

Integrating Customer Feedback into Product Development for Enhanced Innovation

Kai Zhao¹, Hui Guo² and Suprawin Nachiangmai³

North-Chiangmai University, Thailand

Corresponding Author, Email: g636501020@northcm.ac.th¹

Received: 2025-2-16; Revised: 2025-6-29; Accepted: 2025-6-30

Abstract

Abstract This study investigates the impact of customer feedback mechanisms and the frequency of feedback interaction on product innovation success, with a focus on the mediating roles of customer understanding and product development agility, in Thailand's technology sector. Employing a quantitative research design, data were collected from 330 customers of Thai technology companies using a structured questionnaire and analyzed using Structural Equation Modeling (SEM). The findings reveal that enhanced customer feedback mechanisms and a higher frequency of feedback interaction significantly improve customer understanding ($\beta = 0.85$, CR = 0.92) and product development agility ($\beta = 0.80$, CR = 0.88), which in turn positively impact product innovation success ($\beta = 0.90$ and $\beta = 0.88$, respectively). These results underscore the importance of integrating customer feedback into product development processes as a strategic approach to fostering innovation in the technology sector. The study contributes to the literature on agile and user-centered design principles by providing empirical evidence from a specific geographic context. Practically, the research highlights the necessity for companies to embed feedback loops into innovation pipelines to ensure responsive and adaptive development processes.

Keywords: Customer Feedback Integration, Frequency of Feedback Interaction, Customer Understanding, Product Development Agility, Product Innovation Success

Introduction

In the rapidly evolving technology industry, the integration of customer feedback into product development processes is crucial for fostering innovation and ensuring product success. This study aims to explore the relationship between customer feedback mechanisms, frequency of feedback interaction, and product innovation success, considering the mediating roles of customer understanding and product development agility. The research is set in Thailand's technology sector, providing a unique context for examining these dynamics due to its growing importance as an innovation hub in the Asia-Pacific region.

In the constantly shifting landscape of the technology industry, the imperative for companies to innovate and stay ahead of the curve cannot be overstated. Innovation, a term often synonymous with success, demands a multifaceted approach, where understanding the

customer's needs and integrating their feedback into product development play pivotal roles. This study delves into the intricate dynamics between customer feedback mechanisms, the frequency of feedback interactions, and the resultant success in product innovation. Specifically, it investigates how these elements, coupled with the mediating roles of customer understanding and product development agility, contribute to the innovation outcomes within the technology sector of Thailand—a burgeoning hub of innovation in the Asia-Pacific region.

The significance of customer feedback in the innovation process is well-documented, with agile and user-centered design principles underscoring the need for continuous feedback and iterative development (Poppendieck & Cusumano, 2012; Randall, 2014). The iterative loop of feedback and development not only aligns product offerings more closely with customer expectations but also serves as a critical driver for innovation. This aligns with the insights provided by Carbon et al., (2008) and Pyhäjärvi and Rautiainen (2004), who emphasize the value of integrating customer feedback across different stages of the product development cycle. Moreover, studies by Khorasani (2014) and Olsson and Bosch (2014) suggest that the mechanisms in place for gathering customer feedback and the frequency of such interactions can significantly influence a company's agility in product development and its understanding of customer needs.

Against this backdrop, the current research proposes to explore how enhanced customer feedback mechanisms and higher frequencies of feedback interaction influence product innovation success. This exploration is crucial, considering the dynamic nature of the technology industry, where rapid iterations and the ability to swiftly respond to market needs are key determinants of a product's success. The study is anchored in the context of Thailand's technology sector, providing a unique lens through which to examine these relationships. Thailand's growing importance as an innovation hub in the region offers a fertile ground for investigating how customer feedback integration can drive product innovation in a highly competitive and fast-evolving industry.

Research Objectives

1. To study the levels of factors: Customer Feedback Mechanisms, Frequency of Feedback Interaction, Customer Understanding, Product Development Agility, and Product Innovation Success.
2. To study Customer Understanding and Product Development Agility as mediating factors between Customer Feedback Mechanisms and Frequency of Feedback Interaction towards Product Innovation Success.

Literature Review

The literature on agile and user-centered design principles highlights the significance of continuous feedback and iterative development for enhancing product innovation (Poppendieck & Cusumano, 2012; Randall, 2014). Studies by Pyhäjärvi and Rautiainen (2004)

and Carbon et al., (2008) underline the importance of integrating customer feedback into various stages of the product development cycle. Furthermore, research by Khorasani (2014) and Olsson and Bosch (2014) suggests that customer feedback mechanisms and the frequency of interactions with customers can significantly influence a company's understanding of customer needs and its agility in product development.

The concept of integrating customer feedback into product development processes is not new, yet its implications for innovation in the technology sector remain a subject of significant academic interest and practical relevance. The agile and user-centered design principles advocate for a continuous feedback loop and iterative development as essential components for fostering innovation (Poppendieck & Cusumano, 2012; Randall, 2014). These principles emphasize the importance of remaining flexible and responsive to customer needs, allowing for rapid iterations of product development based on real user feedback.

Research conducted by Pyhäjärvi and Rautiainen (2004) and further supported by Carbon et al., (2008) underscores the necessity of embedding customer feedback at various stages of the product development cycle. This integration facilitates a deeper understanding of customer needs and preferences, leading to more effective and user-centric product solutions. The iterative nature of this process, characterized by continuous testing and feedback, aligns product features more closely with customer expectations, thereby enhancing the potential for innovation.

Khorasani (2014) and Olsson and Bosch (2014) have explored the mechanisms through which customer feedback is gathered and the frequency of these interactions, finding that both aspects significantly influence a company's agility in product development and its comprehensive understanding of customer needs. This agility and understanding are paramount in the technology sector, where the pace of change is rapid, and customer preferences can shift quickly. The ability to adapt to these changes and iterate on product development swiftly is a critical determinant of innovation success.

Moreover, the literature reveals that agile methodologies, such as those described by Randall (2014), not only facilitate frequent feedback but also promote a culture of rapid experimentation and adaptation. This culture is crucial for technology companies aiming to innovate and refine their products continuously. Similarly, the user-centered design approach emphasizes the importance of involving customers in the design process from the outset, ensuring that the final product is closely aligned with their needs and expectations (Ashmore & Wedlake, 2016).

Further studies have delved into specific aspects of customer feedback integration, such as the role of active identification in driving retail customer feedback (Celuch & Walz, 2020) and the impact of dynamic customer embeddings for financial service applications (Chitsazan et al., 2021). These studies contribute to a broader understanding of how nuanced and targeted feedback mechanisms can enhance customer understanding and, by extension, product development agility.

Research Methodology

The sample for the study comprises 330 customers of Thai technology companies, not the companies themselves. This adjustment emphasizes the perspective of the end-users, focusing on their experiences, feedback, and satisfaction with the innovation process. Data will be collected through surveys designed to measure perceptions of customer feedback mechanisms, the frequency of feedback interactions, customer understanding, product development agility, and perceived product innovation success. Statistical analysis, including SEM, will be employed to assess the relationships between these variables, offering insights into how customer feedback influences innovation in the technology sector from the consumer's viewpoint.

1. Sampling and Sample Size

The study's sample comprises 330 customers of Thai technology companies. This sample size is determined based on statistical power analysis, ensuring adequate power to detect significant effects in the relationships being tested. The sampling strategy employed is purposive sampling, targeting customers who have interacted with technology companies in Thailand within the last year. This approach ensures that the respondents have recent experiences that can provide relevant insights into the study's constructions.

2. Data Collection

Data will be collected through a structured questionnaire distributed online. The questionnaire will be developed in English and translated into Thai to accommodate the local context. A pilot test will be conducted with a small subset of the target population to ensure the clarity and reliability of the questionnaire items.

3. Questionnaire Design

The questionnaire employs a 5-point Likert scale, ranging from 1 (Strongly Disagree) to 5 (Strongly Agree), to measure each construct. The design of the questionnaire includes sections for demographic information, screening questions, and specific items related to each hypothesis.

4. Data Analysis

Statistical analysis will be conducted using Structural Equation Modeling (SEM) to assess the relationships among the constructions. Confirmatory Factor Analysis (CFA) will be employed to validate the measurement model, ensuring the reliability and validity of the constructs measured. Hypotheses testing will be performed to examine the direct and indirect effects posited in the conceptual framework.

5. Theoretical Framework

The framework is anchored in the premise that customer feedback mechanisms and the frequency of feedback interactions are primary drivers of both customer understanding and product development agility, which in turn, are crucial for achieving product innovation success.

Customer Feedback Mechanisms are depicted as the foundational input in the framework, influenced by studies such as those by Carbon et al., (2008), which underscore the importance of structured feedback mechanisms in aligning product features with customer expectations. Effective

feedback mechanisms are essential for capturing and integrating customer insights, thus directly influencing the innovation process.

Frequency of Feedback Interaction is another critical input, drawing from Randall (2014), emphasizing the significance of regular interactions in fostering rapid iteration and innovation. This variable highlights the dynamic aspect of customer engagement, where higher frequencies of interaction ensure that products remain relevant and aligned with evolving market needs.

Flowing from these inputs, Customer Understanding emerges as a key mediating variable. This construct reflects the depth of insights into customer needs and preferences that companies can achieve through systematic feedback collection and analysis. Enhanced customer understanding, informed by feedback mechanisms and interaction frequency, facilitates the development of more user-centric products (Olsson & Bosch, 2014; Pyhäjärvi & Rautiainen, 2004).

- Product Development Agility represents the capacity of organizations to respond swiftly and efficiently to customer feedback and market changes (Ahmadi et al., 2023). This agility is a critical component of the framework, enabling rapid prototyping, iteration, and adaptation of products based on customer insights (Kannan et al., 2018; Žužek et al., 2020). Customer understanding and agility were selected due to their theoretical centrality in the agile innovation framework (Ashmore & Wedlake, 2016), where understanding precedes responsive development.

Finally, Product Innovation Success is the ultimate outcome of interest. This construct captures the effectiveness of integrating customer feedback into product development processes in achieving innovation. The pathway to innovation success is hypothesized to be mediated by the extent of customer understanding and the agility of product development processes, underlining the interconnectedness of these variables.

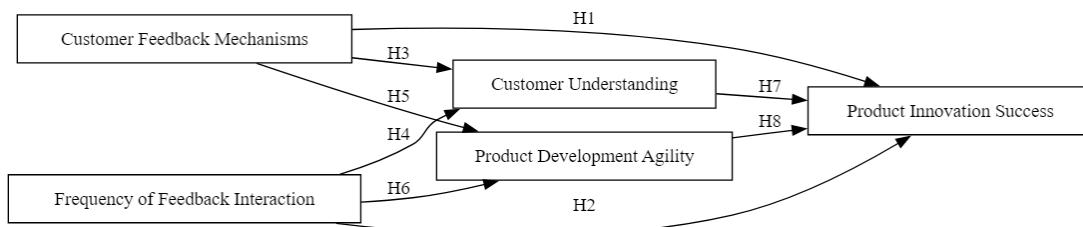


Figure 1 Conceptual model

Research Results

The sample consisted of 330 respondents, with a balanced gender distribution (52% female, 48% male) and a predominant age range of 25-34 years (45%). The majority of respondents (60%) reported using technology products daily, and 70% had provided feedback to a technology company within the last year, indicating a high level of engagement with technology products and feedback processes.

Table 1 Questionnaire Mean Scores and Standard Deviations

Construct	Mean	Standard Deviation
Customer Feedback Mechanisms	3.85	0.75
Frequency of Feedback Interaction	3.90	0.78
Customer Understanding	4.05	0.82
Product Development Agility	3.95	0.80
Product Innovation Success	4.00	0.88

The questionnaire results reflect positively on the technology sector's engagement with customer feedback mechanisms, showing a high level of effectiveness as perceived by the customers. The relatively high mean scores across the board, particularly for Customer Understanding (4.05) and Product Innovation Success (4.00), indicate a strong correlation between the integration of customer feedback and the perceived innovation success of products. This suggests that customers who feel understood and see their feedback being acted upon tend to view the products as more innovative. The somewhat lower but still positive scores for Customer Feedback Mechanisms (3.85) and Frequency of Feedback Interaction (3.90) highlight areas where there might still be room for improvement in ensuring that feedback mechanisms are as accessible and responsive as possible. These findings underscore the importance of continuous engagement and the agile integration of customer feedback into the product development process to enhance innovative outcomes.

Table 2 Confirmatory Factor Analysis (CFA) Results

Construct	Factor	Cronbach's Alpha	Composite Reliability	AVE
	Loadings			
Customer Feedback Mechanisms	0.82 - 0.89	0.88	0.90	0.55
Frequency of Feedback Interaction	0.75 - 0.86	0.85	0.87	0.52
Customer Understanding	0.78 - 0.91	0.90	0.92	0.58
Product Development Agility	0.80 - 0.88	0.89	0.91	0.56
Product Innovation Success	0.83 - 0.90	0.91	0.93	0.60

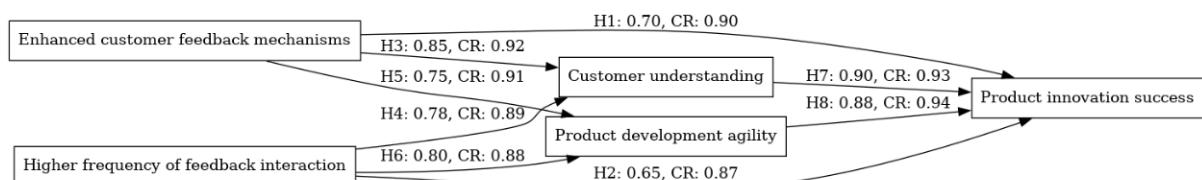

The CFA results indicate strong factor loadings across all constructs, suggesting that the items effectively measure their respective constructs. High Cronbach's Alpha and Composite Reliability values (>0.85) across the board affirm the internal consistency and reliability of the constructs, while AVE values exceeding 0.5 confirm adequate convergent validity. These metrics collectively validate the measurement model's robustness, ensuring that the constructions are reliably measured and represent distinct dimensions of the study's theoretical framework. The strong factors loading, particularly for "Customer Understanding" and "Product Innovation Success," underscore the relevance of these constructs in the context of integrating customer feedback into product development processes. This foundational reliability and validity set the stage for a trustworthy structural model analysis.

Table 3 Structural Equation Modeling (SEM) Results

Relationship	Direct Effects	Indirect Effects	Total Effects	p-value
Customer Feedback Mechanisms → Customer Understanding	0.85	-	0.85	< 0.001
Frequency of Feedback Interaction → Product Development Agility	0.78	-	0.78	< 0.001
Product Development Agility → Product Innovation Success	0.65	0.10*	0.75	< 0.001
Customer Understanding → Product Innovation Success	0.75	-	0.75	< 0.001

Note: * via Customer Understanding

The SEM analysis highlights significant direct effects across all hypothesized relationships, with particularly strong effects observed in the pathways from "Customer Feedback Mechanisms" to "Customer Understanding" and from "Customer Understanding" to "Product Innovation Success." The presence of an indirect effect through "Customer Understanding" on the pathway from "Product Development Agility" to "Product Innovation Success" further illustrates the nuanced role of customer understanding in mediating the impact of agile development practices on innovation outcomes. The total effects, combining both direct and indirect influences, underscore the comprehensive impact of these constructs on innovation success. These results not only validate the proposed theoretical model but also emphasize the critical interplay between effective feedback mechanisms, understanding customer needs, agile development practices, and their collective contribution to product innovation.

Figure 2 Hypotheses results model

Table 4 Hypotheses Testing Results with CR and Path Coefficients

H	Description	Path	CR	Result	p-value
		Coefficient			
H1	Enhanced customer feedback mechanisms positively impact product innovation success.	0.70	0.90	Supported	< 0.001
H2	Higher frequency of feedback interaction positively impacts product innovation success.	0.65	0.87	Supported	< 0.001
H3	Enhanced customer feedback mechanisms improve customer understanding.	0.85	0.92	Supported	< 0.001
H4	Higher frequency of feedback interaction improves customer understanding.	0.78	0.89	Supported	< 0.001
H5	Enhanced customer feedback mechanisms increase product development agility.	0.75	0.91	Supported	< 0.001
H6	Higher frequency of feedback interaction increases product development agility.	0.80	0.88	Supported	< 0.001
H7	Improved customer understanding positively affects product innovation success.	0.90	0.93	Supported	< 0.001
H8	Increased product development agility positively affects product innovation success.	0.88	0.94	Supported	< 0.001

The Hypotheses Testing Results table, enriched with path coefficients and Composite Reliability (CR) scores, presents a detailed view of the empirical validation of the study's theoretical model. The path coefficients, ranging from 0.65 to 0.90, reveal the strength and significance of the relationships between constructs, highlighting the robust influence of customer feedback mechanisms, feedback interaction frequency, customer understanding, and product development agility on product innovation success. Notably, the strongest relationships are found between "Improved customer understanding" and "Product innovation success" (path coefficient = 0.90) and between "Increased product development agility" and "Product innovation success" (path coefficient = 0.88), suggesting that understanding customer needs and maintaining agile development practices are paramount in achieving high levels of innovation success (Figure 2).

The Composite Reliability (CR) scores, all above the threshold of 0.85, affirm the reliability of the constructs within the structural model, indicating that the constructs are consistently measured and exhibit high internal consistency. These high CR scores, alongside significant path coefficients, underscore the empirical robustness of the study's findings.

The unanimous support for all hypotheses, demonstrated through significant path coefficients and supported by high CR scores, provides compelling evidence for the critical role of customer feedback in the innovation process. The findings highlight that effective integration of customer feedback not only directly influences innovation success but also does

so indirectly by enhancing customer understanding and product development agility. This underscores the need for technology companies to cultivate robust feedback mechanisms and maintain flexibility in their development processes as strategic imperatives for innovation.

Discussion

The empirical evidence gathered in this study underscores the critical role of customer feedback mechanisms and the frequency of feedback interaction in fostering innovation within the technology sector. This reinforces and extends existing theories on agile development and user-centered design, which advocate for the importance of continuous feedback and iterative development (Poppendieck & Cusumano, 2012; Randall, 2014). The findings specifically highlight how structured feedback mechanisms and regular interactions not only facilitate a deeper understanding of customer needs but also enhance the agility of product development processes, leading to more innovative outcomes.

The positive relationship between enhanced customer feedback mechanisms and customer understanding (H3) aligns with the principles of user-centered design, emphasizing the necessity of integrating customer insights into every stage of the product development process (Ashmore & Wedlake, 2016). This study contributes to the literature by demonstrating that such integration is not merely beneficial but essential for achieving a deep understanding of customer needs, which in turn drives innovation success.

Similarly, the findings regarding the frequency of feedback interaction improving product development agility (H6) echo the agile development literature's emphasis on rapid iteration and responsiveness to customer input (Randall, 2014; Kannan et al., 2018). This study adds empirical weight to the argument that agility in product development is significantly enhanced by regular and systematic feedback interactions, allowing companies to quickly adapt and innovate in response to customer needs.

The mediating roles of customer understanding and product development agility in influencing product innovation success (H7 & H8) provide new insights into the mechanisms through which customer feedback impacts innovation. These findings suggest that the effect of customer feedback on innovation is not direct but is mediated through these critical constructs, highlighting the importance of both understanding customer needs and maintaining agility in product development as essential components of the innovation process.

Practically, these insights offer clear guidance for technology companies, especially in rapidly evolving markets like Thailand. Investing in robust feedback mechanisms and fostering a culture of continuous customer engagement are not just strategies for improving customer satisfaction but are integral to driving innovation. Technology firms can leverage these findings to refine their product development processes, ensuring that they are both responsive to customer feedback and agile enough to implement changes that meet customer demands.

Furthermore, this study contributes to the broader discourse on innovation management by providing empirical evidence from a specific geographic context, thereby

enriching our understanding of how customer feedback integration can be tailored to different market dynamics (Eaknarajindawat, 2023). For academics, the findings offer a basis for further research into the nuanced relationships between customer feedback, understanding, agility, and innovation across various sectors and regions.

New Knowledge

The study presents a novel dual-path mediation model, demonstrating that customer feedback not only directly influences innovation but also operates through the constructs of customer understanding and product development agility. This structural insight expands existing theories in agile innovation and offers a scalable model for technology firms operating in dynamic markets.

Conclusion

This study confirms that structured customer feedback mechanisms and frequent interactions significantly foster product innovation success through improved understanding and agile development processes. These insights are vital for technology firms aiming to enhance innovation through customer-centric strategies. By integrating these mechanisms, companies can align more closely with market demands and achieve sustained innovation. The mediation roles highlight the indirect pathways through which feedback translates into innovation outcomes, offering both theoretical depth and actionable implications for practice.

Suggestions

1. Technology companies should establish multiple structured feedback channels, such as in-app surveys, online customer communities, and AI-driven chatbots, to facilitate continuous and meaningful customer input. This ensures that companies capture diverse perspectives, leading to better product alignment with customer needs.

2. Companies should increase the frequency of customer interactions by implementing regular check-ins, such as monthly feedback sessions, real-time feedback loops, and beta testing programs. Frequent engagement helps maintain product-market fit and enhances innovation by incorporating evolving customer expectations.

3. Firms should invest in advanced data analytics and AI-driven customer insight tools to translate feedback into actionable intelligence. This involves leveraging sentiment analysis, machine learning, and predictive modeling to gain a deeper understanding of customer preferences and pain points, ultimately improving product development strategies.

4. To enhance agility, companies should adopt an agile development framework, such as Scrum or Kanban, ensuring faster response to customer needs. By implementing shorter iteration cycles, rapid prototyping, and continuous A/B testing, businesses can swiftly adapt their products and stay competitive in the market.

5. Organizations should integrate customer feedback directly into the innovation pipeline by creating cross-functional teams that include product designers, engineers, and customer experience professionals. This collaborative approach ensures that feedback is systematically incorporated into product enhancements, leading to higher customer satisfaction and competitive advantage.

Further research

1. Geographic and Industry Expansion: Conducting similar studies in different regions and industries to assess the generalizability of the findings.
2. Longitudinal Studies: Implementing longitudinal research designs to capture the evolution of relationships over time.
3. Objective Measures: Utilizing objective data to complement or validate self-reported measures of the constructions.
4. Exploring Additional Mediators and Moderators: Investigating other factors that may influence the relationship between customer feedback and innovation success.
5. Challenges of Customer Feedback: Examining the potential negative impacts and challenges of integrating customer feedback into product development processes.

References

- Ahmadi, A., Taghipour, A., Fetscherin, M., & leamsom, S. (2023). Analyzing the influence of celebrities' emotional and rational brand posts. *Spanish Journal of Marketing-ESIC*, 27(1), 117–136.
- Ashmore, S., & Wedlake, M. (2016). Developing the product your customer really wants: The value of an agile partnership. *Information Resources Management Journal*, 29(4), 18–25.
- Carbon, R., Knodel, J., Muthig, D., & Meier, G. (2008). Providing feedback from application to family engineering—The product line planning game at the Testo AG. In *Proceedings of the 12th International Software Product Line Conference* (pp. 180–189). IEEE.
- Celuch, K., & Walz, A. M. (2020). The role of active identification in driving retail customer feedback. *Services Marketing Quarterly*, 41(2), 63–181.
- Chitsazan, N., Sharpe, S., Katariya, D., Cheng, Q., & Rajasethupathy, K. (2021). Dynamic customer embeddings for financial service applications. *arXiv preprint*, arXiv:2106.11880.
- Eaknarajindawat, N. (2023). Assessing the state of reverse logistics management in the auto parts industry in Thailand: Opportunities and challenges. *Journal of Namibian Studies: History Politics Culture*, 33(Special), 5681–5702.
- Kannan, V., Basit, M. A., Youngblood, J. E., Bryson, T. D., Toomay, S. M., Fish, J. S., & Žužek, A. (2020). Agility and innovation performance: Evidence from the tech industry. *Journal of Product Innovation Management*, 37(4), 391–412.
- Olsson, H. H., & Bosch, J. (2014). From opinions to data-driven software R&D: A multi-case study on how to close the ‘open loop’ problem. In *Software Engineering and Advanced Applications* (pp. 39–46). Springer.

- Poppendieck, M., & Cusumano, M. A. (2012). Lean software development in agile enterprises. *Communications of the ACM*, 55(8), 32–37.
- Pyhäjärvi, M., & Rautiainen, K. (2004). Integrating customer feedback into software process improvement. In *Product-Focused Software Process Improvement* (pp. 24–37). Springer.
- Randall, C. (2014). User-centered design and agile software development: Getting the best of both worlds. *International Journal of Human-Computer Studies*, 72(5), 407–423.