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Abstract

The paper examines econometric relationship between residential electricity consumption and
relevant variables such as income, price of electricity and natural gas, customer characteristics as
well as climatic variables. The model under this study follows with a model proposed by Chern et a/
(1988). A partial adjustment model is specified and estimated using time-series for the United States
over the period 1960-1996.

The results indicate that the estimated short-run own-price elasticity for residential electricity
demand is —0.213, while the long-run own-price elasticity is —0.975. The short-run and long-run
income elasticities are 0.299 and 1.37, respectively. The results also show that there were significant
structural changes in residential electricity demand during 1973-74. These changes can be best
explained by the impact of the 1973 oil embargo. However, there was no such structural change in
1983 which it was another reversal of increasing price trend.

1. Introduction

Estimation and forecast of electricity demand have received considerable attention among
economists and energy analysts in recent years. Since price and income elasticities of residential
electricity demand re essential for projecting future electricity demand growth, the results from this
study will help us understand how electricity demand can be managed by effectively various energy
pricing and conservation policies. In addition, there are several reasons supporting the importance of
estimation the demand for electricity. First, a controversial issue about economic and environmental
impact from establishing electricity plant can be alleviated from detailed study done by
econometricians. Secondly, it is time-consuming to construct new electricity plants. Therefore, well-
before-hand estimation and forecast are needed to meet future needs for electricity. Finally, more
recent interests are focused on deregulation of electricity markets utilities facing such volatile and
dynamic markets need badly as dependable as possible understanding of electricity market.

The demand for residential electricity can be derived from the demand for services, such as
heating, cooling and cooking, which are produced by using electric appliances. Therefore, the use of
electric appliances and the stock of appliances are major determinants of the demand for residential
electricity. In the short run, the intensity with which consumers use electric appliances depends on
their income, the price of electricity, housing unit structure, demographic characteristics, seasonal
variation and weather,
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2. Model Specification

There are various methods in forming the model of electricity demand. One method is to
incorporate equipment stock directly into the model. It may be appropriate to include equipment
stock directly into the measure of short-run electricity demand and distinguish between the utilization
and equipment stock components in the long run, however, the problem is the availability of
sufficient data. Previous studies showed that the “capital stock equations leave much to be desired”
[see Branch (1993), Silk and Frederick (1997), and Smith (1980)].

Another way to model residential electricity demand is to include equipment stock indirectly.
Thus we need not to bother from severe stock data problem. Suppose the actual electricity
consumption in period ¢ denoted by ¥, while the long-run desired consumption is Y,'. The relevant
variables affecting to electricity consumption are own-price electricity, cross-prices, income, weather
conditions etc, denoted by X | , X, .......... ,X,,. Hence, the long-run desired consumption Y," is
given by a logarithmic form as:

InY =8 +B8InX,+BInX, +.cc...... +B. InX, +¢ (1)

where ¢ is the disturbance term and assumed to be independently and identically normally
distributed with zero mean and variance o”. The relationship between actual and desired electricity
consumption is given by

InY, —InY,_, =6(InY —InY_ )+u, (2)

where u; is a random disturbance term. &, such that 0 < § < 1, is known as the coefficient of
adjustment and where ¥, - Y, , is actual change and (InY, —InY,_,) is desired change. Equation
(2) postulates that the actual change in electricity consumption in any given time period ¢ is some
fraction & of the desired change for that period. If § = 1, it means that actual stock adjusts to the
desired stock instantaneously. If § = 0, it means that there is no adjustment.

Equation (2) can be written as:

ln)jzélnY,'+(]~—§)lnY,_l+u, (3)
Substitution of equation (1) into equation (3) gives
InY,=0f, +(1-6)InY,_, +6f,In X, +6f,In X, +...+60, In X, +v, (4)

where v, = €, +u, representing composite disturbance term. If ¢, and v, are independently and
identically normally distributed, v; is also independently and identically normally distributed.
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Since equation (1) represents the long-run demand for electricity, equation (4) can be called the
short-run demand for electricity. Once we estimate the short-run function in equation (5) and obtain
the estimate of the adjustment coefficient 5. The long-run function can be determined by simply
dividing 684, &4,..., 58« by §and omitting the lagged Yterm, which will then give equation (1).

The model used in this study follows with a model proposed by Chern et al (1988). It is a partial
adjustment model which residential demand for electricity is expressed as a function of the lagged
demand and other demand determinants. A dynamic model is specified and estimated by using
pooled time series data in the U.S. over the period 1960-1996.

InE =4 +BInE,_ +B InPE, +p In PCI, + 8, InCR,

+ % In POPCR, + f, In HDD, + 3 In CDD, + A, In PG, +v, (5)
where ¢= year (¢= 1960-1996); £ = residential electricity consumption; £ = real electricity price in
the residential sector; PCT = real per capita personal income; CR = number of residential electricity
customers; POPCR = household size measured by dividing population by the number of residential
customers; HDD = heating degree days; CDD = cooling degree days; PG = real natural gas price in
the residential sector; v; = disturbance term.

2.1. Interpretation of coefficients

- Bo = the estimated coefficient of constant term; 4, = the estimated coefficients of the
lagged dependent variables. (1-8;,) = the coefficient of adjustment which measures how fast the
response to exogenous changes takes place. The larger the coefficient estimate, g, the slower the
adjustment. In a partial adjustment model for energy demand, dynamic behavior is explained by
changes in durable stock. For a more durable appliance, it takes longer to wear out the existing
stock. Therefore, the speed of adjustment is lower; 4, = the estimated short run own price elasticity
and f(1-4;) = the estimated long run own price elasticity; f; = the estimated short run income
elasticity; f; = the estimated short run customer elasticity. The customer elasticities measure the
effects on demand due to the addition of new customer; gs = the estimated short run household size
elasticity; f: , f, = the estimated short run climatic elasticity, heating degree days and cooling
degree days, respectively; s = the estimated short run cross-price elasticity.

3. Data Sources

The units of variables and data sources are used in this study shown in 7able 1. The prices of
electricity and natural gas are measured in nominal term without taking account into inflation rate.
Thus, the real prices of electricity and natural gas are calculated by dividing the nominal prices by the
consumer price index (1992=100). The data of residential electricity consumption are obtained from
the categories of annual electricity sales in U.S. residential sector. The daca for per capita disposable
income are measured in 1992 constant dollar.



94 1IEINATHIAANT wnrinenamdeslny U7 6 avui 2 wa. -an. 45

Tablel : The units of variables and data sources used in the study

Variables Units ~ Sources

Residential electricity prices dollar per MBtu EIA' WebPages
Residential natural gas prices dollar per MBtu EIA WebPages
Residential electricity consumption million per kWh EIA WebPages

Per capita personal income dollar per capita Economic Report of President, 1998
Population total Statistical Abstract of the United States
Consumer price index index Economic Report of President, 1998
Number of residential electricity total EEI” Statistical Yearbook
customers

Heating degree days aays EIA WebPages

Cooling degree days days EIA WebPages

! Energy Information Administration (www.eia.doe.gov)
? Edison Electricity Institute (www.eei.org)

4. Empirical studies and Results
4.1 The Unit Root Test of Stationarity and Test for Cointegration
The model of residential electricity demand defined in equation (5) has used time series

data in the U.S. over the period 1960-1996. Regression analysis based on time series data implicitly
assumes the underlying time series are stationary. Therefore, the classical ¢ tests, F tests, etc. are
based on this assumption. In practice, most economic time series are nonstationary. If we have
regressed one nonstationary time series on another nonstationary time series, in such a case the
standard ¢ and F testing procedures are not valid. In this sense, the estimated regression suffers
from spurious regression. One way to guard against it is to find out whether the time series are
integrated or not. Cointegration means that despite being individually nonstationary, a linear
combination of two or more time series can be stationary where there is a long-run, or equilibrium,
relationship between them. As this result, the classical tests, Ftests, etc are still valid.

The paper begins with the unit root test for stationary known as “Dickey-Fuller” (DF) test
that can be formed as

AY, = B+ Bt +6Y,_, +u, (6)

where tis the time or trend variable; AY, = (Y, —Y,_, )or the first differences of a variable ¥; v, is
the stochastic error term. The null hypothesis is that & = 0, that is, there is a unit root.
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If the error term «, is autocorrelated, one uses the Augmented Dickey-Fuller (ADF) test as

follows:

AY, =B+ Bt +SY_, +a, ). AY  +u,

m

i=]

95

where AY  =(Y_, - ¥..), AY,_, =¥ .= Y._,), etc, that is, one uses lagged difference terms.

1=

Table A shows the results from the unit root test for stationary or Dickey-Fuller (DF) test

Variable Computed Critical value Conclusion
Test-statistic Lower tail area
E -1.879 0.682 Nonstationary
PE -1.818 0.710 Nonstationary *
PCr -1.901 0.671 Nonstationary
CR -2.330 0.440 Nonstationary*
POPCR 1.612 0.999 Nonstationary*
HDD -4.459 0.006 Stationary
cDD -7.432 0.000 Stationary
PG -0.740 0.964 Nonstationary*

Note : * The /+Durbin test statistic values on PE, CR, POPCR, PG show the serial correlation in U

Table B indicates the results from the Augmented Dickey-Fuller (ADF) test

Variable Computed Critical value Conclusion
Test-statistic Lower tail area
PE =2:383 0.412 Nonstationary
CR -1.358 0.872 Nonstationary
POPCR 2.072 0.999 Nonstationary
PG -1.096 0.924 Nonstationary

The DF test indicates that the computed test statistic value of £ PE PCI, CR, POPCR, PG are -
1.879, -1.818, -1.901, -2.330, 1.612, -0.740, respectively, which in absolute terms are smaller than
5% critical value. Therefore, we do not reject the null hypothesis that & = 0, that is, the £ PE. PCL
CR, POPCR, PG series are nonstationary. However, the A-Durbin test statistic values of PE, CR,
POPCR, PG show the serial correlation in u. Therefore, the ADF test is applied to test on PE, CR,
POPCR, and PG. Table B shows that the computed test statistic values of PE, CR, POPCR, PG are —
2.383, -1.358, 2.072, and -1.096, respectively, which in absolute terms are smaller than 5% critical
value suggesting that the PE, CR, POPCR and PG time series are nonstationary. On the other hand,
the DF test on #DD and CDD in Table A indicates that the computed test statistic values of 40D,
CDD are -4.459, -7.432, respectively, which in absolute terms are greater than 5% critical value.
Therefore, the HDD, CDD series do not exhibit a unit root, or say, the HDD and CDD series are
stationary.



a o ’ o o o
96 Mmmnaswgmani uningsuidiselnd 7 6 avun 2 we. -an. 45

Table C indicates the results from test of cointegration

Variable Computed Critical value Conclusion
- Test-statistic Lower tail area
Res(-I) -5.981 0.000 Cointegration

Table C shows that the test for cointegration by regressing equation (5) and subjecting the
residuals estimated from this regression to the DF unit root test. The computed test statistic value is
-5.981, which in absolute term is greater than 5% critical value. The conclusion would be that the
estimated residual is stationary, and, therefore there is cointegrated or a long-run, or equilibrium,
relationship between variables in equation (5). Hence, the classical ¢ test, F test, etc are valid and
applicable for testing pooled time series data in equation (5)

4.2 Estimation Methods for Partial Adjustment Mode/

Equation (5) is in the form of partial adjustment model. In this modei, v; = éu, where 0 < &
< 1. Hence, if v, satisfies the assumption of the classical linear regression model, so will su. Thus,
OLS estimation of the partial adjustment model will yield consistent estimates although the estimates
tend to be biased (in finite or small samples). The underlying reason is even Y;., depends on u,; and
all previous disturbance terms, it is not related to the current error term v, Therefore, as long as ; is
serially independent, Y., will also be independent or at least uncorrelated with u, thereby satisfying
an important assumption of OLS. If v, is autocorrelated, then the OLS estimate would be inconsistent
and biased.

The study will test whether v; is autocorrelated or not. If there is no autocorrelation
between disturbance terms, the OLS estimates is consistent and asymptotically efficient.

4.3 OLS Estimation

The study begins with a classical estimation of OLS method. The results from OLS
estimation are displayed in 7able 2. Overall, the results are quite encouraging. The &’ and adjusted
R in the estimated equation (5) are 0.99945 and 0.99929, respectively. The Fstatistic of the model
is very high with 6240.236. Hence, all explanatory variables included in the model are well explained
to electricity consumption. Since the equation (5) is partial adjustment model including lagged
dependent variable, the traditional Durbin-Watson test can not be tested to examine the
autocorrelation problem. The test for autocorrelation problem will be studied in the following section.
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Table 2 : The OLS estimation results

Valid cases: 36 Dependent variable: E
Total SS: 7.686 Degrees of freedom: 27
R-squared: 0.99945 Rbar-squared: 0.99929
Residual SS: 0.004 Std error of est: 0.012
F(8,27): 6240.236 Probability of F: 0.000
Durbin-Watson: 2.058
Standard Prob
Variable Estimate Error t-value
Const  -5.497352 5.237138 -1.025419
Elag 0.801311 0.049606 16.153468
PE -0.181456 0.096273 -2.884806
PCI 0.356392 0.162284 2.196104
CR 0.116928 0.219546 2.530313
POPCR 0.456240 0.685103 0.665944
HDD 0.176396 0.057880 3.047611
cDD 0.208366 0.042126 4.946258
PG 0.057434 0.037767 2.120760

All the explanatory variable coefficients are of the expected signs and are plausible. All
coefficient estimates except price of electricity and constant term are positive. In addition, the &
statistics of all coefficient estimates except constant term and household size/variable are significant
at the level 0.05. The adjustment rate, (-3;), which measures how fast the response to exogenous
changes takes place, is 0.1987, (1-0.8013). The larger the coefficient estimate B, the slower the
adjustment speed. The coefficient of own-price elasticity, which is measured as the short-run own-
price elasticity, is —=0.1814 with the tstatistic of —2.884. The long-run own-price elasticity, which is
measured by dividing short-run elasticity by the adjustment rate, is -0.913, (-0.1814/0.1987).

The coefficient of the cross-price elasticity (by natural gas), which measures the short-run
cross-price elasticity, is 0.057 with statistically significant at the level 0.05. The long run cross-price
elasticity is 0.287 (0.057/0.1987). The short-run income elasticity is 0.356 with statistically significant
at the level 0.05. The long-run income elasticity is 1.792 (0.356/0.1987). The coefficients of the two
climatic variables, heating and cooling degree-days, are positive and statistically significant at the
level 0.05. The coefficient of number of customers is 0.116 with the significance at the level 0.05 but
the coefficient of household size is 0.456 and statistically insignificant.

Overall, the OLS results are quite encouraging. However, the further tests are required to
attain the purpose of most efficient estimation.

5. Test for Autocorrelation for Lagged Dependent Variable

Since the estimated equation (5) is a lagged dependent variable, the Durbin-Watson o statistic
may not be used to detect first-order serial correlation. Therefore, we need the Durbin’s A-statistic in
order to detect first-order serial correlation in autoregressive models.
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h=(1-05d) m

inere n = sample size; var(a;) = variance of the coefficient of the lagged Y, ;; d = the usual Durbin-
Watson statistic.

36
1-36[0.0496

The study shows that 4 =(1-05%* 2.058)\/ ] =-0.1831

The absolute value of Durbin’s /rstatistic is less than the critical value of 1.96. Therefore, there is no
first-order serial correlation. As this result, the OLS estimator is still unbiased and efficient.

6. Test for Heteroscedasticity Problems

The heteroscedasticity will occur when the disturbance is not constant across observation, that is
E(e])=Var(e,) = o] . In general, the heteroscedasticity will arise with primarily cross sectional
data but it occurs less common with time series data. The heteroscedasticity will cause OLS estimator
inefficient but remains unbiased.

There are many methods in detecting the heteroscedasticity problem. The paper will compare
and test the problem by using the techniques of White Test, Breusch-Pagan/Godfrey Test, Goldfeld-
Quandt Test and Glester Test. The results of the tests for heteroscedasticity problem indicate in
Table 3.

The White test, Breusch-Pagan/Godfrey test and Glesjer test indicate that the test statistic does
not exceed the critical value. Therefore, the null hypothesis is accepted under 5% critical level of
significant meaning that there is no heteroscedasticity. However, Goldfeld-Quandt test, which data
are sorted by PE, PG and CDD shows the heteroscedasticity problem because the test-statistic is
greater than critical value at 5% level of significant. As this result, the OLS estimators from part B are
no longer efficient.

The degrees of freedom of Goldfeld Quandt test, which data are sorted by PE, PCI, CR, POPCR
and PG, are five because the tests take the first and last fourteen observations to run regression. On
the other hand, the degree of freedom from data sorted by #DD and CDD is one because the first
and last ten observations are run regression with A" = 9 (including constant term) to avoid positive
singular matrix problems.
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Table 3 compares the test results from using different methods.
Method Test-Statistic Critical Value Conclusion
r(k-1,a)
(1) White Test
(auxiliary regression) TR = 30.7935 1(29.0.05) = 42.5569 No heteroscedasticity

(2) Breusch-Pagan Test

(Lagrange multiplier)
& =0 flag + aZ)

(3) Glesjer Test
(Lagrange multiplier)

a) Vare) = AaZ]

b) Var(e) = Aa2?

¢) Var(s) = Fexpla?]

(4) Goldfeld-Quandt
Data sort by

a) PE

b) P

¢l CR

d) POPCR

e) HDD

A cop

g) PG

0 = 0.5%E55 = 8.7837

Wald Test

W, =9.08217
W, = 134384

W, = 110683

F = R55,/RSS;

F = (613.507/120.624)
= 5.0861

F = (318.113/106.544)
= 2.985

F = (318.577/205.710)
= 1.548

F = (219.820/109.764)
=2.002

F = (0.00885/0.00349)
= 2.643

F = (1.543/0.00073)

= 2105.54

F = (1239.89/220.315)
= 7.897

£(8,0.05) = 15.5073

7’(8,0.05) = 15.5073

£(80.05) = 15.5073

7(8,0.05) = 15.5073

A(T-C-2K)/2,(T-C2K)/2)

F(5,5,0.05) = 5.05
F(5,5,0.05) = 5.05
F(5,5,0.05) = 5.05
F(5,5,0.05) = 5.05
F(1,1,0.05) = 161
F(1,1,0.05) = 161

F(5,50.05) = 5.05

No heteroscedasticity

No heteroscedasticity

No heteroscedasticity

No heteroscedasticity

Heteroscedasticity
No heteroscedasticity
No heteroscedasticity
No heteroscedasticity
No heteroscedasticity

Heteroscedasticity

Heteroscedasticity

7. GLS Estimation

Since heteroscedasticity does not destroy the unbiasness and consistent properties of OLS
estimator, but they are no longer efficient, not even asymptotically with large sample size. This lack
of efficiency makes the usual hypothesis-testing procedure of dubious value. The paper will obtain
the GLS estimation to remedy the sources of heteroscedasticity problem. The GLS estimation with
known @, has A =(X'Q'X)]'X'Q"'y and assumes Var(e,)=o0] =c’w, The

transformation of data is divided through regressor and regressand by \/ w, .
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Table 4 indicates the results from GLS estimation and compares with OLS estimation.

Valid cases: 36 Durbin-Watson:

Total SS: 4.886 Degrees of freedom:

R-squared: 1.000 Rbar-squared:

Residual SS: 0.008 Std error of est:

F(9,27): 6890.632 Probability of F:

Variable Estimate Standard
GLS oLS diff Error

Const -5.454002 -5497352 (0.043350 5,106663

Elag 0.781600 0.801311 -0.019711 0.011270

PE -0.213015 -0.181456 -0.031559 0.027771

PCI 0.299643  0.356392 -0.056749 0.050731

CR 0.178070 0.116928 0.061642 0.060060

POPCR 0.547853  0.456240 0.091613 0.203902

HDD 0.174889 0.176396 (0.001507 0.011681

cDD 0.212300 0.208366 0.003934 0.018040

PG 0.065216 0.057434 0.007782 0.007157

1.914

27
1.000
0.010
0.000

Prob

t-value
-1.241120
26.59543
-4.320612
2.242843
2.126330
1,030307
2.158401
4.133638
2.905766

Overall, the coefficients from GLS estimation are of the expected signs, plausible and have
similar representations with the OLS equation. The difference of coefficients from GLS and OLS
estimation is also shown in the 7able 4. In the presence of heteroscedasticity in the model, the OLS
estimators are no longer efficient, not even asymptotically (i.e., large sample size). This lack of
efficiency makes the usual hypothesis-testing procedure -of dubious value. Therefore, the GLS

estimators are more effective and reliable than the OLS estimators. The paper will apply the results
obtained from the GLS estimation.

Table 5 : The GLS results compare with 2SLS results by Chern (1988)

Estimated coefficients Supawat (2000) Chern et al. (1988)
of variables GLS estimation 2SLS estimation
1960-1996 1955-1978

Elag 0.782 0.842

PE -0.213 -0.115

PCT 0.299 0.135

CR 0.178 0.176
POPCR 0.547 0.064
HDD 0.174 0.103
coD 0.212 0.032

PG 0.065 0.010

R 1.000 0.999
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Table 5 demonstrates the comparisons of the GLS results from this study with the 2SLS results
by Chern et a/ (1988). Overall, the coefficients from GLS estimation have the same signs as the
previous study done by Chern et a/. The paper follows the model by Chern et a/and extends the time
period through 1996. The results are consistent with the study by Chern et a/ Among the studies
recently compiled and reviewed by Bohi (1982), the estimated short-run price elasticities for
residential electricity demand range from -0.03 to —-0.54 while the long-run elasticities estimates
range from -0.44 to -2.10. For income elasticities, the short-run estimates range from 0.02 to 2.0
with the long-run estimates ranging from 0.12 to 2.20. The short-run and long-run price (income)
elasticities from this study are also consistent with the previous studies.

8. Test for Structural Change

The paper further investigates the stability of the structural changes in residential electricity
demand. There are two underlying sources for a possible structural change. First, consumers may
react differently to declining and rising prices. Secondly, the significant increases of oil price in 1973-
74 and 1983-84 may have shifted demand preferences. As this result, the paper will examine
whether there will be shifts in residential electricity demand structure in the U.S.

The paper tests such structural changes by obtaining the Chow Test. The basic idea is a
structural change or structural break occurs if the parameters underlying a relationship differ from
one subset of the data to another.

The assumptions underlying the Chow test are twofold;

(a) u,, ~ N(0,0%) and u,, ~ N(0,0?)
2t

that is, the two error terms are normally distributed with the same variance, o7 and

(b) vy and wz are independently distributed
Given the assumptions of the Chow test, it can be shown that

S, /k+1
S,/(n, +n, —2k-2)

F:

Follows the F distribution with df = (k+1, n,+n.-2k-2), where k = number of explanatory
variables; S; = 5;-S;and S; = 5:+53 S; is residual sum of squares of the whole observation; S is
residual sum of squares of the first group, n,, S;is residual sum of squares of the second group, 7.

The paper tests two plausible structural changes in 1973 and 1983. The first possible structural
change in 1973 is tested by dividing the sample into two subsets of 1960-1972 and 1973-1996. With
another possible structural change in 1983, the sample will be divided by two subsets of 1960-83 and
1984-96.
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Table 6 shows the results of test for structural change by using the Chow test.

RSS Test Statistic Critical Value Conclusion :
(1) Test for structural change
in 1973
RSS; (1960-96) = 0.0041548 F'=6.9577 F(9,16,0.05) = 3.01 There is structural
RSS; (1960-72) = 0.0000294 change

RSS; (1973-96) = 0.0008982

(2) Test for structural change

in 1983
RSS; (1960-96) = 0.0041548 F = 1.0707 F(9,16,0.05) = 3.01 There is no structural
RSS; (1960-83) = 0.0024570 change

RSS; (1984-96) = 0.0024898

The results of 7able 6 indicate that the null hypothesis of no structural change is rejected under
5% critical levels for the test of structural change in 1973. Therefore, the reversal of price trend
resulting from the 1973 oil embargo results to the structural changes in residential electricity
demand. However, the null hypothesis of no structural change is accepted under 5% critical levels for
the test of structural change in 1983. Therefore, there is no such structural change in residential
electricity demand under this period.

(6) Interpretation and Conclusion
The final estimation of equation 5 which is obtained by the GLS method is given as follow (with

t-statistic in the parenthesis):
InE, =-5454002+07816InE, , —0.213015In PE, +0.299643In PCI, +0.17807 In CR,

(-1241) (26.595) (~4.3206) (2.2428) (2.1263)
+0.547853In POPCR, +0.174889In HDD, +0.2123In CDD, +0.065216In PG,
(10303) (2.1584) (4.133) (2.905)

- Estimated coefficients for the lagged dependent variable
The estimated coefficient of the lagged dependent variable, 3;, in equation (5) is 0.7816. The
coefficient of adjustment, (-8;), measures how fast the response to exogenous changes takes place.
The larger the coefficient estimate, 3, the slower the adjustment. We can explain the rate of
adjustment in terms of changes in durable stock. For a more durable appliance, it takes longer to
wear out the existing stock. The study shows the adjustment rate is 0.2184.
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- Own-price elasticity
The study shows the short-run own-price elasticity, 45 is —0.213 and the long-run own price
elasticity calculated by dividing short-run elasticity by (1-8;), is —=0.975. Therefore, the one percent
increase in electricity price would decrease on electricity demand by 0.213% in the short-run while it
would decrease by 0.975% in the long-run.
- Income elasticity
The estimated income coefficient (short-run elasticity), 45 is 0.2996 and the long-run income
elasticity, g; A1-4;), is 1.37. The one percent increase on income would increase by 0.2996% on
electricity demand in the short-run and it would increase by 1.37% in the long-run.
- Customer coefficient
The estimated short-run and long-run elasticities with respect to the number of residential
are 0.178 and 0.815, respectively. The customer elasticities measure the effects on demand due to
the addition of new customers. The elasticities are below one, indicating that new customers always
have smaller average electricity consumption than existing customers.
- Household size
The estimated coefficient of household size is positive and statistically insignificant at the
level 0.05. As this result, the large households and small households do not affect much on their
purchasing behaviors of electric appliances under the study.
- Climatic variables
The estimated coefficients both heating and cooling degree-days variables are positive and
have statistically significant. These results point out the obvious trend of increased usage of
electricity for space heating and cooling.
- Cross- price effects
The natural gas prices included in the model are considered due to the effects of interfuel
substitution. When the prices of natural gas increase, these would encourage people to consume less
natural gas for heating, etc in purpose and people will substitute electricity for natural gas. The short-
run cross-price elasticity is 0.065 and statistically significant at the level 0.05. The coefficient is quite
low implying that there is little tendency to substitute between these fuels and natural gas does not
have much effect on electricity consumption under the study.
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