¢ as the log of total cost, C'; w, as the log of k-th input price, W,; y, as

the log of output quantity, ¥, equation (7) is rewritten as
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Rearranging equation (8) yields

Tﬁpz_é‘;—f){zr } {1 Za—(}

m m

(Note that GlantE_z & _ —Zsk axk Z
k

k

Defining ¢, as the first partial  derivation of the logarithmic form of cost
derivation of the logarithmic form of cost ~ trontier function with respect to the 4-th
frontier function with respect to the m-th Pt price, equation (9) can be rewritten

output and «, as the first partial

~ ac(-) g, oy, £, oy, ow, Ou
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where &, =(0c(-)/dy,) represents the
&= Z &,

represents the inverse of the standard

production elasticities;

returns to scale elasticity; x, = (80()/ ow,)

TFP=-"
d
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represents the implicit cost shares for the

k-th input; and x = ZKk represents the
k

sum of implicit cost shares for all inputs.

Rearranging equation (10) yields
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where SF =(1-¢)/¢ is scale factors at each data point and 7z, =(g,/€) is implicit

revenue share.

TFP growth in equation (11)
comprises of four components. The first
term measures the technical change
representing a shift in the cost frontier
function. The second component measures
the change in scale efficiency, which
requires the calculation of the production
elasticities. For the case of constant
returns to scale, the term & will be equal
to 1, and hence the second component in
equation (11) will be equal to 0. The third

term measures the change in allocative

efficiency, which consists of two
components. The first component
measures the change in output mix

ot o 4 ot

allocative  efficiency  effects.  This
component will be zero if the market

(observed) revenue shares, r,, equal to

the implicit revenue shares, z,. The

second component of the change in
allocative efficiency measures the change
in input mix allocative efficiency effects.
This component will be zero if the market

(observed) cost shares, s,, equal to the

implicit cost shares, x, . Finally, the last

term in equation (11) measures the cost
efficiency change.
Equation (11) for the single-output

case can be rewritten as

~ ac(*) oy ow, Ou
TFP=—2+(1-¢)= E -k, )=t -—
+(1-e) 5+ D (s —x,) o

(12)



2.2.2 Estimation Approach

In order to measure the
components of TFP growth discussed in
Section 2.2.1, a flexible functional form of
function must be

the cost frontier

3 33 3
1 1
¢, =B+ E B +§ E E BV Wi +ﬂyyit +Eﬂyyy; + § lBkkaityit
k=1 k=1

k=1 I=1

specified. This study adopts a translog
functional form. A log-quadratic translog
functional form of stochastic cost frontier
function for the single-output and three-

input case can be defined as follows.

(13)
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where the f s are unknown parameters to
be estimated, and all other notation is as
previously defined. This study follows the
standard practice of assuming a normal
distribution for v and a half-normal
That is,

distribution for u. we set

v~N(0,62) and u ~| N(0,62)|. Given

these distributional assumptions, the
parameters of this model can then be
estimated using the method of maximum
likelihood. Following the suggestion of
Battese and Corra (1977), and replace the

two variance parameters with the two new

DBAD But D Bt B =1,

which will be satisfied if

3 3 3 3
D Bi=1:) B, =0for1=123; > B,=0; > B,=0.
k=1 k=1 k=1 k=1

2 2 2

parameters c” =0, +0, and

y = 03 /o2 By doing this the parameter

space of ¥ is searched between 0 and 1, to
provide good starting values for the
iterative maximization routine which is
used to calculate the maximum likelihood
parameter estimates.

Young’s theorem requires that the
symmetry restriction is imposed so that
Pu= P for all k,1=12,3 and
homogeneity of degree +1 in input prices.

From Euler’s Theorem, this implies

(14)

(15)



The restrictions of homogeneity
constraints upon equation (13) can be
imposed by estimating a model where all

input prices are normalized by one of the

2 2 2 2
* * 1 * * 1 2 *
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k=1 k=1
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input prices. By normalizing the K-th
input price, the translog stochastic cost
frontier function in equation (13) is

rewritten as

(14)

* * *
where Coir = (Ckit/ WKit)’ Wi = (Wkit/ WKit) and Wi = (Wlit/ WKit)'

Once the equation (14) is estimated
using the maximum likelihood estimation,
the parameter estimates and the point

estimates of the cost efficiencies are used
to calculate the components of TFP in
equation (12).

Following Orea (2002), a measure of

InTFPC = In(TFP

i+l

TFP growth, for each firm between any
two time periods, can be calculated by
using the estimates of the coefficients of
the cost frontier in equation (14) and the
firm-level sample data. The logarithmic
form of the TFP growth between period ¢

and ¢ +1 for the i-th firm is defined as’

JTFR,)=In(CE, [CE,,..)-[pc.... fot +ac, o]

+%[(1_aci,t+l/ay)+(l_aci,t/ay) yi,t+l _yi,t) (15)

3
+ % [(S kit (aci,t / 8Wki,t ))"' (S kil (aci,m / OWyi 11 )) Wit ~ Wiy )s

k=1

'This formula is quite similar to that provided in Bauer (1990), which was alternatively derived using a
differential approach expressed in Section 2.2.1. The main differences between the two sets of TFP
decomposition formula is that the TFP growth components in equation (12) are evaluated at the ¢ and #+/
data points, while the Bauer (1990) formula is only evaluated at the ¢ data point. This difference will have

minimal effect on the empirical measures obtained in most instances.



where the three terms on the right-hand-
side of equation (15) represents the cost

efficiency change (CEC.

4] ), technical

change (T WH), scale efficiency change

(SEC,

WH), and input allocative efficiency

change (AEC ), respectively. The cost

it,t+1
efficiency measure, (CE,), in equation

(15) is the cost efficiency prediction of the
i-th firm in the #-th time period, and is
calculated from the cost frontier in
technical

equation (14). The change

measure, (T . Hl), is the mean of the

technical change measures evaluated at
the period ¢ and period ¢+ 1data points.
The scale efficiency change measure,

(SEC,

WH), relates to the change in scale
efficiency, which requires calculation of

the output elasticity in period ¢, dc;, / oy,

t+1,0c,

i,t+1

and period /oy. The input

allocative efficiency change (AECWH)
component is equal to the difference

between the (T FPC.

,,,,H) measure obtained

from the cost frontier in equation (15) and

the Tornqvist 7FPC index in equation (2).

3. DATA DISCUSSIONS

This study uses data on fossil-fuel
fired steam electric power generation for
major investor-owned utilities in the
United States. The primary sources of data
are obtained from the Energy Information
Administration, the Federal Energy
Regulatory Commission and the Bureau of
Labor Statistics. Panel data on 61 electric
utilities over the time period of 1986-1998
are used in the empirical analysis.

The data set used to measure and
decompose TFP growth contains the
measurements of firm outputs and input
quantities. The variable inputs are fuel
(F), labor and maintenance (L), and
capital (K). The definitions of these
variables are summarized as follows.

a. Output Variable
Output variable, Y,

., 1s represented
by net steam electric power generation in
megawatt-hours which is defined as the
amount of power produced using
fossil-fuel fired boilers to produce steam
for turbine generators during a given

period of time.



b. Price and Quantity of Fuels Input

Variables

The price of fuel aggregate, W, is a

Tornqvist price index of fuels (i.e. coal,

[a/if+a/if+1 j
3 2
[VVHHI j =11 Pﬁt+1
b
W =l P fit
P, 0
_ Sit= fit

where a, =————, P,

> P.0,
f=l

consumption of the same fuel. The
Tornqvist price index of fuels is converted
to a multilateral Tornqvist price index for
fuels using the formula discussed in

Coelli, Rao, and Battese (1998).

The quantities of fuel, X, , equal

it
the steam power production fuel costs
divided by the multilateral Térnqvist price
index for fuels.

c. Price and Quantity of Aggregate
Labor and Maintenance Input Variables

The price of labor and maintenance
aggregate, W,,, is a cost share-weighted
multilateral Tornqvist price index for
labor and maintenance. The price of labor
is a firm-level average wage rate. The

price of maintenance and other supplies is

oil, gas) which is calculated by a weighted
geometric average of the price relatives
with weights given by the simple average

of the value shares in period 7 and 7+1.

(16)

P, 1s the price of the f~th fuel (i.e. coal, oil, gas), and O, is the

an industry-level price index of electrical
supplies.
The quantities of labor and

maintenance, X,,, are measured as the

it >
aggregate costs of labor and maintenance
divided by the multilateral Tornqvist price
index for labor and maintenance. Data on
labor and maintenance costs are calculated
by subtracting fuel expenses from total
steam power production expenses.

d. Price and Quantity of Capital
Input Variables

The price of capital, WW;,,, is the yield
of the firm’s latest issue of long term debt
adjusted for appreciation and depreciation
of the capital good using the Christensen
and Jorgenson (1970) cost of capital

formula.



VV3it = Pt [idit +S; (reit - idit)+ dit _fiz]

where py;, is a price index for electrical
generating plant and equipment; iz is the
adjusted corporate bond rate by firm based
upon its bond ratings by Moody’s Investor
Service; s; is the equity share of total
capital defined as total proprietary capital
(TPC) divided by the sum of total
proprietary capital and total long-term
debt (TOTB); r.; is the equity rate of

return defined as the ratio of net income to

total proprietary capital; d; is a
depreciation rate assuming 30 years
straight line depreciation; and f;; the
inflation rate.

Xy, =F,C,, t=1986

(17)

The values of capital stocks are
calculated by the valuation of base and
peak load capacity at replacement cost to
estimate capital stocks in a base year and
then updating it in the subsequent years
based upon the value of additions and
retirements to steam power plant as
discussed in Considine (2000). The base
year capacity is calculated by multiplying
the price of new generation capacity in
dollars per megawatt and the base year
nameplate

capacity in  megawatts.

(18)

where P, is the price of new generation capacity in dollars per megawatt, and C, is the

nameplate capacity in megawatts. For the subsequent years, the values of capital stocks

are calculated by

3it

Pria

=0, )p, A —R ,t=1987,.,1998 (18)



where o denotes the depreciation rate
assuming 30 years straight line
depreciation; Xz;, is equal to the nominal
stock divided by the price index for
electrical generating plant and equipment,
prit ; Ai and R; denote additions and
retirements to steam power plant.

The final data set is a balanced panel
of 61 electric utilities for the years 1986 to
1998 with a total of 793 observations. The
availability of panel data generally implies
that there are degrees of freedoms in the
estimation of parameters and such a data
set permits the simultaneous investigation
of both the technical change and the
technical efficiency change over time.
Table 2 represents a summary of the data

used in this study. All price indices used

in this study are obtained and calculated

relative to the base period 1993. The mean
steam electric power generation across
electric utilities is 13.71 million megawatt
hours with a standard deviation of 12.56
million megawatt hours. The mean of fuel
quantity is 300.57 million dollars with a
standard deviation of 351.84, and of labor
and maintenance is 61.78 million dollars
with a standard deviation of 53.37. The
mean capital value is 955.22 million
dollars with a standard deviation of
877.40. The

average expenses of

aggregate fuels, aggregate labor and
maintenance, and capital are calculated to
be 254.77, 66.71, and 113.90 million
dollars, respectively. The mean cost shares
of fuel, labor and maintenance, and capital
account for 58.6, 17.9, and 23.5 percent,

respectively.

Table 1 : Data summary for 61 electric utilities over the periods of 1986-98

Variable Units Mean S.D. Minimum | Maximum
Output (x 10° MWhr) 13.709 12.561 0.499 79.723
Fuel (x 10° dollars) | 300.568 | 351.842 12.823 | 2,522.324
Labor and Maintenance (x 10° dollars) 61.776 53.366 1.810 444.453
Capital (x 10° dollars) | 955.225 | 877.403 9.070 | 3,878.295
Price Index of Fuel 0.861 0.208 0.306 1.338
Price Index of Labor and Maintenance 1.079 0.255 0.443 1.928
User Costs of Capital 0.102 0.019 0.009 0.203




4. EMPIRICAL RESULTS
4.1 Discussion of  parameter
estimates
The data described in Section 3 were
used in the calculation of Toérnqvist TFP
indices and also in the estimation of the

stochastic cost frontier function described

in Section 2. The data variables used in

the model estimation were each
transformed by division by their
respective  geometric means. This
transformation does not alter the

performance measures obtained, but does
allow one to interpret the estimated first-
order parameters as elasticities, evaluated
at the sample means. A number of
hypothesis tests regarding the structure of
the production technology such as the
functional form (i.e. Cobb-Douglas versus

Translog;

ﬂkl:ﬁyy:ﬂky:ﬂlt:ﬂkz:ﬁy[:()’k’l:l:z

the presence of technical

( t :IBtt =:Btz =ﬂyt =O>k =1’2) and the

presence of technical inefficiency (;/ = 0)

change

were conducted using likelihood ratio
tests. The results of these likelihood ratio
(LR) tests are presented in Table 2. All
null hypotheses were rejected. The LR test
results indicate the translog functional

form is a preferable one and there exist

technical change and technical
inefficiency in the model.

The maximum likelihood parameter
estimates for the stochastic cost frontier
function obtained using the computer
program FRONTIER 4.1 (Coelli, 1996a)
are listed in Table 3. The estimated
results indicate that the input elasticities
are 0.449, 0.361 and 0.190 for F, L and K,
respectively. These elasticities can also be
interpreted as shadow input shares. These
shadow input shares differ from the
average observed shares in this data set
which are 0.586, 0.179 and 0.235 for F, L
and K, respectively. As a result, the TFP
growth estimates obtained using the
Tornqvist index (which uses observed
shares) likely differ from the cost frontier
TFP measures.

The estimated parameters in Table 3
scale

also provide information on

economies and technical change. Using
the first order coefficient of the output
variable, the elasticities of scale relative to

the cost functions can be calculated as
RTS =(0c/dy)", where a value of RTS

greater than one imply increasing returns
to scale, while values less than one imply
decreasing returns to scale, and values

equal to one indicate constant returns to



scale. The estimated parameters in Table
3 suggest that the average estimate of RTS
is 1.035. This means that electric utilities
in the sample data were operating at
modestly increasing returns to scale in the

production of electricity. The first order

coefficient of the time trend variable in
Table 3 provides an estimate of the
average annual rate in technical change.
The estimate suggests that the technology
is improving at a modest rate of 2.2

percent per annum.

Table 2 : Tests of hypothesis for parameters

In[L(Hy)] In[L(Ho)] "
) . . Test- Critical o
Null hypothesis (unrestricted (restricted o Decision
statistic Value
model) model)

(1) Ho: Cobb-Douglas is preferred
Cost frontier model 200.65 173.22 54.86 18.31 Reject Hg
(2) Ho: no technical change
Cost frontier model 200.65 136.32 128.66 11.07 Reject Hg
(3) Ho: no technical inefficiency
Cost frontier model 200.65 96.70 207.90 3.84 Reject Hy

Table 3 : Parameter estimates for the cost frontier function

Parameters Estimates S.D. t-ratio
Bo -0.270 0.012 -22.055
Bi 0.449 0.022 19.998
B2 0.361 0.030 11.983
Bs 0.190
B 0.267 0.128 2.095
Bi2 -0.360 0.110 -3.287
Bis 0.093
B2z 0.525 0.169 3.111
Bas -0.164
P33 0.071
By 0.966 0.006 155.078
Byy 0.028 0.012 2.400




Biy -0.059 0.025 -2.337

Bay -0.011 0.031 -0.343

Bay 0.069

B, -0.022 0.002 -10.455

By 0.002 0.001 1.458

Bie 0.038 0.008 4.756

Bat -0.048 0.011 -4.453

Pst 0.010

Byt -0.005 0.002 -2.297

o 0.113 0.007 16.177

Y 0.974 0.008 122.552
Log likelihood function 200.651
LR test of the one-sided error 207.896

4.2 Discussion of performance
measures

Some summary measures of the TFP
growth measures (and components)
described in Section 2 are listed in Table
5. The mean value reported for the
Tornqvist index (TPIN) is 1.518,
indicating that the average annual change
in this TFP measure over this period is
1.518 percent per year. This is quite
different from the value of 3.545 percent
per year reported for the cost frontier
function case. The difference of the TFP
growth measures obtained from the
Tornqvist index and the cost frontier
function is expected as the estimated

shadow input shares differ from the

average observed shares mentioned in
Section 4.1.

In looking at which components
contribute most to TFP growth in the cost
frontier function section of Table 5, the
estimated results indicate that the major
contribution is from TC (2.213%),
followed by AEC (1.042%), CEC
(0.243%) and lastly SEC (0.047). The
large contribution from TC conforms with
most past studies of this industry (e.g.
Atkinson and Primont, 2002). The small
contribution of SEC is not surprising,
given that the estimated technology
exhibits modestly increasing returns to

scale (at the sample mean). Furthermore,

the modest contribution of AEC is as



expected, given the differences between
observed and shadow shares.

Table 6 reports weighted annual
average TFP growth decomposition,
where the firm-level results have been
weighted by the output of each firm.
These weighted average results are likely
to give a more accurate picture of the
industry-level changes over time. It is
interesting to note that the weighted
average TFP growth measures are larger
than the unweighted average, in the case
of the Tornqvist and cost function results.
This suggests that the larger firms are
achieving higher productivity growth
relative to the smaller firms. This is
perhaps due to them having greater
resources devoted to research and
development, or maybe due to these larger
firms having higher growth rates and
hence more opportunities to benefit from
technical in  new

embodied change

It is reassuring to note that these TC measures,
formed by averaging firm-level measures, are

similar to those obtained earlier, which were

investments. However, further research is
required confirm these hypotheses.

Tables 5 and 6 also contain year-by-
year averages. These annual measures
indicate the degree of volatility in the TFP
growth measures. For example, in the
final column of Table 6, the estimated
results show that TFP growth varies from
a high of 9.866% in 1986/87 to a low of
negative 1.220% in 1989/90, and from the
following CEC column, the estimates
indicate that most of this TFP volatility is
due to CEC. These measures illustrate the
degree to which exogenous factors, such
as the business cycle and climatic
conditions, can affect efficiency measures.
Given this, it would clearly be prudent for
a regulator to not base TFP growth
measures upon only a handful of years of
data, where the danger that an unusual
could

event significantly affect the

measures obtained.

derived by evaluating the time derivative at the

sample means.



Annual averages of the firm-level
measures are reported in Table 7. There is
a wealth of information in this table. Of
particular note is the degree to which the
TFP performance of some firms varies,
varying from an annual average decrease
of 2.107% for firm 14 to an increase of
11.221% for firm number 2. The
distribution of TFP growth scores is
further illustrated using the frequency
distributions reported in Table 8. The TFP
growth scores obtained from the Tornqvist
index indicate that most of firms had
productivity progress between 0.1 and 4.0
percent, while those obtained from the
cost frontier function had productivity

progress between 2.0 and 6.0 percent over

the period of study from 1986 to 1998.

This variability in performance is one
prickly issue that regulators and regulatory
consultants must deal with when they
design a policy which involves the
measures of TFP growth and efficiency
levels to the regulated firm. In theory, one
should not base upon a firm’s individual
TFP growth performance, because this
will greatly reduce the firm’s incentives to
seek out productivity improvements.
However, in practice, the regulator has to
deal with a situation where some firms are
earning very high super-normal profits
while others are making substantial losses
(and facing bankruptcy). Neither case is

likely to make the local politicians very

happy.



Table 5 : Annual average TFP change measures (unweighted)*

Cost Frontier Model

Year TPIN

CEC TC SEC AEC TFPC
86-87 6.631 6.455 1.652 0.146 2.001 10.255
87-88 1.575 1.962 1.888 0.042 2615 6.507
88-89 4.003 2.748 2.073 0.250 1.477 6.548
89-90 -2.570 -4.401 2.062 -0.165 -0.371 -2.874
90-91 -2.287 -2.052 2.109 -0.062 1.971 1.966
91-92 0.999 0.096 2.208 -0.069 1.222 3.457
92-93 0.109 -0.922 2273 -0.282 1.156 2225
93-94 1.767 0.012 2.361 0.114 0.421 2.907
94-95 0.428 -0.817 2.467 -0.032 1.008 2.626
95-96 2377 0.089 2.514 -0.120 0.362 2.845
96-97 3.488 0.702 2451 0.498 0.516 4.167
97-98 1.696 -0.961 2.500 0.244 0.128 1.912
Mean 1.518 0.243 2213 0.047 1.042 3.545

(* All measures are in percentage terms)

Table 6 : Weighted annual average TFP change measures

Cost Frontier Model

Year TPIN

CEC TC SEC AEC TFPC
86-87 5.867 5.641 2.099 -0.049 2.169 9.861
87-88 1.465 1.378 2.367 0.023 2.567 6.335
88-89 2.108 0.452 2.532 0.055 1.104 4.142
89-90 -1.416 -3.662 2.541 -0.040 -0.059 -1.220
90-91 -1.133 -1.497 2.605 -0.002 2.028 3.133
91-92 1.227 1.431 2.702 0.007 2.886 7.025
92-93 1.557 -1.723 2.752 -0.020 -0.344 0.665
93-94 1.040 -0.027 2.835 0.019 1.538 4365
94-95 0.864 -0.805 2.982 0.029 1.273 3.479
95-96 3.371 0.475 3.090 0.012 0.613 4.189
96-97 2.156 -0.699 3.105 0.121 0.812 3.339
97-98 1.624 -0.852 3.116 0.125 0.373 2762
Mean 1.561 0.009 2.727 0.023 1.246 4,006




Table 7 : Average TFPC decomposition by firm (in percentage)

TPIN TPIN
Firm CEC | TC | SEC | AEC | TFPC | Firm CEC | TC | SEC | AEC | TFPC
TFPC TFPC

I 0.683 | 0328 | 2247 | 0050 | 1227 | 3.196 | 32 0.784 | 0294 | 1082 | 0060 | 0.697 | 2.133
2 11175 | 8650 | 0756 | 0.663 | 1153 | 11221 | 33 2415 | 1959 | 0953 | 0006 | 0537 | 3.456
3 -0.047 | 2192 | 2892 | -0.045 | 0578 | 1232 | 34 | -0392 | -0556 | 1.169 | 0047 | 1041 | 1.701
4 2877 | 1652 | 1319 | 0023 | 0117 | 3064 | 35 0.861 | -1.402 | 3.106 | -0.080 | 0.724 | 2348
5 0285 | 0530 | 1281 | 0243 | 1307 | 2875 | 36 1627 | 0278 | 1.685 | 0106 | 0972 | 3.041
6 1.758 1.533 2.649 -0.089 2.413 6.505 37 0.147 0.710 2.359 0.329 3.167 6.565
7 0.098 -0.333 1.065 0.086 0.624 1.443 38 -0.826 -1.146 1.911 0.005 1.468 2.238
8 0.827 -0.203 1.996 0.029 0.984 2.807 39 -0.532 -2.680 3.683 0.051 1.541 2.595
9 0.337 -0.615 1.882 0.020 0.736 2.024 40 0918 0.588 0.500 0.115 0.374 1.578
10 -0.152 -1.079 0.710 0.058 -0.447 -0.759 41 2.023 -0.719 4.718 -0.007 1.930 5.921
11 1971 | 1238 | 0979 | -0078 | 0253 | 2393 | 42 1727 | -0.806 | 4.174 | 0.106 | 1740 | 5215
12 1934 | 0232 | 3493 | 0018 | 1338 | 4617 | 43 | -3943 | -3.891 | 2891 | -0.833 | 2041 | 0207
13 1615 | 0758 | 1424 | 0028 | 0615 | 2825 | 44 2556 | 1526 | 1142 | 0336 | 1.078 | 4.082
14 20960 | 2.175 | 0.847 | -0.175 | -0.605 | -2.107 | 45 1674 | 0559 | 2234 | 0015 | 1184 | 3991
15 0.569 | -0.578 | 3209 | -0.023 | 2022 | 4630 | 46 2915 | -1245 | 4742 | 0072 | 0479 | 3.904
16 1.854 0.084 3.172 0.015 1.458 4.729 47 -0.580 -1.569 1.568 0.084 0.530 0.614
17 2.529 1.252 1.659 0.056 1.001 3.968 48 1.433 0.580 2.788 -0.012 1.935 5.291
18 1.907 0.325 2.064 0.073 0.550 3.012 49 2.191 1.608 0.297 0.199 | -0.046 2.057
19 2.601 1.033 3.026 0.203 1.690 5.952 50 3.498 0.582 4.079 0.171 1.657 6.489
20 9.341 5.622 3.032 0.288 -0.341 8.600 51 1.679 0.446 1.246 0.010 0.031 1.733
21 L121 | 0212 | 2905 | 0014 | 2123 | 5253 | 52 1521 | -0.787 | 3509 | 0018 | 0871 | 3.610
2 3318 | 1704 | 2491 | 0098 | 0811 | 4909 [ 53 2079 | 0135 | 2626 | -0032 | 0875 | 3.604
23 2017 | 1806 | 0636 | 0373 | 0862 | 3677 | 54 4422 | 3449 | 1881 | 0082 | 1162 | 6574
24 0.593 | 1.026 | -0562 | 0.182 | 0094 | 0740 [ 55 0.785 | -0.067 | -0.152 | 0.103 | -0.904 | -1.019
25 2447 | 0549 | 3.042 | 0254 | 0907 | 4244 | 56 | -1966 | -2953 | 2268 | -0.121 | 1.077 | 0272
26 -0.337 -0.866 1.023 -0.012 0.461 0.606 57 0.102 -0.049 1.641 0.333 1.776 3.701
27 1.475 -1.366 4.921 0.018 2.056 5.630 58 2.115 0.200 4.284 -0.037 2.340 6.787
28 2.848 0.909 2.568 0.045 0.702 4.225 59 0.418 -0.755 3.620 -0.012 2.289 5.141
29 3.222 1.211 3.376 -0.037 1.371 5.920 60 0.582 -0.072 1.488 0.478 1.307 3.202
30 0.906 -0.146 2.443 0.066 1.419 3.782 61 1.539 0.596 2.149 0.102 1.351 4.199
31 2.017 0.001 2.813 0.109 0.875 3.798 | Mean 1.518 0.243 2.213 0.047 1.042 3.545




Table 8 : Distribution of Average Total Factor Productivity Change

TEPC Number of Firms
(%) TPIN Cost Frontier Approach

less than -2.01 1 1
-2.01-0.00 9 2
0.01-2.00 31 10
2.01-4.00 19 25
4.01-6.00 1 16
6.01-8.00 0 5
8.01-10.00 1 1
greater than 10.00 1 1

5. CONCLUSIONS

Measuring TFP growth in
infrastructure  industries  such  as
electricity, gas, airline and

telecommunication has been the subject
matter for extensive research over the past
three decades. This study attempts to draw
attentions of researches in selecting the
choice of alternative methodologies to
estimation of TFP growth. Two TFP
measurement approaches: the Tornqvist
price-based index number and a
parametric technique known as stochastic
frontier analysis (SFA) are presented in
this study. The Tornqvist price-based
index number approach wuses market
prices, while the SFA approach involves

the estimation of a production technology,

and hence the use of shadow prices
derived from the shape of the estimated
frontier. The Tornqvist price-based index
number is easy to compute and can be
used when limited data are available.
However, it cannot provide the sources
that contribute to TFP growth which are of
broad interest for researchers. The SFA
frontier approach requires more data (i.e.
panel data) and allows one to identify
various components of the TFP growth
(such as technical change, -efficiency
change and scale effects). This study
illustrates the use of these two approaches
in an empirical analysis using panel data
on 61 U.S. electric utilities observed over
the time period of 1986-1998. The main

purpose is to examine the sensitivity of the



estimates obtained to the choice of TFP
measurement methodology. Since the two
techniques mentioned in this study are
extensively applied in the literature, this
study demonstrates the choice of

methodologies can lead to the different

regulatory consultants who design a policy
involving the uses of TFP growth and
efficiency levels to the regulated firm
must select the choice of alternative
methodologies to estimation of TFP

growth with care.

results.  Therefore, regulators and
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