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ABSTRACT 

This study presents two 

methodologies to estimation of total factor 

productivity (TFP) growth. One is 

referred to a Törnqvist index number 

technique and the other is a parametric 

technique using a dual approach of a 

stochastic cost frontier function. This 

study provides a discussion of their 

relative merits and illustrates the use of 

these two techniques in an empirical 

analysis using panel data (1986-1998) on 

61 U.S. electricity generation businesses. 

The main purpose is to examine the 

sensitivity of the estimates obtained to the 

choice of TFP measurement methodology. 

The results indicate that the TFP growth 

indices between these two techniques are 

quite different. Therefore, researches who 

are interested in measuring TFP growth 

must choose the choice of alternative 

methodologies to estimation of TFP 

growth with care. 

 

1.  INTRODUCTION 

 Productivity is used to measure the 

performance of firms which convert inputs 

into outputs. Theoretically, it is defined as 

the ratio of the outputs produced to the 

inputs used by a firm in the production 

process. When the production process 

involves only a single output and a single 

input, the productivity can be easily 

calculated to compare the performance of 
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an industry over time or across 

geographical regions. However, most of 

the productions involve more than one 

output and one input in the production 

process. Then, a method for aggregating 

the outputs into a single output index and 

aggregating the inputs into a single input 

index must be used to obtain a ratio 

measure of productivity. The productivity 

measured within the multi-output and 

multi-input production technology is 

referred as total factor productivity (TFP) 

which is productivity measure involving 

all factors of production. 

 In early studies of productivity, index 

number techniques were used to construct 

a TFP index. The TFP index is defined as 

the ratio of an aggregate output quantity 

index to an aggregate input quantity index. 

TFP growth occurs when an index of 

outputs changes at a different rate than an 

index of inputs. The first and foremost of 

productivity measurement was the use of 

the Fisher (1922) and Törnqvist (1936) 

indices. It was subsequently developed 

and based upon the idea of Malmquist 

(1953) and Shephard (1953) who 

independently introduced the notion of a 

distance function. The input and output 

quantity index numbers, and productivity 

indices are all based on the ideas of 

Malmquist and the distance function. 

Although the index number techniques are 

easy to compute but they carry some 

shortcomings. They require quantity and 

price information, as well as assumptions 

concerning the structure of technology and 

the behavior of producers. Moreover, they 

cannot provide the sources that contribute 

to productivity growth which are of broad 

interest for researchers. These problems 

lead to the development of new empirical 

techniques known as nonparametric and 

parametric approaches to measure the TFP 

growth decomposition. These two 

techniques do not require price 

information or technological and 

behavioral assumptions.  

The nonparametric approach applied 

in the literature to measure TFP growth 

decomposition is based upon the previous 

work of Färe et al. (1994). They extended 

the Malmquist TFP index defined in 

Caves et al. (1982) and illustrated how the 

Malmquist TFP index can be computed 

using the nonparametric, linear 

programming techniques of data 

envelopment analysis (DEA) to fit 



 

distance functions. Färe et al. (1994) 

computed the TFP growth as the 

geometric mean of two Malmquist TFP 

index without using price data and 

defining a specific functional form. They 

showed how the resulting TFP index 

could be decomposed into two sources 

which consist of technical change (or 

frontier shifts) and efficiency change (or 

catching up effects). Their approach 

requires a constant returns to scale (CRS) 

restriction on the frontier technology. The 

DEA based Malmquist TFP index to 

measure the TFP growth decomposition is 

extensively applied in the empirical 

literature. However, the issue concerning 

statistical noise in the analysis became one 

of the main criticisms in the DEA. Since 

the DEA is nonstochastic, all departures 

from the frontier technology are attributed 

to inefficiency so that noise is excluded in 

the measure of efficiency change. 

The parametric approach to measure 

TFP growth decomposition has been 

extensively applied using both primal and 

dual representations. The primal approach 

relates the conventional TFP measure to 

the characteristics of the production 

technology based on the aggregate 

production, while the dual approach uses 

the inverse relationship between the 

production and cost functions to establish 

the link between the conventionally 

measured TFP growth to the shift of 

aggregate cost function. These two 

approaches differ only in that the primal 

approach is developed to disentangle the 

contribution of factors other than 

technological progress from shifts in the 

production function, while the dual 

approach relates the observed growth to 

shift of the cost function. 

The primal approach to the 

econometric estimation of productivity 

growth originated with Solow (1957), who 

assumed constant returns to scale and 

technical efficiency, and associated 

productivity growth with technical 

change. The conventionally measured 

productivity growth can be decomposed 

through the explicit specification of the 

production structure originated with 

Griliches (1963, 1964). The primal 

approach allows decomposition of TFP 

growth into a number of components by 

explicitly using the production function 

framework. TFP growth is decomposed 

into components associated with technical 

change and non-constant scale effects.  



 

The dual approach to the 

econometric estimation of productivity 

growth originated with Ohta (1974), who 

derived the relationships between primal 

and dual cost measures of scale economies 

and technical change. Caves, Christensen, 

and Swanson (1980), Denny, Fuss, and 

Waverman (1981), and Nadiri and 

Schankerman (1981) used a flexible cost 

function and applied the duality theory to 

improve and refine the measurement of 

sources of TFP growth. 

Nishimizu and Page (1982) 

originally presented a measurement of 

TFP growth decomposition in the 

presence of inefficiency. The efficiency 

change is presented as a source of TFP 

growth. They used a translog production 

frontier to decompose TFP growth into 

technical change and technical efficiency 

change. Extending the study of Nishimizu 

and Page (1982), Bauer (1990a) derives 

detailed primal and dual decompositions 

of TFP growth in the presence of 

inefficiency.  

The purpose of this study is to apply 

two methods– a Törnqvist index number 

technique and a parametric technique 

using a dual approach of stochastic cost 

frontier function to measure TFP growth– 

as well as providing a discussion of their 

relative merits.  This study illustrates the 

use of these methods in an empirical 

analysis that uses panel data on 61 US 

electricity generation businesses, observed 

over a 13-year period from 1986 to 1998. 

The outline of this paper is as 

follows. In the next section the two 

performance measurement methods to 

measure TFP growth are presented.  This 

is followed in Section 3 with a discussion 

of the data set used in this study and key 

assumptions underlying the construction. 

The next section provides the estimation 

results of the two performance 

measurement methods, and then 

conclusions follow in the final section. 

 

2.   METHODOLOGY 

The methods that are used to 

measure the TFP growth can be roughly 

classified into two groups according to the 

types of prices employed, i.e. market price 

and shadow prices. Market prices are the 

actual prices that people must pay for the 

goods and services while shadow prices 

(internal prices to the firms) are derived 

from the shape of the underlying 

production technology. Three TFP 

measurement approaches that are widely 



 

applied in the literature are: the Törnqvist 

price-based index number, a parametric 

technique known as stochastic frontier 

analysis (SFA) and a nonparametric 

technique known as data envelopment 

analysis (DEA). The Törnqvist 

price-based index number approach uses 

market prices, while the SFA and the 

DEA approaches involve the estimation of 

a production technology, and hence the 

use of shadow prices derived from the 

shape of the estimated frontier.  

The Törnqvist price-based index 

number approach has the advantage that it 

can be used when limited data are 

available (e.g. aggregate industry-level 

data). The SFA and DEA frontier 

approaches require more data (i.e. firm-

level panel data), however they have the 

advantage that they allow one to identify 

various components of the TFP growth 

(such as technical change, efficiency 

change and scale effects), which are often 

of particular interest to regulators. The 

SFA approach has an advantage over the 

DEA approach when analyzing data in a 

stochastic environment. This is because 

DEA typically does not attempt to take 

statistical noise into account (and 

consequently may provide inaccurate 

efficiency measures), while the parametric 

approach does attempt to accommodate 

statistical noise.  

This study applies the SFA approach 

of cost frontier function, in a TFP analysis 

of panel data on 61 U.S. electric utilities 

observed over the time period of 

1986-1998, and compares the results with 

those obtained using the traditional 

Törnqvist price-based index number 

approach. The main objective is to 

examine the sensitivity of the estimates 

obtained to the choice of TFP 

measurement methodology. 

 

2.1 The Törnqvist Price-Based 

Index Number (TPIN) Approach 

Following Caves, Christensen and 

Diewert (1982), a Törnqvist TFP index 

can be constructed as the ratio of a 

Törnqvist output index to a Törnqvist 

input index.  The logarithmic form of the 

Törnqvist TFP growth index between 

periods t and 1+t  is defined as
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where the T  superscript refers to 

Törnqvist;  indexes firms; 

 indexes time periods; 

 indexes input variables;

Ii = ,...,1

Tt ,...,1=

Kk ,...,1=  

Mm ,...,1=  indexes output variables;  

is the log of the k-th input quantity, ; 

 is the log of the m-th output quantity, 

;  is the observed revenue share of 

the m-th output; and  is the observed 

cost share of the k-th input. 

tkix ,

tkiX ,

tmiy ,

tmiY , tmir ,

tkis ,

For the single-output case, which is 

considered in the empirical part of this 

study, equation (1) is rewritten as
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As noted earlier, the Törnqvist TFP 

index approach has the advantage that it 

can be used to measure the TFP growth 

when limited data is available. However, 

it requires information on both quantities 

and prices of outputs and inputs. In 

addition, it cannot provide the sources that 

contribute to productivity growth and 

which are of broad interest for researchers. 

This problem can be addressed by gaining 

access to panel data and using a frontier 

technique such as a stochastic cost frontier  

 

 

(SFA) to decompose the measured TFP 

growth into its components. 

 2.2 The Stochastic Cost Frontier 

Approach 

 2.2.1   Derivations of Total 

Factor Productivity Decomposition 

 TFP growth is defined as the 

residual growth in outputs growth (  ) 

not explained by input growth (

Ŷ

X̂ ). For 

the multiple-output and multiple-input 

case, TFP growth ( PFT ˆ ) can be defined 

as
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where “^” denotes the percentage rate of 

growth over time,  is the observed 

revenue share of m-th output and  is the 

observed cost share of k-th input. 

mr

ks

 Following Kumbhakar and 

Lovell (2000), a stochastic cost frontier 

function incorporating a time trend can be 

written as 

 

( ) { ititkitmititit uvtWYCE }+= exp;,, β ,                 (4) 

 

where   index of firms; Ii ,...,1= Tt ,...,1=  

index of time periods; mY  is the m-th 

output quantity;  is the k-th input price; 

t is a time trend index serving as a proxy 

for a technical change; β s are unknown 

parameters to be estimated; s are the 

two-side random statistical noise  

kW

itv

 

accounting for measurement error or other 

random factors such as weather, luck, 

strike, etc. and the s are non-negative 

random errors associated with the cost 

inefficiency effects. 

itu

The stochastic cost frontier function 

in logarithm form (omitting the firm index 

i and the time index t) is written as

  

( ) uvtWYCE km ++= β;,,lnln .         (5) 

 

The measurement of TFP growth 

associated with the cost frontier function 

is derived by totally differentiating the 

stochastic cost frontier function in 

equation (5) with respect to time. This 

yields 
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Substituting equation (6) into equation (3) yields 
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Defining   as the log of total cost, ;  as the log of k-th input price, ;  as 

the log of output quantity, , equation (7) is rewritten as 

c C kw kW my
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Rearranging equation (8) yields 
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Defining mε  as the first partial 

derivation of the logarithmic form of cost 

frontier function with respect to the m-th 

output and kκ  as the first partial 

derivation of the logarithmic form of cost 

frontier function with respect to the k-th 

input price, equation (9) can be rewritten 

as 
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where ( )( mm yc ∂ )⋅∂=ε  represents the 

production elasticities; ∑=
m

mεε  

represents the inverse of the standard 

returns to scale elasticity; ( )( )kk wc ∂⋅∂=κ  

represents the implicit cost shares for the 

k-th input; and ∑=
k

kκκ  represents the 

sum of implicit cost shares for all inputs. 

Rearranging equation (10) yields
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where ( ) εε−= 1SF  is scale factors at each data point and ( )εεπ mm =  is implicit 

revenue share. 

 

TFP growth in equation (11) 

comprises of four components. The first 

term measures the technical change 

representing a shift in the cost frontier 

function. The second component measures 

the change in scale efficiency, which 

requires the calculation of the production 

elasticities. For the case of constant 

returns to scale, the term ε  will be equal 

to 1, and hence the second component in 

equation (11) will be equal to 0. The third 

term measures the change in allocative 

efficiency, which consists of two 

components. The first component 

measures the change in output mix 

allocative efficiency effects. This 

component will be zero if the market 

(observed) revenue shares, , equal to 

the implicit revenue shares, 

mr

mπ . The 

second component of the change in 

allocative efficiency measures the change 

in input mix allocative efficiency effects. 

This component will be zero if the market 

(observed) cost shares, , equal to the 

implicit cost shares, 

ks

kκ . Finally, the last 

term in equation (11) measures the cost 

efficiency change. 

 Equation (11) for the single-output 

case can be rewritten as 
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2.2.2   Estimation Approach  

 In order to measure the 

components of TFP growth discussed in 

Section 2.2.1, a flexible functional form of 

the cost frontier function must be 

specified. This study adopts a translog 

functional form. A log-quadratic translog 

functional form of stochastic cost frontier 

function for the single-output and three-

input case can be defined as follows.
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where the β s are unknown parameters to 

be estimated, and all other notation is as 

previously defined.  This study follows the 

standard practice of assuming a normal 

distribution for v and a half-normal 

distribution for u.  That is, we set 

 and .  Given 

these distributional assumptions, the 

parameters of this model can then be 

estimated using the method of maximum 

likelihood.  Following the suggestion of 

Battese and Corra (1977), and replace the 

two variance parameters with the two new 

parameters  and 

.  By doing this the parameter 

space of γ  is searched between 0 and 1, to 

provide good starting values for the 

iterative maximization routine which is 

used to calculate the maximum likelihood 

parameter estimates. 
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 Young’s theorem requires that the 

symmetry restriction is imposed so that 
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homogeneity of degree +1 in input prices. 
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The restrictions of homogeneity 

constraints upon equation (13) can be 

imposed by estimating a model where all 

input prices are normalized by one of the 

input prices. By normalizing the K-th 

input price, the translog stochastic cost 

frontier function in equation (13) is 

rewritten as 
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Once the equation (14) is estimated 

using the maximum likelihood estimation, 

the parameter estimates and the point 

estimates of the cost efficiencies are used 

to calculate the components of PFT ˆ  in 

equation (12). 
Following Orea (2002), a measure of  

TFP growth, for each firm between any 

two time periods, can be calculated by 

using the estimates of the coefficients of 

the cost frontier in equation (14) and the 

firm-level sample data. The logarithmic 

form of the TFP growth between period t  

and 1+t  for the i-th firm is defined as1
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1This formula is quite similar to that provided in Bauer (1990), which was alternatively derived using a 

differential approach expressed in Section 2.2.1.  The main differences between the two sets of TFP 

decomposition formula is that the TFP growth components in equation (12) are evaluated at the t and t+1 

data points, while the Bauer (1990) formula is only evaluated at the t data point.  This difference will have 

minimal effect on the empirical measures obtained in most instances. 



 

where the three terms on the right-hand-

side of equation (15) represents the cost 

efficiency change ( )1, +titCEC , technical 

change ( )1, +titTC , scale efficiency change 

( )1, +titSEC , and input allocative efficiency 

change ( )1, +titAEC , respectively.  The cost 

efficiency measure, ( , in equation 

(15) is the cost efficiency prediction of the 

i-th firm in the t-th time period, and is 

calculated from the cost frontier in 

equation (14). The technical change 

measure, 

)itCE

( )1, +titTC , is the mean of the 

technical change measures evaluated at 

the period t  and period data points. 

The scale efficiency change measure, 

1+t

( )1, +titSEC , relates to the change in scale 

efficiency, which requires calculation of 

the output elasticity in period t , yc ti ∂∂ , , 

and period ,1+t yc ti ∂∂ +1, . The input 

allocative efficiency change ( )1, +titAEC  

component is equal to the difference 

between the ( )1, +titTFPC  measure obtained 

from the cost frontier in equation (15) and 

the Törnqvist TFPC index in equation (2).  

  

 

 

3.  DATA  DISCUSSIONS 

This study uses data on fossil-fuel 

fired steam electric power generation for 

major investor-owned utilities in the 

United States. The primary sources of data 

are obtained from the Energy Information 

Administration, the Federal Energy 

Regulatory Commission and the Bureau of 

Labor Statistics. Panel data on 61 electric 

utilities over the time period of 1986-1998 

are used in the empirical analysis. 

The data set used to measure and 

decompose TFP growth contains the 

measurements of firm outputs and input 

quantities. The variable inputs are fuel 

(F), labor and maintenance (L), and 

capital (K). The definitions of these 

variables are summarized as follows.  

a.  Output Variable 

 Output variable, , is represented 

by net steam electric power generation in 

megawatt-hours which is defined as the 

amount of power produced using 

fossil-fuel fired boilers to produce steam 

for turbine generators during a given 

period of time. 

itY



 

 b. Price and Quantity of Fuels Input 

Variables 

The price of fuel aggregate, , is a 

Törnqvist price index of fuels (i.e. coal, 

oil, gas) which is calculated by a weighted 

geometric average of the price relatives 

with weights given by the simple average 

of the value shares in period t and . 
itW1

1+t
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QP
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consumption of the same fuel. The 

Törnqvist price index of fuels is converted 

to a multilateral Törnqvist price index for 

fuels using the formula discussed in 

Coelli, Rao, and Battese (1998). 

The quantities of fuel, itX1  , equal 

the steam power production fuel costs 

divided by the multilateral Törnqvist price 

index for fuels. 

 c.  Price and Quantity of Aggregate 

Labor and Maintenance Input Variables 

The price of labor and maintenance 

aggregate, , is a cost share-weighted 

multilateral Törnqvist price index for 

labor and maintenance. The price of labor 

is a firm-level average wage rate. The 

price of maintenance and other supplies is 

an industry-level price index of electrical 

supplies.  

itW2

The quantities of labor and 

maintenance, , are measured as the 

aggregate costs of labor and maintenance 

divided by the multilateral Törnqvist price 

index for labor and maintenance. Data on 

labor and maintenance costs are calculated 

by subtracting fuel expenses from total 

steam power production expenses. 

itX 2

d.  Price and Quantity of Capital 

Input Variables 

 The price of capital, itW3 , is the yield 

of the firm’s latest issue of long term debt 

adjusted for appreciation and depreciation 

of the capital good using the Christensen 

and Jorgenson (1970) cost of capital 

formula.



 ( )[ ititditeititditkitit fdirsipW ]−+−+=3          (17) 

 

where pkit is a price index for electrical 

generating plant and equipment; idit is the 

adjusted corporate bond rate by firm based 

upon its bond ratings by Moody’s Investor 

Service; sit is the equity share of total 

capital defined as total proprietary capital 

(TPC) divided by the sum of total 

proprietary capital and total long-term 

debt (TOTB); reit is the equity rate of 

return defined as the ratio of net income to 

total proprietary capital; dit is a 

depreciation rate assuming 30 years 

straight line depreciation; and fit the 

inflation rate. 

The values of capital stocks are 

calculated by the valuation of base and 

peak load capacity at replacement cost to 

estimate capital stocks in a base year and 

then updating it in the subsequent years 

based upon the value of additions and 

retirements to steam power plant as 

discussed in Considine (2000). The base 

year capacity is calculated by multiplying 

the price of new generation capacity in 

dollars per megawatt and the base year 

nameplate capacity in megawatts. 

 

itcitit CPX =3 ,             (18) 1986=t

 

where  is the price of new generation capacity in dollars per megawatt, and  is the 

nameplate capacity in megawatts. For the subsequent years, the values of capital stocks 

are calculated by 

citP itC
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where υ  denotes the depreciation rate 

assuming 30 years straight line 

depreciation; X3it is equal to the nominal 

stock divided by the price index for 

electrical generating plant and equipment, 

pkit ; Ait and Rit denote additions and 

retirements to steam power plant. 

The final data set is a balanced panel 

of 61 electric utilities for the years 1986 to 

1998 with a total of 793 observations. The 

availability of panel data generally implies 

that there are degrees of freedoms in the 

estimation of parameters and such a data 

set permits the simultaneous investigation 

of both the technical change and the 

technical efficiency change over time. 

Table 2 represents a summary of the data 

used in this study. All price indices used 

in this study are obtained and calculated 

relative to the base period 1993. The mean 

steam electric power generation across 

electric utilities is 13.71 million megawatt 

hours with a standard deviation of 12.56 

million megawatt hours. The mean of fuel 

quantity is 300.57 million dollars with a 

standard deviation of 351.84, and of labor 

and maintenance is 61.78 million dollars 

with a standard deviation of 53.37. The 

mean capital value is 955.22 million 

dollars with a standard deviation of 

877.40. The average expenses of 

aggregate fuels, aggregate labor and 

maintenance, and capital are calculated to 

be 254.77, 66.71, and 113.90 million 

dollars, respectively. The mean cost shares 

of fuel, labor and maintenance, and capital 

account for 58.6, 17.9, and 23.5 percent, 

respectively. 

 

Table 1  :  Data summary for 61 electric utilities over the periods of 1986-98

Variable Units Mean S. D. Minimum Maximum 

Output 

Fuel 

Labor and  Maintenance  

Capital  

Price Index of Fuel    

Price Index of Labor and Maintenance 

User Costs of Capital  

(× 106 MWhr) 

(× 106 dollars) 

(× 106 dollars) 

(× 106 dollars) 

 

 

13.709  

300.568  

    61.776 

955.225 

0.861 

1.079 

0.102 

12.561 

351.842 

53.366 

877.403 

0.208 

0.255   

0.019 

0.499   

12.823 

1.810   

9.070 

0.306 

  0.443 

        0.009 

79.723 

2,522.324 

444.453 

3,878.295 

       1.338 

1.928 

0.203 

 

 



4.  EMPIRICAL RESULTS 

4.1 Discussion of parameter 

estimates 

 The data described in Section 3 were 

used in the calculation of Törnqvist TFP 

indices and also in the estimation of the 

stochastic cost frontier function described 

in Section 2. The data variables used in 

the model estimation were each 

transformed by division by their 

respective geometric means.  This 

transformation does not alter the 

performance measures obtained, but does 

allow one to interpret the estimated first-

order parameters as elasticities, evaluated 

at the sample means. A number of 

hypothesis tests regarding the structure of 

the production technology such as the 

functional form (i.e. Cobb-Douglas versus 

Translog; 

2,1,,0 ======= lkytktttkyyykl ββββββ
 the presence of technical change 

( )2,1,0 ===== kytttttt ββββ  and the 

presence of technical inefficiency ( )0=γ  

were conducted using likelihood ratio 

tests. The results of these likelihood ratio 

(LR) tests are presented in Table 2. All 

null hypotheses were rejected. The LR test 

results indicate the translog functional 

form is a preferable one and there exist 

technical change and technical 

inefficiency in the model. 

  The maximum likelihood parameter 

estimates for the stochastic cost frontier 

function obtained using the computer 

program FRONTIER 4.1 (Coelli, 1996a) 

are listed in Table 3.  The estimated 

results indicate that the input elasticities 

are 0.449, 0.361 and 0.190 for F, L and K, 

respectively. These elasticities can also be 

interpreted as shadow input shares. These 

shadow input shares differ from the 

average observed shares in this data set 

which are 0.586, 0.179 and 0.235 for F, L 

and K, respectively. As a result, the TFP 

growth estimates obtained using the 

Törnqvist index (which uses observed 

shares) likely differ from the cost frontier 

TFP measures. 

The estimated parameters in Table 3 

also provide information on scale 

economies and technical change.  Using 

the first order coefficient of the output 

variable, the elasticities of scale relative to 

the cost functions can be calculated as  

( ) 1−∂∂= ycRTS , where a value of RTS 

greater than one imply increasing returns 

to scale, while values less than one imply 

decreasing returns to scale, and values 

equal to one indicate constant returns to 



 

scale.  The estimated parameters in Table 

3 suggest that the average estimate of RTS 

is 1.035. This means that electric utilities 

in the sample data were operating at 

modestly increasing returns to scale in the 

production of electricity. The first order 

coefficient of the time trend variable in 

Table 3 provides an estimate of the 

average annual rate in technical change. 

The estimate suggests that the technology 

is improving at a modest rate of 2.2 

percent per annum. 

 

Table 2  : Tests of hypothesis for parameters  

Null hypothesis 

ln[L(H1)] 

(unrestricted 

model) 

ln[L(H0)] 

(restricted 

model) 

Test-

statistic 

Critical 

Value 
Decision 

(1) H0: Cobb-Douglas is preferred  

Cost frontier model 200.65 173.22 54.86 18.31 Reject H0

(2) H0: no technical change  

Cost frontier model 200.65 136.32 128.66 11.07 Reject H0

(3) H0: no technical inefficiency  

Cost frontier model 200.65 96.70 207.90 3.84 Reject H0

 

Table 3  :  Parameter estimates for the cost frontier function 

Parameters Estimates S.D. t-ratio 

 

β0 

β1 

β2 

β3 

β11 

β12 

β13 

β22 

β23 

β33 

βy 

βyy 

 

-0.270 

0.449 

0.361 

0.190 

0.267 

-0.360 

0.093 

0.525 

-0.164 

0.071 

0.966 

0.028 

 

0.012 

0.022 

0.030 

 

0.128 

0.110 

 

0.169 

 

 

0.006 

0.012 

 

-22.055 

19.998 

11.983 

 

2.095 

-3.287 

 

3.111 

 

 

155.078 

2.400 



 

β1y 

β2y 

β3y 

Βt 

Βtt 

β1t 

β2t 

β3t 

βyt 

σ2 

γ 

-0.059 

-0.011 

0.069 

-0.022 

0.002 

0.038 

-0.048 

0.010 

-0.005 

0.113 

0.974 

0.025 

0.031 

 

0.002 

0.001 

0.008 

0.011 

 

0.002 

0.007 

0.008 

-2.337 

-0.343 

 

-10.455 

1.458 

4.756 

-4.453 

 

-2.297 

16.177 

122.552 

Log likelihood function                                                                               200.651 

LR test of the one-sided error                                                                     207.896 

 

 

4.2 Discussion of performance 

measures 

 Some summary measures of the TFP 

growth measures (and components) 

described in Section 2 are listed in Table 

5. The mean value reported for the 

Törnqvist index (TPIN) is 1.518, 

indicating that the average annual change 

in this TFP measure over this period is 

1.518 percent per year.  This is quite 

different from the value of 3.545 percent 

per year reported for the cost frontier 

function case. The difference of the TFP 

growth measures obtained from the 

Törnqvist index and the cost frontier 

function is expected as the estimated 

shadow input shares differ from the 

average observed shares mentioned in 

Section 4.1. 

In looking at which components 

contribute most to TFP growth in the cost 

frontier function section of Table 5, the 

estimated results indicate that the major 

contribution is from TC (2.213%),4 

followed by AEC (1.042%), CEC 

(0.243%) and lastly SEC (0.047).  The 

large contribution from TC conforms with 

most past studies of this industry (e.g. 

Atkinson and Primont, 2002).  The small 

contribution of SEC is not surprising, 

given that the estimated technology 

exhibits modestly increasing returns to 

scale (at the sample mean). Furthermore, 

the modest contribution of AEC is as 



 

expected, given the differences between 

observed and shadow shares.  

Table 6 reports weighted annual 

average TFP growth decomposition, 

where the firm-level results have been 

weighted by the output of each firm.  

These weighted average results are likely 

to give a more accurate picture of the 

industry-level changes over time.  It is 

interesting to note that the weighted 

average TFP growth measures are larger 

than the unweighted average, in the case 

of the Törnqvist and cost function results.  

This suggests that the larger firms are 

achieving higher productivity growth 

relative to the smaller firms.  This is 

perhaps due to them having greater 

resources devoted to research and 

development, or maybe due to these larger 

firms having higher growth rates and 

hence more opportunities to benefit from 

embodied technical change in new 

investments.  However, further research is 

required confirm these hypotheses. 

 Tables 5 and 6 also contain year-by-

year averages.  These annual measures 

indicate the degree of volatility in the TFP 

growth measures.  For example, in the 

final column of Table 6, the estimated 

results show that TFP growth varies from 

a high of 9.866% in 1986/87 to a low of 

negative 1.220% in 1989/90, and from the 

following CEC column, the estimates 

indicate that most of this TFP volatility is 

due to CEC.  These measures illustrate the 

degree to which exogenous factors, such 

as the business cycle and climatic 

conditions, can affect efficiency measures.  

Given this, it would clearly be prudent for 

a regulator to not base TFP growth 

measures upon only a handful of years of 

data, where the danger that an unusual 

event could significantly affect the 

measures obtained. 

  

 

 

 
 

It is reassuring to note that these TC measures, 

formed by averaging firm-level measures, are 

similar to those obtained earlier, which were 

derived by evaluating the time derivative at the 

sample means. 

 



 

Annual averages of the firm-level 

measures are reported in Table 7.  There is 

a wealth of information in this table.  Of 

particular note is the degree to which the 

TFP performance of some firms varies, 

varying from an annual average decrease 

of 2.107% for firm 14 to an increase of 

11.221% for firm number 2.  The 

distribution of TFP growth scores is 

further illustrated using the frequency 

distributions reported in Table 8. The TFP 

growth scores obtained from the Törnqvist 

index indicate that most of firms had 

productivity progress between 0.1 and 4.0 

percent, while those obtained from the 

cost frontier function had productivity 

progress between 2.0 and 6.0 percent over 

the period of study from 1986 to 1998. 

This variability in performance is one 

prickly issue that regulators and regulatory 

consultants must deal with when they 

design a policy which involves the 

measures of TFP growth and efficiency 

levels to the regulated firm. In theory, one 

should not base upon a firm’s individual 

TFP growth performance, because this 

will greatly reduce the firm’s incentives to 

seek out productivity improvements.  

However, in practice, the regulator has to 

deal with a situation where some firms are 

earning very high super-normal profits 

while others are making substantial losses 

(and facing bankruptcy).  Neither case is 

likely to make the local politicians very 

happy.

 



 

Table 5  :  Annual average TFP change measures (unweighted)* 

Cost Frontier Model 
Year TPIN 

CEC TC SEC AEC TFPC 

 

86-87 

87-88 

88-89 

89-90 

90-91 

91-92 

92-93 

93-94 

94-95 

95-96 

96-97 

97-98 

 

6.631 

1.575 

4.003 

-2.570 

-2.287 

0.999 

0.109 

1.767 

0.428 

2.377 

3.488 

1.696 

 

6.455 

1.962 

2.748 

-4.401 

-2.052 

0.096 

-0.922 

0.012 

-0.817 

0.089 

0.702 

-0.961 

 

1.652 

1.888 

2.073 

2.062 

2.109 

2.208 

2.273 

2.361 

2.467 

2.514 

2.451 

2.500 

 

0.146 

0.042 

0.250 

-0.165 

-0.062 

-0.069 

-0.282 

0.114 

-0.032 

-0.120 

0.498 

0.244 

 

2.001 

2.615 

1.477 

-0.371 

1.971 

1.222 

1.156 

0.421 

1.008 

0.362 

0.516 

0.128 

 

10.255 

6.507 

6.548 

-2.874 

1.966 

3.457 

2.225 

2.907 

2.626 

2.845 

4.167 

1.912 

Mean 1.518 0.243 2.213 0.047 1.042 3.545 

         (* All measures are in percentage terms) 

 

Table 6  : Weighted annual average TFP change measures 

Cost Frontier Model 
Year TPIN 

CEC TC SEC AEC TFPC 

 

86-87 

87-88 

88-89 

89-90 

90-91 

91-92 

92-93 

93-94 

94-95 

95-96 

96-97 

97-98 

 

5.867 

1.465 

2.108 

-1.416 

-1.133 

1.227 

1.557 

1.040 

0.864 

3.371 

2.156 

1.624 

 

5.641 

1.378 

0.452 

-3.662 

-1.497 

1.431 

-1.723 

-0.027 

-0.805 

0.475 

-0.699 

-0.852 

 

2.099 

2.367 

2.532 

2.541 

2.605 

2.702 

2.752 

2.835 

2.982 

3.090 

3.105 

3.116 

 

-0.049 

0.023 

0.055 

-0.040 

-0.002 

0.007 

-0.020 

0.019 

0.029 

0.012 

0.121 

0.125 

 

2.169 

2.567 

1.104 

-0.059 

2.028 

2.886 

-0.344 

1.538 

1.273 

0.613 

0.812 

0.373 

 

9.861 

6.335 

4.142 

-1.220 

3.133 

7.025 

0.665 

4.365 

3.479 

4.189 

3.339 

2.762 

Mean 1.561 0.009 2.727 0.023 1.246 4.006 

 



 

Table 7  : Average TFPC decomposition by firm (in percentage) 

Firm 
TPIN 

TFPC 
CEC TC SEC AEC TFPC Firm 

TPIN 

TFPC 
CEC TC SEC AEC TFPC 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

 

0.683 

11.175 

-0.047 

2.877 

0.285 

1.758 

0.098 

0.827 

0.337 

-0.152 

1.971 

1.934 

1.615 

-0.960 

0.569 

1.854 

2.529 

1.907 

2.601 

9.341 

1.121 

3.318 

2.017 

0.593 

2.447 

-0.337 

1.475 

2.848 

3.222 

0.906 

2.017 

 

-0.328 

8.650 

-2.192 

1.652 

0.530 

1.533 

-0.333 

-0.203 

-0.615 

-1.079 

1.238 

-0.232 

0.758 

-2.175 

-0.578 

0.084 

1.252 

0.325 

1.033 

5.622 

0.212 

1.704 

1.806 

1.026 

0.549 

-0.866 

-1.366 

0.909 

1.211 

-0.146 

0.001 

 

2.247 

0.756 

2.892 

1.319 

1.281 

2.649 

1.065 

1.996 

1.882 

0.710 

0.979 

3.493 

1.424 

0.847 

3.209 

3.172 

1.659 

2.064 

3.026 

3.032 

2.905 

2.491 

0.636 

-0.562 

3.042 

1.023 

4.921 

2.568 

3.376 

2.443 

2.813 

 

0.050 

0.663 

-0.045 

-0.023 

-0.243 

-0.089 

0.086 

0.029 

0.020 

0.058 

-0.078 

0.018 

0.028 

-0.175 

-0.023 

0.015 

0.056 

0.073 

0.203 

0.288 

0.014 

-0.098 

0.373 

0.182 

-0.254 

-0.012 

0.018 

0.045 

-0.037 

0.066 

0.109 

 

1.227 

1.153 

0.578 

0.117 

1.307 

2.413 

0.624 

0.984 

0.736 

-0.447 

0.253 

1.338 

0.615 

-0.605 

2.022 

1.458 

1.001 

0.550 

1.690 

-0.341 

2.123 

0.811 

0.862 

0.094 

0.907 

0.461 

2.056 

0.702 

1.371 

1.419 

0.875 

 

3.196 

11.221 

1.232 

3.064 

2.875 

6.505 

1.443 

2.807 

2.024 

-0.759 

2.393 

4.617 

2.825 

-2.107 

4.630 

4.729 

3.968 

3.012 

5.952 

8.600 

5.253 

4.909 

3.677 

0.740 

4.244 

0.606 

5.630 

4.225 

5.920 

3.782 

3.798 

 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

Mean 

0.784 

2.415 

-0.392 

0.861 

1.627 

0.147 

-0.826 

-0.532 

0.918 

2.023 

1.727 

-3.943 

2.556 

1.674 

2.915 

-0.580 

1.433 

2.191 

3.498 

1.679 

1.521 

2.079 

4.422 

0.785 

-1.966 

0.102 

2.115 

0.418 

0.582 

1.539 

1.518 

 

0.294 

1.959 

-0.556 

-1.402 

0.278 

0.710 

-1.146 

-2.680 

0.588 

-0.719 

-0.806 

-3.891 

1.526 

0.559 

-1.245 

-1.569 

0.580 

1.608 

0.582 

0.446 

-0.787 

0.135 

3.449 

-0.067 

-2.953 

-0.049 

0.200 

-0.755 

-0.072 

0.596 

0.243 

1.082 

0.953 

1.169 

3.106 

1.685 

2.359 

1.911 

3.683 

0.500 

4.718 

4.174 

2.891 

1.142 

2.234 

4.742 

1.568 

2.788 

0.297 

4.079 

1.246 

3.509 

2.626 

1.881 

-0.152 

2.268 

1.641 

4.284 

3.620 

1.488 

2.149 

2.213 

 

0.060 

0.006 

0.047 

-0.080 

0.106 

0.329 

0.005 

0.051 

0.115 

-0.007 

0.106 

-0.833 

0.336 

0.015 

-0.072 

0.084 

-0.012 

0.199 

0.171 

0.010 

0.018 

-0.032 

0.082 

0.103 

-0.121 

0.333 

-0.037 

-0.012 

0.478 

0.102 

0.047 

 

0.697 

0.537 

1.041 

0.724 

0.972 

3.167 

1.468 

1.541 

0.374 

1.930 

1.740 

2.041 

1.078 

1.184 

0.479 

0.530 

1.935 

-0.046 

1.657 

0.031 

0.871 

0.875 

1.162 

-0.904 

1.077 

1.776 

2.340 

2.289 

1.307 

1.351 

1.042 

2.133 

3.456 

1.701 

2.348 

3.041 

6.565 

2.238 

2.595 

1.578 

5.921 

5.215 

0.207 

4.082 

3.991 

3.904 

0.614 

5.291 

2.057 

6.489 

1.733 

3.610 

3.604 

6.574 

-1.019 

0.272 

3.701 

6.787 

5.141 

3.202 

4.199 

3.545 

 



 

Table 8  : Distribution of Average Total Factor Productivity Change 

Number of Firms 
TFPC 

(%) TPIN 
Cost Frontier Approach 

 

less than -2.01 

-2.01-0.00 

0.01-2.00 

2.01-4.00 

4.01-6.00 

6.01-8.00 

8.01-10.00 

greater than 10.00 

1 

9 

31 

19 

1 

0 

1 

1 

1 

2 

10 

25 

16 

5 

1 

1 

 

 

5.  CONCLUSIONS 

 Measuring TFP growth in 

infrastructure industries such as 

electricity, gas, airline and 

telecommunication has been the subject 

matter for extensive research over the past 

three decades. This study attempts to draw 

attentions of researches in selecting the 

choice of alternative methodologies to 

estimation of TFP growth. Two TFP 

measurement approaches: the Törnqvist 

price-based index number and a 

parametric technique known as stochastic 

frontier analysis (SFA) are presented in 

this study. The Törnqvist price-based 

index number approach uses market 

prices, while the SFA approach involves 

the estimation of a production technology, 

and hence the use of shadow prices 

derived from the shape of the estimated 

frontier. The Törnqvist price-based index 

number is easy to compute and can be 

used when limited data are available. 

However, it cannot provide the sources 

that contribute to TFP growth which are of 

broad interest for researchers. The SFA 

frontier approach requires more data (i.e. 

panel data) and allows one to identify 

various components of the TFP growth 

(such as technical change, efficiency 

change and scale effects). This study 

illustrates the use of these two approaches 

in an empirical analysis using panel data 

on 61 U.S. electric utilities observed over 

the time period of 1986-1998. The main 

purpose is to examine the sensitivity of the 



 

estimates obtained to the choice of TFP 

measurement methodology. Since the two 

techniques mentioned in this study are 

extensively applied in the literature, this 

study demonstrates the choice of 

methodologies can lead to the different 

results. Therefore, regulators and 

regulatory consultants who design a policy 

involving the uses of TFP growth and 

efficiency levels to the regulated firm 

must select the choice of alternative 

methodologies to estimation of TFP 

growth with care. 
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