

Research Article

Received:

13 June 2025

Received in revised form:

27 August 2025

Accepted:

15 September 2025

Tanagon Junhamakasit¹, Wimonrat Atthaboon¹, Napon Anuttarunggoon¹ and Puntaree Taeprayoon^{2,*}

¹*Research and Academic Service Center, Nakhonsawan Campus, Mahidol University, Phayuha Khiri District, Nakhon Sawan Province, 60130 Thailand*

²*Agricultural and Environmental Utilization Research Unit, Nakhonsawan Campus, Mahidol University, Phayuha Khiri District, Nakhon Sawan Province, 60130 Thailand*

*Corresponding author's E-mail: puntaree.tae@mahidol.ac.th

SUSTAINABLE DEVELOPMENT GOALS

Background: Agricultural areas surrounding Bueng Boraphet, Nakhon Sawan Province, Thailand, lie outside the irrigation zone, where rice cultivation depends largely on rainfall during the wet season and off-season cropping throughout the year. These conditions complicate water-use assessment and create challenges for sustainable resource management. Major constraints to rice production include water scarcity, high input costs—particularly for fertilizers—limited technical knowledge, improper fertilizer use, frequent pest and disease outbreaks, inefficient weed control, and crop residue burning that degrades soil quality. Collectively, these problems reduce productivity, heighten environmental stress, and undermine long-term sustainability.

Objectives and Methodology: This research aimed to enhance rice cultivation efficiency in a 200-rai (32-hectare) pilot area in Wang Mahakon and Thap Krit Subdistricts through participatory action research (PAR). The study integrated site-specific fertilizer management (SSF) with alternate wetting and drying (AWD) water management to optimize both productivity and resource use. The participatory process involved nine key steps: 1) Situational analysis and community planning; 2) Participatory tools such as “Happiness Compass” and “Smart A4” to identify local needs; 3) Establishment of community-led demonstration plots; 4) Inter-community learning through study visits; 5) Integration of expert knowledge and local wisdom; 6) Mutual learning via field visits; 7) Participatory feedback and data verification; 8) Determination of appropriate field technologies; and 9) Soil analysis and fertilizer application based on analytical results.

Results and Findings: Results showed that the integrated AWD-SSF system performed significantly better than traditional broadcasting in continuously flooded fields. In transplanted rice plots, the number of tillers per clump averaged 19.94, compared to 4.42 in traditional plots—a nearly fourfold increase—especially within 45 days after planting. This improvement stemmed from enhanced soil aeration during dry intervals, stimulating root and shoot development. Intermittent drying also activated soil microbes, improving nutrient

Extended Abstract (2/2)

availability and plant vigor. Although both systems showed natural self-thinning around 75 days after planting, overall growth and resilience remained superior in the improved plots.

Water consumption in traditional fields averaged 1,351 cubic meters per rai (8,444 m³/ha) per crop cycle, requiring five irrigation events. Under AWD, water use dropped to 810–910 m³/rai (5,060–5,690 m³/ha) with only three

irrigation events—representing a 32–40% reduction. Yields increased from 742.32 kg/rai (4.64 t/ha) to 812.33 kg/rai (5.08 t/ha), surpassing the national average and indicating a 9.4% productivity gain. This improvement was attributed to balanced soil fertility management and the avoidance of straw burning, which helped maintain organic matter and nutrient balance.

Economic analysis revealed that net returns rose from 2,212.54 THB (~68 USD) to 2,709.91 THB (~83 USD) per rai. Although seedling costs were slightly higher, total expenses declined due to lower fertilizer and fuel use coupled with higher yields. The benefit-cost ratio improved from 1.41 to 1.49, strengthening farmers' incentive to adopt the practice. The transplanting method also improved weed control—water retention during the first month suppressed weed growth by about 70%, and unwanted rice varieties ("weedy rice") were reduced by 80% through manual removal.

The participatory process produced transformative community outcomes. Farmers gained a clearer understanding of production costs, input management, and sustainable practices. Participatory tools like the Happiness Compass encouraged reflection and context-based planning, fostering genuine behavioral change. Demonstration plots became "living laboratories," where farmers observed biological, economic, and social impacts firsthand.

At the socio-economic level, farmers reduced unnecessary expenditures on fertilizers and fuel while improving grain quality and net income. Environmentally, AWD significantly conserved water and reduced chemical runoff, mitigating pollution and supporting the ecological balance of the Bueng Boraphet wetland. Socially, collective learning and leadership were strengthened through the formation of groups such as the Low-Carbon Bueng Boraphet Community Enterprise and Cost-Reduction Learning Groups, which continued collaboration with local agencies and served as community knowledge hubs.

The demonstration sites have since evolved into community learning centers, where experienced farmers act as trainers. In recognition of this success, Nakhon Sawan Province issued Provincial Order No. 3387/2567 to establish a steering committee for continued promotion of AWD-based rice farming in the Bueng Boraphet model area. The initiative has inspired inter-subdistrict collaboration through the Water Users and Low-Cost Rice Growers Network, facilitating knowledge sharing and scaling to neighboring areas. The outcomes have also been incorporated into youth training and environmental education curricula, ensuring long-term capacity building and intergenerational learning.

Conclusions: Ultimately, this participatory research established a new paradigm for community-based sustainable agriculture. By linking productivity, cost efficiency, environmental stewardship, and quality of life, it strengthened both human and social capital—the essential foundations of sustainability. The Bueng Boraphet experience demonstrates that when local communities actively engage in planning, experimentation, and evaluation, academic innovations such as AWD and SSF can be effectively localized, generating enduring economic, social, and ecological benefits across Thailand's rainfed rice regions.

Keywords: Nakhon Sawan Province, Rice cultivation, Wetland, Alternate wetting and drying, Soil analysis

บทความวิจัย

วันที่รับบทความ:

13 มิถุนายน 2568

วันแก้ไขบทความ:

27 สิงหาคม 2568

วันตอบรับบทความ:

15 กันยายน 2568

ธนาคาร จันหมากสิต วิมลรัตน อัตตบูรณ์ ณพล อนุตตรังษ์ และ ปันพารีย์ แต่ประยูร^{2*}

¹คุณยิวิจัยและบริการวิชาการ โครงการจัดตั้งวิทยาเขตนครสวรรค์ มหาวิทยาลัยมหิดล อำเภอพยุหะคีรี จังหวัดนครสวรรค์ 60130

²หน่วยวิจัยการใช้ประโยชน์ทางการเกษตรและสิ่งแวดล้อม โครงการจัดตั้งวิทยาเขตนครสวรรค์ มหาวิทยาลัยมหิดล อำเภอพยุหะคีรี จังหวัดนครสวรรค์ 60130

*ผู้เขียนหลัก อีเมล: puntaree.tae@mahidol.ac.th

คำสำคัญ:

จังหวัดนครสวรรค์
การปลูกข้าว
พื้นที่ชุมชน
แบบเปี่ยกลับบ้าง
การวิเคราะห์ดิน

พื้นที่เกษตรกรรมรอบบึงบ่อระเพิด จังหวัดนครสวรรค์ ตั้งอยู่นอกเขตชลประทาน มีการปลูกข้าวนานาปีในฤดูฝนและปลูกข้าวนานาปีและนาปรังตลอดปีทำให้ไม่สามารถประเมินการใช้น้ำได้ ซึ่งส่งผลต่อการทำนาและการวางแผนเริ่มฤดูปลูก การปลูกข้าวของเกษตรกรในพื้นที่ชุมชน้ำบึงบ่อระเพิดมีปัญหาหลักคือ การขาดแคลนน้ำ ต้นทุนการผลิตสูงโดยเฉพาะราคาน้ำปั๊วี่เมตรี การขาดความรู้ในการผลิตข้าวที่ถูกต้อง การใช้ปั๊วี่เมตรีกิมความจำเป็นและไม่ตรงกับความต้องการของข้าว การระบาดของโรคและแมลงศัตรูพืช การใช้สารเคมีกำจัดวัชพืชและการเผาเศษวัสดุ เพื่อเตรียมดินทำให้ดินเสื่อมโกร姆 ซึ่งส่งผลกระทบต่อประสิทธิภาพการผลิตและสภาพแวดล้อม งานวิจัยนี้มีวัตถุประสงค์เพื่อเพิ่มประสิทธิภาพการปลูกข้าวในพื้นที่น้ำร่อง 200 ไร่ ในตำบลวังมหาสาร อำเภอท่าตะโก และตำบลทับกฤษ อำเภอชุมแสง โดยการพัฒนาและปรับเปลี่ยน ประสิทธิภาพการปลูกข้าวระหว่างการทำนารูปแบบดั้งเดิม (หัวน้ำต่ำ) กับการทำนารูปแบบใหม่ที่ใช้การจัดการปั๊วี่ตามค่าวิเคราะห์ดิน (SSF) และการจัดการน้ำแบบเปี่ยกลับบ้าง (AWD) โดยใช้กระบวนการมีส่วนร่วมของชุมชนดังนี้ 1) การวิเคราะห์สถานการณ์และกำหนดแนวทางการจัดการทรัพยากรด้วยการผลิตทางการเกษตร 2) การใช้เครื่องมือชุมชนเพื่อวิเคราะห์ปั๊วี่ วางแผนแก้ไข และจัดการทรัพยากรดินเอง 3) การจัดทำแปลงสาขิดโดยชุมชนเพื่อการเรียนรู้และขยายพื้นที่การผลิตข้าวรูปแบบใหม่ 4) การศึกษาดูงานโดยชุมชน เพื่อสร้างแรงบันดาลใจและวางแผนการเปลี่ยนแปลงวิธีการปลูกข้าว 5) การรับและประยุกต์ใช้องค์ความรู้จากผู้เชี่ยวชาญและ实践经验ชาวบ้าน 6) การเยี่ยมเยียนแปลงนาสาขิดโดยชุมชนเพื่อการแลกเปลี่ยนเรียนรู้ 7) การจัดเวทีคุนข้อมูลโดยชุมชนในการตรวจสอบข้อมูลร่วม สร้างความเข้าใจและขับเคลื่อนการตัดสินใจเพื่อการเปลี่ยนแปลงที่ยั่งยืน 8) การกำหนดขอบเขตเทคโนโลยีและการจัดทำแปลงสาขิดโดยชุมชน เพื่อเพิ่มประสิทธิภาพการผลิตข้าวอย่างยั่งยืน และ 9) การตัววิเคราะห์ดินและจัดการปั๊วี่ตามค่าวิเคราะห์ดิน ล้วนผลให้แปลงนารูปแบบใหม่มีจำนวนหน่อเฉลี่ยสูงกว่ารูปแบบดั้งเดิม ในช่วงปลายของการเจริญเติบโตต้นข้าวมีแนวโน้มสูงกว่า ผลผลิตเฉลี่ยและผลตอบแทนสูงกว่า ต่อไร่สูงกว่า และเกษตรกรตระหนักรู้ถึงต้นทุนมากขึ้นและปรับพฤติกรรมการใช้ปั๊วี่จัดการผลิตอย่างเหมาะสม ซึ่งแสดงถึงศักยภาพของการขยายผลและความยั่งยืน ดังนั้นการทำนารูปแบบใหม่เพิ่มผลผลิตและรายได้ ใช้ทรัพยากรน้ำอย่างมีประสิทธิภาพลดผลกระทบต่อสิ่งแวดล้อม และส่งเสริมการเกษตรที่ยั่งยืนในพื้นที่ชุมชน้ำที่เผชิญปัญหาการเปลี่ยนแปลงจากสภาพภูมิอากาศ

บทนำ

การเปลี่ยนแปลงสภาพภูมิอากาศ (Climate change) เป็นความท้าทายสำคัญของภาคการเกษตรทั่วโลก อุณหภูมิเฉลี่ยรายปีเพิ่มขึ้นอย่างต่อเนื่องในรอบ 20 ปีที่ผ่านมา (พ.ศ. 2546–2566) โดยมีอัตราการเพิ่มขึ้นเฉลี่ยประมาณ 0.2 องศาเซลเซียสต่อทศวรรษ และอุณหภูมิเฉลี่ยของโลกเพิ่มขึ้นประมาณ 0.4 องศาเซลเซียส (National Oceanic and Atmospheric Administration, 2023) ที่เพิ่มขึ้นในภูมิภาคเอเชียตะวันออกเฉียงใต้ เชิงข้อบ่งชี้ที่สำคัญกับความแปรปรวนของสภาพอากาศที่รุนแรงมากขึ้น ภัยแล้งที่ยาวนาน และฝนทึบช่วงในช่วงฤดูฝนจะเพิ่มขึ้น ส่งผลกระทบโดยตรงต่อปริมาณผลผลิตและความมั่นคงด้านอาหารของประชากรโลก (Food and Agriculture Organization of the United Nations, 2021) ประเทศไทยมีพื้นที่ผลิตข้าวมากที่สุด ประมาณ 58 ล้านไร่ โดยแบ่งเป็นพื้นที่นา 70–75 ล้านไร่ 25–30 เป็นพื้นที่นาในระบบประปา (Office of Agricultural Economics, 2023a) ดังนั้นพื้นที่ผลิตข้าวส่วนใหญ่จึงต้องพึ่งพาการอุปทาน้ำ แหล่งน้ำธรรมชาติเป็นหลัก

จังหวัดนครสวรรค์มีแหล่งน้ำที่สำคัญสำหรับการเพาะปลูกข้าวคือ บึงบ่อระเพิด เดิมเรียกว่า “ป่าบึงบ่อระเพิด” ซึ่งเป็นที่รับลุ่มแควล้อมด้วยป่าไม้เบญจพรรณ และมีหนองน้ำกราจ ป่าเป็นจำนวนมาก มีลักษณะธรรมชาติหลายสาย ให้สามารถกักกันน้ำไว้ให้คงทนและไม่ซึมลง เมน้ำน้ำฝนและให้ผลประโยชน์เป็นแม่น้ำเจ้าพระยา บึงบ่อระเพิดครอบคลุมพื้นที่ใน 3 อำเภอของจังหวัดนครสวรรค์ ได้แก่ อำเภอเมือง อำเภอชุมแสง และอำเภอท่าตะโก ในปี พ.ศ. 2470 มีการพัฒนาและปรับปรุงพื้นที่ชุมชนบึงบ่อระเพิด โดยการสร้างหาน้ำ กักน้ำและประตูระบายน้ำเพื่อกักเก็บน้ำ ทำให้พื้นที่ชุมชนบึงบ่อระเพิดกลายเป็นบึงน้ำจืดขนาดใหญ่ที่สุดในประเทศไทย ปี พ.ศ. 2564 บึงบ่อระเพิดมีเนื้อที่ 132,737.14 ไร่ สามารถกักเก็บน้ำได้ 222.62 ล้านลูกบาศก์เมตร มีความหลากหลายทางชีวภาพสูง มีพืชธัญญาหารและพันธุ์ป่าหลากหลายชนิด (Mahidol Channel, 2022)

บริเวณโดยรอบบึงบ่อระเพิดเป็นพื้นที่รับน้ำท่ามถึงจากการทับถมของตะกอนดินในช่วงน้ำท่าม น้ำท่ามดังกล่าวมีระดับน้ำในบึงบ่อระเพิดลดลงจึงกล่าวเป็นพื้นที่ทำการเกษตรของชุมชน โดยมีพื้นที่ที่สามารถทำการเกษตรได้รวมทั้งสิ้น 83,893.97 ไร่ ซึ่งเป็นพื้นที่ปลูกข้าว 79,858.18 ไร่ คิดเป็นร้อยละ 95.18 ของพื้นที่การเกษตรทั้งหมด ดังนั้นอาศัยพืชของเกษตรกรบึงบ่อระเพิดเป็นหลัก ในการปลูกข้าว โดยเกษตรกรเกือบทั้งหมดจะปลูกข้าวนาหัวน้ำตามในรูปแบบนาข้าว ซึ่งต้องใช้น้ำปีละ 215.78 ล้านลูกบาศก์เมตร (Anuttarakun, 2022) ซึ่งเป็นอัตราการใช้น้ำค่อนข้างสูง และมีการใช้น้ำในบึงบ่อระเพิดเพื่อการอุปโภคบริโภคโดยเป็นแหล่งน้ำดีบ สำหรับผลิตน้ำประปาในตำบล ทับกุช วังมหากร สายลำโพง

หัวหนน พนมาศย พนมอง พวนอน และการประปาส่วนภูมิภาค ของอำเภอท่าตะโก ซึ่งจำนวนประชากรที่ใช้น้ำรวมทั้งสิ้น 44,109 คน เฉลี่ยใช้น้ำปีละ 2.41 ล้านลูกบาศก์เมตร (Anuttarakun, 2022) การใช้น้ำในกิจกรรมต่าง ๆ มีปริมาณใกล้เคียงกับความสามารถในการกักเก็บน้ำของบึงบ่อระเพิด ดังนั้นในช่วงเดือนมีนาคมถึงเดือนมิถุนายนที่มีฝนตกในปริมาณน้อยจึงเกิดสภาวะขาดแคลนน้ำ หากภาวะภัยแล้งเกิดขึ้นยาวนานก็จะส่งผลกระทบรุนแรง

Saraphin et al. (2015) ระบุว่า พื้นที่ทางการเกษตรมีแนวโน้มเพิ่มขึ้นส่วนทางกับแหล่งน้ำที่มีแนวโน้มลดลง โดยในปี พ.ศ. 2555–2567 พบว่า บึงบ่อระเพิดมีปัญหาการกักเก็บน้ำได้ในปริมาณต่ำเนื่องจากภาวะฝนทึบช่วงยาวนาน จึงทำให้เกิดข้อขัดแย้งในการใช้น้ำของเกษตรกรรอบบึงบ่อระเพิดและผู้ใช้น้ำในรูปแบบอื่น ๆ (Thai PBS, 2024) นอกจากนี้พื้นที่เกษตรกรรมรอบบึงบ่อระเพิดซึ่งอยู่นอกเขตชลประทาน ไม่สามารถกำหนดขอบเขตพื้นที่การใช้น้ำจากบึงบ่อระเพิดได้ชัดเจน ทำให้ไม่สามารถประเมินปริมาณการใช้น้ำโดยเฉพาะในช่วงฤดูแล้ง ซึ่งทำให้ระดับน้ำในบึงบ่อระเพิดลดต่ำลงส่งผลกระทบต่อระบบนิเวศ ซึ่งการปลูกข้าวนาปรังในฤดูแล้งเป็นกิจกรรมหลักที่ใช้น้ำ โดยคิดเป็นร้อยละ 55 ของการใช้น้ำทั้งหมดจากบึงบ่อระเพิด และบึงบ่อระเพิดยังเป็นพื้นที่ปลูกข้าวน้ำปีในฤดูฝน และปลูกข้าวน้ำปีและนาปรังตลอดทั้งปี (Phumkumarn et al., 2025)

นอกจากนี้พื้นที่เกษตรกรรมรอบบึงบ่อระเพิดยังมีปัญหาต้นทุนการผลิตเนื่องจากราคากลุ่มปุ๋ยเคมีปรับตัวสูงขึ้น โดยในปี พ.ศ. 2564 มีการนำเข้าปุ๋ยเคมีสูตรต่าง ๆ ปริมาณรวม 5.5 ล้านตัน มูลค่า 70 ล้านบาท และในปี พ.ศ. 2565 มีการนำเข้าปุ๋ยเคมีลดลงเหลือ 4.1 ล้านตัน แต่กลับมีมูลค่าสูงถึง 103.2 ล้านบาท (Office of Agricultural Economics, 2023b) ราคากลุ่มปุ๋ยที่ปรับตัวสูงขึ้น ทำให้ชาวนารอบบึงบ่อระเพิดแบกรับภาระต้นทุนราคากลุ่มปุ๋ยเคมี นอกจากนี้ เกษตรกรยังขาดความรู้ในการผลิตข้าวที่ถูกต้องทำให้ใช้ปุ๋ยเคมีสูงเกินความจำเป็นและไม่ตระหนักรู้ถึงภัยคุกคามต่อตัวเอง ทำให้ได้ผลผลิตไม่เต็มประสิทธิภาพ ต้นทุนสูง ปุ๋ยส่วนเกินตกค้างในดิน และภัยคุกคามให้ล่องสูญแหล่งน้ำ อุตสาหกรรมขนาดใหญ่และแมลงพิษ ซึ่งต้องใช้สารเคมีกำจัดวัดพิษ และศัตรูพิษเพิ่มมากขึ้นและเกินความจำเป็น การเกษตรวัสดุเพื่อเตรียมตัวให้ดีนี้สื่อถึงการทำให้ดินดี ซึ่งปัญหาเหล่านี้ส่งผลกระทบต่อปรับเปลี่ยนภัยคุกคาม การผลิตและสภาพแวดล้อม และยังทำให้ความรุนแรงมากขึ้น

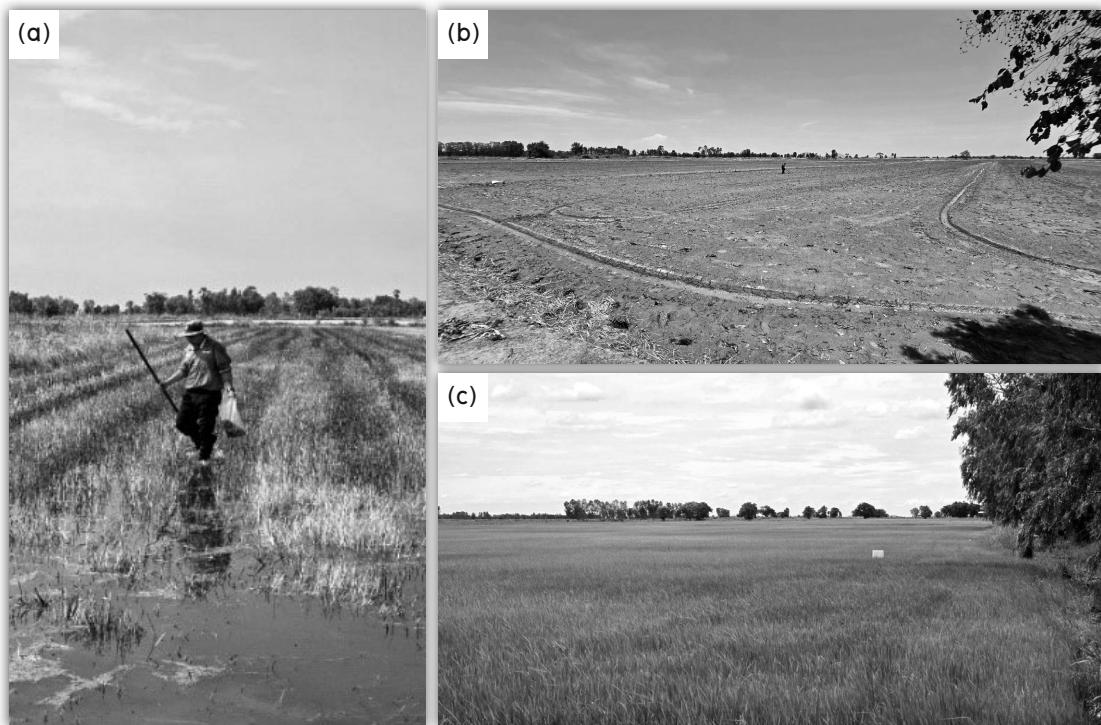
สถานการณ์ที่เป็นอยู่เดิม

พื้นที่ชุมชนบึงบ่อระเพิด จังหวัดนครสวรรค์ มีพื้นที่โดยรอบใน 10 ตำบล ครอบคลุม 3 อำเภอของจังหวัดนครสวรรค์ ได้แก่

อำเภอเมือง อำเภอชุมแสง และอำเภอท่าตะโก โดยตำบลที่นำน้ำจากบึงบ่อระเพ็ดไปใช้ประโยชน์ทางการเกษตรมี 8 ตำบล ได้แก่ อำเภอเมือง (ตำบลหนองบลึง ตำบลเกรียงไกร ตำบลแแควใหญ่ และตำบลพะนون) อำเภอชุมแสง (ตำบลทับกุช) และอำเภอท่าตะโก (ตำบลวังมหากร ตำบลพนมรอก และตำบลพนมเศย) ดังภาพที่ 1 (Figure 1) โดยใช้ปัจจัยข้าวเป็นหลัก ซึ่งเป็นกิจกรรมที่ใช้น้ำมากที่สุด โครงการบริหารจัดการทรัพยากริมน้ำแบบมีส่วนร่วมบึงบ่อระเพ็ด รายงานว่า กิจกรรมปัจจัยข้าวใช้น้ำถึง 215.78 ล้านลูกบาศก์เมตรต่อปี หรือร้อยละ 90.7 ของการใช้น้ำทั้งหมดจากบึงบ่อระเพ็ด ขณะที่ กิจกรรมอื่น ๆ เช่น การประมง การอุปโภคบริโภค และการปลูกพืช ชนิดอื่น ใช้น้ำในสัดส่วนน้อยมาก (Anuttarankun, 2022)

เกษตรกรในพื้นที่ชุมชนบึงบ่อระเพ็ดส่วนใหญ่ปลูกข้าวแบบนาหัวน้ำตาม ดังภาพที่ 2 (Figure 2) มีการใช้น้ำเฉลี่ย 1,351 ลูกบาศก์เมตรต่อไร่ ต่อรอบการผลิต (Anuttarankun, 2022) ในสภาวะฝนที่ช่วงหรือมีน้ำน้อยในฤดูแล้ง ชานนาจานวนมากจึงสูบนำ้ำจากบึงบ่อระเพ็ดมาใช้ปัจจัยข้าว แต่เนื่องจากไม่มีระบบการจัดสรรน้ำหรืออุตสาหกรรมใช้น้ำที่เป็นธรรมจึงทำให้เกิดข้อขัดแย้งและความตึงเครียดระหว่างกลุ่มผู้ใช้น้ำ โดยเฉพาะในช่วงปีที่มีปริมาณน้ำในบึงต่ำกว่าร้อยละ 50 ของปริมาณความจุปกติ นอกจานี้สภาพพื้นที่ของบึงบ่อระเพ็ดที่มีลักษณะคล้ายจานข้าวจึงทำให้เก็บน้ำได้ไม่มาก และมีตะกอนดินให้มาสะสมในช่วงฤดูน้ำหลากของทุกปีซึ่งมีปริมาณสูงถึง 2.89 ล้านลูกบาศก์เมตรต่อปี ส่งผลให้เกิดการตื้นเขินและลดความสามารถในการเก็บน้ำในระยะยาว (Anuttarankun et al., 2018)

ภาพรวมของการปลูกข้าวใน 8 ตำบลรอบบึงบ่อระเพ็ด ในปีเพาะปลูก 2565/66 (Agricultural Production Information


System, 2025) แสดงการใช้น้ำและไม่ใช้น้ำจากบึงบ่อระเพ็ด โดยมีครัวเรือนที่ประกอบอาชีพทำนา ทั้งข้าวนาปีและนาปรังจำนวน 8,002 และ 2,115 ครอบครัว ใช้เนื้อที่ปลูกข้าวจำนวน 171,945.25 และ 116,176 ไร่ ได้ผลผลิตข้าวเฉลี่ย 725.37 และ 762.50 กิโลกรัมต่อไร่ ตามลำดับ ตำบลที่มีจำนวนครัวเรือนและมีเนื้อที่ปลูกข้าวนานาปีสูงสุด 3 ลำดับแรก คือ ตำบลพนมรอก วังมหากร และทับกุช ตามลำดับ ดังตารางที่ 1 (Table 1) ตำบลที่มีจำนวนครัวเรือนปัจจัยข้าวนานาปีสูงสุด 3 ลำดับแรก คือ ตำบลทับกุช พนมรอก และเกรียงไกร ดังตารางที่ 2 (Table 2) ตำบลที่มีเนื้อที่ปลูกข้าวนานาปรังสูงสุด 3 ลำดับแรก คือ ตำบลวังมหากร ทับกุช และพนมรอก ซึ่งส่วนใหญ่แล้วการปลูกข้าวนานาปรังของเกษตรกรจะใช้น้ำจากบึงบ่อระเพดมากกว่าการปลูกข้าวน้ำที่ใช้พึ่งน้ำฝนจากธรรมชาติ ยกหัวพื้นที่ข้าวนาปรังส่วนใหญ่ยังอยู่บริเวณริมขอบบึงบ่อระเพดมากกว่าพื้นที่ข้าวนาปีที่กระจายอยู่ห่างไกลออกไป

เกณฑ์การกำหนดพื้นที่นำร่องในการปรับเปลี่ยนการทำนาและการใช้น้ำอย่างมีประสิทธิภาพ เลือกจากตำบลที่มีพื้นที่ปลูกข้าวและปริมาณการใช้ปัจจัยการผลิตสูงที่สุด 2 ลำดับแรก คือ ตำบลวังมหากร อำเภอท่าตะโก และตำบลทับกุช อำเภอชุมแสง ซึ่งทั้งสองตำบลมีปัญหาใกล้เคียงกันและอยู่ในพื้นที่รอบบึงบ่อระเพดและมีข้อมูลดังนี้

ตำบลวังมหากร อำเภอท่าตะโก จังหวัดนครสวรรค์ เป็นชุมชนที่ประกอบอาชีพด้านการเกษตรที่สืบทอดมาอย่างนาน มีพื้นที่ปลูกข้าวนานาปรัง 36,000 ไร่ ประชากรประกอบอาชีพทำนาร้อยละ 31.88 (Agricultural Production Information System, 2025) มีลักษณะภูมิประเทศเป็นที่ราบลุ่ม มีลำคลองธรรมชาติเป็นแหล่งน้ำตันทุน 1 สาย ซึ่งจะไหลไปรวมกับคลองสายอื่นที่บึงบ่อระเพด

Figure 1 The territory of eight subdistricts surrounding Bueng Boraphet; (a) Nong Pling, (b) Khwae Yai, (c) Kriangkrai, (d) Thap Krit, (e) Phra Non, (f) Phanom Set, (g) Wang Mahakon, and (h) Phanom Rok

Figure 2 Traditional rice cultivation practices of farmers in the Bueng Boraphet area; (a) Burning rice stubble after harvesting and pumping water into the paddy field in preparation for plowing, (b) Paddy fields plowed and prepared for rice seed broadcasting, and (c) Rice plants in the paddy field growing densely due to excessive use of rice seeds and chemical fertilizers

Table 1 Rainfed rice production data in 8 subdistricts, cropping year 2022/23

Subdistrict	Number of rice farming households	Cultivated area (Rai)	Average yield (kg/Rai)	Average selling price (THB/kg)
Nong Pling	367	6,285.25	719.57	9.56
Phra Non	572	12,127.00	713.87	9.69
Wang Mahakon	1,450	43,420.00	700.00	8.00
Phanom Rok	3,319	45,915.00	585.01	8.43
Phanom Set	700	20,700.00	737.68	8.09
Thap Krit	1,230	35,550.00	846.31	8.00
Kriangkrai	357	7,818.25	755.26	8.83
Khwae Yai	7	129.75	745.28	9.01
Average	–	–	725.37	8.70
Total	8,002	171,945.25	–	–

Source: Agricultural Production Information System, 2025

เกษตรกรในพื้นที่ร้อยละ 90 นิยมปลูกข้าวพันธุ์ กข 41 แต่แหล่ง แย่งชิงน้ำ ในฤดูฝนจะมีน้ำท่วมขังในพื้นที่เป็นวงกว้างทำให้ไม่ กักเก็บน้ำไม่เพียงพอ เพราะมีการสูบน้ำไปใช้ทำงานมากเกินไป ในหน้าแล้งช่วงเดือนเมษายนถึงเดือนพฤษภาคมของทุกปีจะ ขาดแคลนน้ำกินน้ำใช้และน้ำสำหรับทำการเกษตร ทำให้เกิดปัญหา ไม่สามารถปลูกข้าวได้ ช่วงฤดูน้ำหลากเกิดปัญหาน้ำ嫩 เนื่องจาก การทับถมของวัชพืชที่เจริญเติบโตในคลอง น้ำในคลองมีกลิ่น สาหร่ายทางการเกษตร การทำการเกษตรมีต้นทุนสูง และมีวัชพืช

Table 2 Dry-season rice production data in 8 subdistricts, cropping year 2022/23

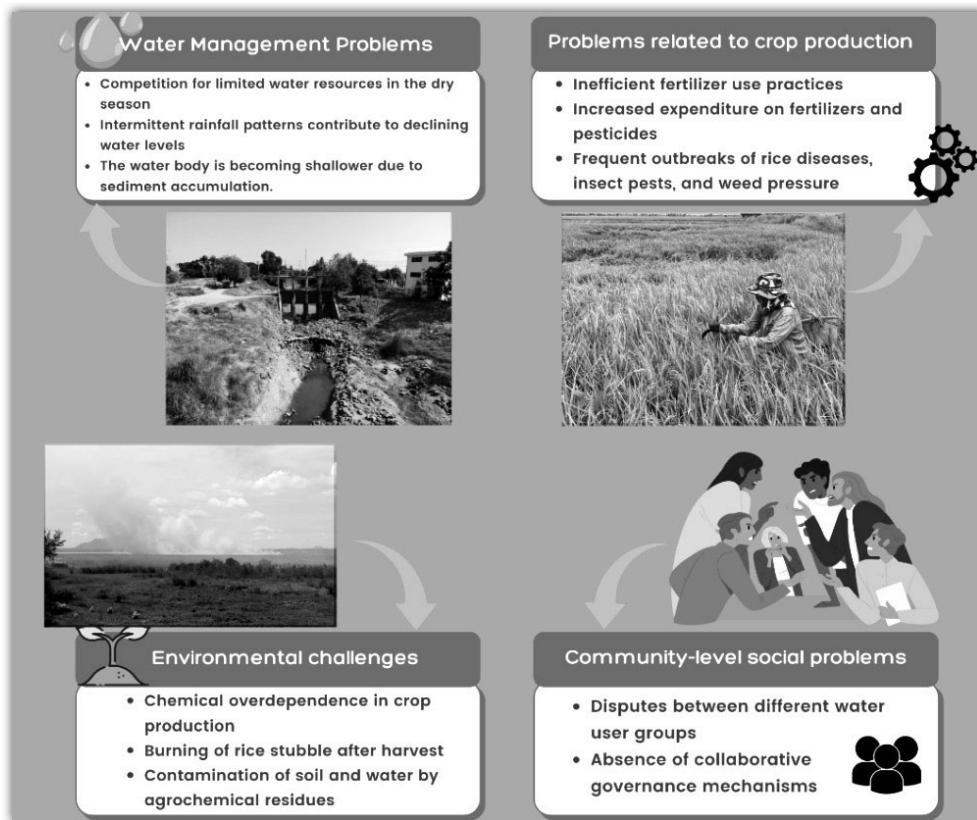
Subdistrict	Number of rice farming households	Cultivated area (Rai)	Average yield (kg/Rai)	Average selling price (THB/kg)
Nong Pling	8	60.00	800.00	8.00
Phra Non	100	1,629.00	800.00	8.00
Wang Mahakon	260	36,000.00	700.00	7.00
Phanom Rok	500	30,000.00	700.00	7.00
Phanom Set	50	12,500.00	700.00	7.00
Thap Krit	842	31,100.00	800.00	8.50
Kriangkrai	355	4,807.00	800.00	8.00
Khwae Yai	3	80.00	800.00	8.00
Average	—	—	762.50	7.68
Total	2,115	116,176.00	—	—

Source: Agricultural Production Information System, 2025

ในนาข้าว เช่น ข้าวตีด ข้าวหาง ข้าวแดง หญ้าลิเก หญ้าดอกข้าว ที่แพร่กระจายทำให้ผลผลิตข้าวตกต่ำ และในบางฤดูกาลมีแมลงศัตรูพืชระบาด เช่น เพลี้ยกระโดดสิน้ำด้าว หนอนกอ บัว และพบว่า เกษตรกรบางรายลักษณะผลผลิตข้าวเพื่อเตรียมแบ่งลงนาในฤดูเพาะปลูก ผลผลิตข้าวในรอบปีการเพาะปลูก 2565/66 ทั้งตำบลได้ผลผลิตเฉลี่ย 700 กิโลกรัมต่อไร่

ตำบลทับกุช อำเภอชุมแสง จังหวัดนครสวรรค์ มีพื้นที่ปลูกข้าวนาปรัง 31,100 ไร่ (Agricultural Production Information System, 2025) ประชากรประกอบอาชีพทำนาร้อยละ 70 พื้นที่ของชุมชนเป็นที่ราบลุ่มติดแม่น้ำม่าน มีลักษณะเป็นดินเนินเนียงบนทรายจึงทำให้เหมาะสมกับการปลูกข้าว คนในชุมชนมีเครื่องมืออุปกรณ์ และทักษะที่ดี มีเครื่องข่ายทางสังคมที่เข้มแข็งและมีความเข้าใจร่วมในปัญหาและมีความต้องการเดียวกัน เกษตรกรส่วนใหญ่ในพื้นที่นิยมปลูกข้าวพันธุ์ กข 41 และ กข 85 สภาพปัญหาของพื้นที่ในฤดูแล้งจะขาดแคลนน้ำในการทำการเกษตร ในช่วงหน้าแล้ง น้ำมีกิ่วน้ำแห้งและมีกิ่วน้ำตื้น ปัจจัยในการผลิต เช่น ปุ๋ยเคมี ยาฆ่าแมลง ยากำจัดวัชพืชมีราคาสูง ส่งผลให้ต้นทุนในการปลูกข้าวสูง มีวัชพืชระบาด เช่น หญ้าดอกข้าว เทียนนา หญ้าลิเก ข้าวตีด ข้าวหาง มีแมลงศัตรูข้าวระบาด เช่น หนอนกอ บัว เกษตรกรบางรายลักษณะผลผลิตข้าวเพื่อเตรียมแบ่งลงนา ผลผลิตข้าวในรอบปีการเพาะปลูก 2565/66 ทั้งตำบลได้ผลผลิตเฉลี่ย 800 กิโลกรัมต่อไร่

ตำบลวังมหากร อำเภอท่าตะโภ และตำบลทับกุช อำเภอชุมแสง มีผลผลิตข้าวเฉลี่ยทั้งสองตำบล 750 กิโลกรัมต่อไร่ ซึ่งค่อนข้างต่ำเมื่อเทียบกับค่าเฉลี่ยระดับประเทศประมาณ 809


กก./ไร่ (Office of Agricultural Economics, 2023c) และการปัจจุกข้าวรูปแบบดั้งเดิมของเกษตรกรทั้ง 2 ตำบล เป็นการทำนาแบบนาหัวน้ำน้ำต้ม จากการเก็บรวบรวมข้อมูลการผลิตข้าวแบบดั้งเดิมของตัวแทนเกษตรกรทั้ง 2 ตำบล วิเคราะห์ต้นทุนและผลตอบแทนทั้งที่เป็นเงินสดและไม่ใช้เงินสด พบว่า ต้นทุนการผลิตทั้งหมด ไร่ละ 5,359.09 บาท แบ่งเป็นต้นทุนผันแปร 3,345.59 บาท คิดเป็นร้อยละ 62.43 ของต้นทุนทั้งหมด และต้นทุนคงที่ 2,013.50 บาท คิดเป็นร้อยละ 37.57 ของต้นทุนทั้งหมด โดยมีต้นทุนเฉลี่ย กิโลกรัมละ 6.89 บาท สำหรับต้นทุนผันแปร พบว่า ค่าปุ๋ยเคมีมีต้นทุนสูงที่สุด ไร่ละ 841.69 บาท รองลงมาเป็นค่าจ้างเก็บเกี่ยว ไร่ละ 459.09 บาท คิดเป็นร้อยละ 15.71 และ 8.57 ตามลำดับ ทั้งนี้เนื่องจากเกษตรกรไม่มีความรู้เรื่องการใช้ปุ๋ยเคมีที่ถูกต้องจึงใช้ในปริมาณมากเกินความจำเป็น ราคาข้าวเปลือกแห้งที่เกษตรรายได้ กิโลกรัมละ 10.20 บาท ดังนั้นเกษตรกรมีผลตอบแทน ไร่ละ 7,571.63 บาท และมีผลตอบแทนสูตรคือ ไร่ละ 2,212.54 บาท โดยคิดเป็นอัตราผลตอบแทนต่อต้นทุนทั้งหมด 1.41 ดังตารางที่ 3 (Table 3)

เกษตรกรในตำบลวังมหากรและตำบลทับกุชมีวิธีการใช้ปุ๋ยเคมีในการผลิตคล้ายคลึงกัน โดยแบ่ง成ปุ๋ยเคมี 2 ครั้งในการปลูกแต่ละรอบการผลิต ครั้งที่ 1 เมื่อข้าวอายุได้ 20 วันหลังหัวน้ำ ครั้งที่ 2 เมื่อข้าวมีอายุ 40-45 วัน เกษตรกรแต่ละรายใช้ปุ๋ยเคมีสูตรต่างๆ แตกต่างกันตามความเชื่อส่วนตัวและตามคำแนะนำจากเกษตรกรรายอื่น หรือจากร้านจำหน่ายวัสดุทางการเกษตรในท้องถิ่น โดยไม่ทราบข้อมูลที่ถูกต้องในเรื่องของสูตร อัตราส่วน วิธีการใช้ที่ตรงตามความต้องการในการเจริญเติบโตของข้าว เกษตรกร

Table 3 Average production cost and return of traditional rice cultivation from 4 farmers in Wang Mahakon and Thap Krit subdistricts during cropping year 2022/23

Item	Cash cost (THB)	Non-cash cost (THB)	Total (THB)	Percentage (%)
1. Variable costs	2,992.09	353.50	3,345.59	62.43
1.1 Agricultural inputs				
Rice seeds	433.33	–	433.33	8.09
Chemical fertilizers	841.69	–	841.69	15.71
Pesticides (disease/insect control)	135.89	–	135.89	2.54
Herbicides	179.90	–	179.90	3.36
1.2 Labor and operations				
Land preparation	303.33	21.65	324.98	6.06
Transportation	116.67	–	116.67	2.18
Harvesting	450.00	9.09	459.09	8.57
Drone service	247.43	–	247.43	4.62
Weed/disease/insect control	–	23.31	23.31	0.43
Water management	12.50	24.65	37.15	0.69
Field maintenance	–	274.81	274.81	5.13
1.3 Other expenses				
Fuel	217.34	–	217.34	4.06
Equipment maintenance	54.01	–	54.01	1.01
1.4 Opportunity cost of short-term investment capital	30.09	–	30.09	0.56
2. Fixed Costs	20.00	1,993.50	2,013.50	37.57
2.1 Land use (own land)	–	1,800.00	1,800.00	33.59
2.2 Land tax	20.00	–	20.00	0.37
2.3 Depreciation of agricultural tools	–	193.50	193.50	3.61
3. Total production cost	3,012.09	2,347.00	5,359.09	100.00
4. Cost per kilogram (THB/kg)	4.06	3.16	6.89	
5. Average yield (kg/Rai)			742.32	
6. Selling price (THB/kg)			10.20	
7. Gross return per Rai (THB)			7,571.63	
8. Net return per Rai (THB)			2,212.54	
9. Return on total cost (benefit-cost ratio)			1.41	

แต่ละรายได้ปุ๋ยเคมีเฉลี่ย 1 กระสอบต่อไร่ ใช้ปุ๋ยเคมีสูตร 46-0-0, เกษตรกรบางรายมีการใช้ปุ๋ยอินทรีย์ จากข้อมูลทั้ง 2 ตำบลข้างต้น 30-0-0, 15-15-15, 16-20-0, 16-8-8 โดยเกษตรกรส่วนใหญ่ สรุปปัจจัยในการทำการเกษตรรอบปีงบประมาณเดียวกันที่ 3 ใช้สูตร 46-0-0 ในครั้งแรกและ 15-15-15 ในครั้งที่สอง และ (Figure 3)

Figure 3 Overview of the environmental, agronomic, and economic challenges experienced by farming communities near Bueng Boraphet

กระบวนการที่ใช้ในการเปลี่ยนแปลง และการยอมรับของชุมชนเป้าหมาย

โครงการวิจัยนี้ได้ผ่านการรับรองจริยธรรมวิจัยในคนชุดกลาง มหาวิทยาลัยมหิดล เลขที่ COA No. MU-CIRB 2024/183. 0207 เมื่อวันที่ 2 กรกฎาคม พ.ศ. 2567

1. การใช้เครื่องมือชุมชนเพื่อวิเคราะห์ปัญหา วางแผนแก้ไข และจัดการทรัพยากรตนเอง

การจัดเรื่องประชุมเพื่อระดมความคิดเห็นจากทุกภาคส่วนที่เกี่ยวข้อง ทั้งภาครัฐ ภาควิชาการ และกลุ่มเกษตรกรในพื้นที่ ผู้เข้าร่วมประกอบด้วยเกษตรกรจากต่ำบลังมหาราจจำนวน 42 คน และตำบลทั้งหมด 23 คน ผู้นำชุมชน เช่น กำนัน ผู้ใหญ่บ้าน องค์กรบริหารส่วนตำบล และหน่วยงานราชการในจังหวัดนครสวรรค์ ดังนี้ เชิดห้ามล้าสตว์ป่าบึงบอะเพ็ด สำนักงานประมงจังหวัด สำนักงานเกษตรจังหวัด สำนักงานเกษตรและสหกรณ์จังหวัด เครือข่ายองค์กรผู้ใช้น้ำบึงบอะเพ็ด และมหาวิทยาลัยมหิดล การดำเนินกิจกรรมในรูปแบบการวิเคราะห์สถานการณ์ร่วมกัน

โดยชุมชนมีบทบาทในการสะท้อนปัญหาที่เผชิญ วิเคราะห์สาเหตุที่แท้จริง วางแผนการจัดการทรัพยากรและระบบการผลิตอย่างเป็นระบบ พร้อมทั้งร่วมกันกำหนดแนวทางปฏิบัติที่สอดคล้องกับบริบทของตนเองและยังยึดในระยะยาว กระบวนการนี้ไม่เพียงมุ่งเน้นการแก้ปัญหาเฉพาะหน้าเท่านั้น แต่ยังส่งเสริมให้เกิดการรวมกลุ่ม การสื่อสารข้ามภาคส่วน และการพัฒนาเป้าหมายร่วมของชุมชน ในการทำเกษตรกรรมที่สอดคล้องกับการอนุรักษ์ทรัพยากรธรรมชาติ และส่งต่อความยั่งยืนให้กับคนรุ่นหลังไป

2. การใช้เครื่องมือชุมชนเพื่อวิเคราะห์ปัญหา วางแผนแก้ไข และจัดการทรัพยากรตนเอง

เกษตรกรได้ร่วมกระบวนการเปลี่ยนแปลงโดยอาศัยพลังจากภายใน ผ่านการใช้เครื่องมือชุมชน ได้แก่ "เข็มทิศสร้างสุข" และ "Smart A4" ซึ่งมุ่งเน้นการมีส่วนร่วมที่ส่งเสริมให้ชุมชนสามารถวิเคราะห์สถานการณ์ของตนเอง ตั้งเป้าหมายในการพัฒนา และกำหนดแนวทางปฏิบัติที่สามารถมีทำได้จริงภายใต้หลักการพึ่งพาตนเอง เริ่มจากการใช้เครื่องมือ เข็มทิศสร้างสุข ซึ่งเกษตรกรและผู้เกี่ยวข้องร่วมกันนิยามหมายของ "ความสำเร็จในการทำงาน" ผ่านคำถากชวนคิด เช่น "ความสำเร็จของการทำนาดูที่ไหน?" โดยแต่ละคนเสนอความคิดเห็นที่จะท่อนมุ่งมองของตนเอง เช่น

การลดต้นทุนการผลิต การอัดผลผลิตที่ดี การมีสุขภาพแข็งแรง การใช้พันธุ์ข้าวที่เหมาะสม รายได้ที่มั่นคง หรือการรักษาสิ่งแวดล้อม จากนั้นนำความคิดเห็นมาจัดหมวดหมู่ และเปิดโอกาสให้ทุกคนร่วมกันลงคะแนนเสียง เพื่อเรียงลำดับความสำคัญในภาพรวม นับผลการลงคะแนนในแต่ละข้อ ข้อใดมีคะแนนมากที่สุดให้จัดเป็นลำดับที่ 1 และลำดับที่ 2, 3, 4, 5 และ 6 เป็นลำดับของผลคะแนนที่ร่อง ๆ ลงมา โดยความคิดเห็นที่ได้คะแนนเป็นลำดับที่ 1 แสดงว่า คนส่วนใหญ่ให้ความสำคัญกับความคิดเห็นข้อนั้นมากที่สุด ดังภาพที่ 4 (Figure 4)

ชุมชนนำผลลัพธ์จากการจัดลำดับหัวข้อที่สำคัญที่สุดมาเป็นจุดตั้งต้นในการใช้เครื่องมือ Smart A4 เพื่อวิเคราะห์จะเลือกถึงสาเหตุของปัญหาและหาแนวทางปฏิบัติที่เป็นรูปธรรม โดยมุ่งเน้นให้เกิดการวางแผนปฏิบัติการชุมชนด้วยตนเองในกระบวนการนี้ กลุ่มเกษตรกรร่วมกันระบุปัญหาหลักจำนวน 6 ข้อ และเลือก 3 ข้อที่สำคัญเร่งด่วนที่สุด ดังภาพที่ 5a (Figure 5a) จากนั้นนำแต่ละปัญหามาเชื่อมโยงกับกิจกรรมหรือวิธีการแก้ไขที่สามารถ

ดำเนินการได้จริงภายใต้ทรัพยากรและข้อจำกัดที่ชุมชนมีอยู่ พร้อมวางแผนระยะเวลาดำเนินงานอย่างชัดเจน ตัวอย่างกิจกรรมที่ชุมชนวางแผนดำเนินการ ได้แก่ การลดการใช้สารเคมี การใช้ปุ๋ยอย่างมีประสิทธิภาพ การปรับเปลี่ยนวิธีการปลูกข้าวให้เหมาะสมกับพื้นที่ การลดปริมาณการใช้น้ำด้วยวิธีการจัดการน้ำแบบใหม่ ดังภาพที่ 5b (Figure 5b)

กิจกรรมเหล่านี้มุ่งเน้นให้เกษตรกรสามารถลงมือปฏิบัติได้ด้วยตนเองทันที และลดการพึ่งพาหน่วยงานภายนอกให้น้อยที่สุด ทั้งนี้หน่วยงานภาครัฐหรือภาควิชาการ เช่น สำนักงานเกษตรองค์การบริหารส่วนตำบล หรือมหาวิทยาลัย มีบทบาทเป็นเพียง "พี่เลี้ยง" ที่ให้การสนับสนุนด้านความรู้ การสร้างแรงจูงใจ และการจัดแหล่งเรียนรู้หรือดูงานที่เกี่ยวข้องเท่านั้น กระบวนการนี้ถือเป็นกลไกสำคัญในการสร้าง "การเรียนรู้แบบลงมือทำ" และ "การจัดการตนเองของชุมชน" ขึ้นเป็นรากฐานของการพัฒนาที่ยั่งยืนภายใต้บริบทของพื้นที่ชุมชนนำไปสู่การเชื่อมต่อ ซึ่งกำลังเชี่ยวชาญกับปัญหาทรัพยากรและลิ่งแวดล้อมที่เปลี่ยนไป

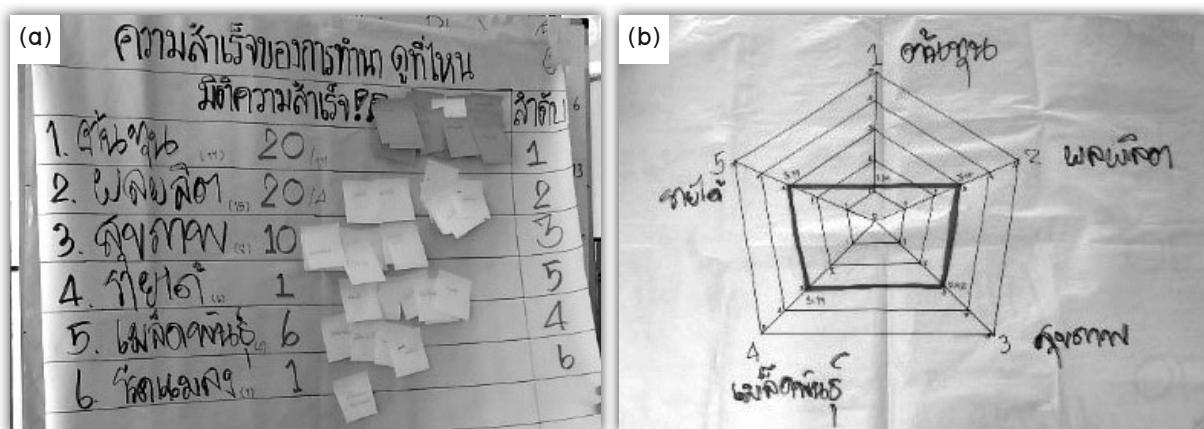


Figure 4 Scoring outcomes from the use of the Happiness Compass tool to prioritize development goals; (a) Classification and prioritization of success objectives and (b) Graph illustrating farmers' perception scores

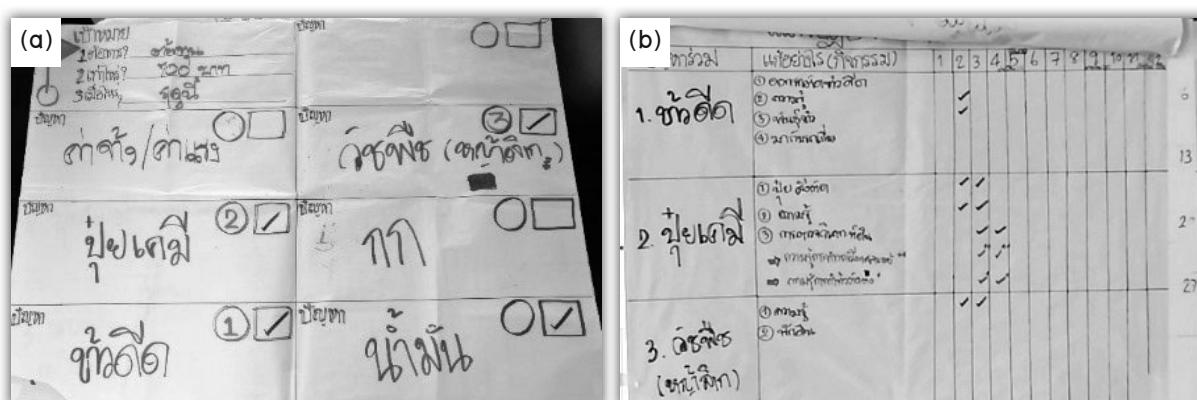


Figure 5 Implementation of the Smart A4 tool for self-reliant agricultural planning; (a) Participatory goal setting and prioritization of agricultural challenges and (b) Farmers' proposed solutions and corresponding action timeline

3. การจัดทำแปลงสาธิตโดยชุมชนเพื่อการเรียนรู้และขยายพื้นที่การผลิตข้าวรูปแบบใหม่

เกษตรกรในพื้นที่ดำเนินการจัดทำแปลงสาธิตในลักษณะของพื้นที่เรียนรู้จริง ที่เปิดโอกาสให้เกษตรกรได้ฝึกปฏิบัติจริง และประเมินผลกระทบจากการเปลี่ยนแปลงรูปแบบการผลิต ภายใต้หลักการเรียนรู้ร่วม (Collaborative learning) และการมีส่วนร่วมอย่างเต็มรูปแบบของชุมชน เริ่มต้นด้วยการจัดทำเรื่องความคิดเห็นในชุมชนเพื่อกำหนดเกณฑ์คุณสมบัติของเกษตรกรที่เหมาะสมเพื่อจัดทำแปลงสาธิต โดยชุมชนเห็นร่วมกันว่าผู้ที่เหมาะสมจะต้องเป็นผู้ที่เปิดกว้างในการเรียนรู้ มีความกระตือรือร้น ยินดีรับเทคโนโลยีใหม่ และสามารถเป็น “ผู้นำการเปลี่ยนแปลง” ที่จะถ่ายทอดองค์ความรู้สู่ผู้อื่นได้ ทั้งนี้พื้นที่ของแปลงน้ำจะต้องมีศักยภาพในการบริหารจัดการน้ำได้ สามารถดำเนินการตามแบบเปียกสลับแห้ง (Alternate Wetting and Drying – AWD) และมีขนาดพื้นที่เหมาะสมต่อการวิเคราะห์เชิงเปรียบเทียบ

ในฤดูกาลเพาะปลูกปี 2566/67 มีเกษตรกรอาสาสมัครจาก 2 ตำบล รวมจำนวน 13 ราย ซึ่งผ่านกระบวนการคัดเลือกจำนวน 8 ราย โดยการพิจารณา_rwm กันระหว่างตัวแทนชุมชน นักวิชาการเกษตรจากมหาวิทยาลัยมหิดล และนักวิชาการส่งเสริมการเกษตรจากสำนักงานเกษตรจังหวัดนครสวรรค์ การจัดทำแปลงสาธิต 8 แปลง ประกอบด้วยการทำรูปแบบใหม่ (Demonstration Paddy Fields (DPF)) จำนวน 4 แปลง ได้แก่ DPF 1 และ DPF 2 เป็นตัวแทนจากตำบลวังมหาคร และ DPF 3 และ DPF 4 เป็นตัวแทนจากตำบลทับกุฉ และการทำนารูปแบบดั้งเดิม (Traditional Farmer Practice (TFP)) จำนวน 4 แปลง เพื่อใช้เปรียบเทียบแบบ 2 แปลง ซึ่งทั้ง 2 รูปแบบมีขนาดแปลงละ 25 ไร่ รวมพื้นที่ทั้งสิ้น 200 ไร่

การดำเนินการในแปลงสาธิตเป็นการทดลองใช้เทคโนโลยีและเป็นกระบวนการเรียนรู้แบบมีส่วนร่วมระหว่างเกษตรกรเจ้าของแปลง เกษตรกรรายอื่นที่สนใจ และทีมนักวิจัย โดยมีการวางแผนร่วมกันในการเก็บข้อมูลอย่างเป็นระบบ ทั้งข้อมูลการเจริญเติบโตของต้นข้าวในแต่ละระยะ ข้อมูลด้านทุนการผลิต การใช้ปัจจัยการผลิต และผลผลิตที่ได้รับ เพื่อใช้เปรียบเทียบกับการทำนารูปแบบดั้งเดิม ซึ่งกิจกรรมในแปลงสาธิตส่งเสริมให้เกษตรกรได้ฝึกฝนทักษะการสังเกต วิเคราะห์ข้อมูล และสะท้อนผลร่วมกันในทุกช่วงของฤดูกาลผลิต ซึ่งช่วยให้เกษตรกรมีส่วนในการตัดสินใจและปรับปรุงแนวทางการผลิตของตนเอง ได้อย่างมั่นใจ นอกจากนี้ การเปรียบเทียบข้อมูลระหว่างการทำนารูปแบบใหม่กับรูปแบบดั้งเดิม ยังเป็นแรงผลักดันให้เกิดการยอมรับเทคโนโลยีมากยิ่งขึ้น

แปลงสาธิตภายในตัวแปลงที่ชุมชนใช้เป็นจุดเริ่มต้นในการขยายผลไปสู่เกษตรกรรายอื่น โดยเจ้าของแปลงทำหน้าที่เป็น “ครุชุมชน” ถ่ายทอดความรู้และประสบการณ์จากการปฏิบัติจริง ซึ่งสะท้อนให้เห็นถึงกระบวนการเปลี่ยนแปลงที่เกิดจากการเรียนรู้ร่วม

การลงมือทำจริง และการสร้างความมั่นใจผ่านผลลัพธ์ที่จับต้องได้ของชุมชน ซึ่งกระบวนการดังกล่าวมีการประยุกต์ในพื้นที่อื่นเช่นเดียวกัน เช่น วิธีการจัดทำแปลงสาธิตเรียนรู้ และปรับใช้เทคโนโลยีการผลิตข้าวที่เหมาะสมในพื้นที่สูง

4. การศึกษาดูงานโดยชุมชน เพื่อสร้างแรงบันดาลใจและวางแผนการเปลี่ยนแปลงวิธีการปลูกข้าว

กระบวนการปรับเปลี่ยนวิธีการทำงานที่สำคัญคือ การส่งเสริมให้เกิดการยอมรับและเปลี่ยนแปลงโดยการเยี่ยมชมศึกษาเรียนรู้แปลงที่ประสบความสำเร็จ ชุมชนได้ศึกษาเรียนรู้ก่อนเริ่มต้นฤดูกาลผลิต ด้วยการศึกษาดูงานจากกลุ่มเกษตรกรต้นแบบที่ประสบความสำเร็จในการพัฒนาอาชีพทำนา ซึ่งเป็นกลไกสำคัญในการเสริมสร้างแรงบันดาลใจ เปิดมุมมองใหม่ และขยายการอบรมดิบดีของเกษตรกรในพื้นที่เป้าหมาย การศึกษาดูงานเป็นกิจกรรมเสริมและเป็นส่วนหนึ่งของกระบวนการเรียนรู้แบบมีส่วนร่วม (Participatory learning) ที่เปิดโอกาสให้เกษตรกรได้พบปะแลกเปลี่ยนประสบการณ์ และซึมซับแนวทางปฏิบัติที่ประสบความสำเร็จจากพื้นที่จริง ทั้งในด้านการจัดการแปลง การใช้เทคโนโลยีการผลิตสมัยใหม่ การลดต้นทุนแรงงาน และการบริหารจัดการทรัพยากรอย่างมีประสิทธิภาพ

กระบวนการศึกษาดูงานเป็นการเปิดพื้นที่ให้ผู้เข้าร่วมได้เรียนรู้ผ่านการสังเกต ทดลองใช้เครื่องมือ และซักถามถึงข้อจำกัดและแนวทางแก้ไขที่ใช้ในแต่ละพื้นที่ ทั้งนี้ยังมีการเยี่ยมชมภาคเกษตร ที่เป็นผู้ผลิตหรือจัดทำนาอย่างเครื่องจักรกลทางการเกษตร ดังนี้ เครื่องหัวว่าน้ำปุ๋ย เครื่องดูดนา และระบบจัดการน้ำอัจฉริยะ เพื่อให้เกษตรกรสามารถประเมินศักยภาพของตนเองในการนำเทคโนโลยีเหล่านี้มาปรับใช้ให้เหมาะสมกับบริบท การดูงานในพื้นที่จริงเป็นจุดเริ่มต้นที่สำคัญของกระบวนการรับรู้เชิงเปรียบเทียบ ซึ่งช่วยให้เกษตรกรเข้าใจแนวทางใหม่ ๆ ที่สามารถนำไปสู่ผลลัพธ์ที่จับต้องได้ เช่น การลดต้นทุน การเพิ่มผลผลิต และการลดภาระด้านแรงงาน เมื่อเกิดความเข้าใจและแรงจูงใจอย่างเพียงพอ จึงเกิดการยอมรับเชิงลักษณะ (Voluntary acceptance) นำไปสู่การปรับเปลี่ยนวิธีการผลิตในแปลงของตนเอง แสดงให้เห็นถึงกระบวนการนำองค์ความรู้จากการดูงานมาวางแผนร่วมในชุมชน ซึ่งเป็นขั้นตอนสำคัญที่เชื่อมโยงระหว่าง “การเรียนรู้จากภายนอก” กับ “การเปลี่ยนแปลงจากภายใน” โดยมีชุมชนเป็นผู้ขับเคลื่อนอย่างแท้จริง

5. การรับและประยุกต์ใช้องค์ความรู้จากผู้เชี่ยวชาญและประชรษฎาชาวบ้าน

การพัฒนาการผลิตข้าวของเกษตรกรเกิดขึ้นอย่างเป็นระบบและต่อเนื่อง ชุมชนจำเป็นต้องดำเนินกระบวนการเสริมสร้างทักษะและองค์ความรู้ผ่านการเรียนรู้จากทั้ง ผู้เชี่ยวชาญทาง

วิชาการ และ ประชญาชาวบ้าน ที่มีประสบการณ์ตรงในอาชีพ เพื่อ สร้างความเข้าใจในเชิงลึก ปรับเปลี่ยนทัศนคติ พฤติกรรม และเพิ่ม ศักยภาพในการตัดสินใจอย่างมีข้อมูล (Informed decision-making) กระบวนการคัดเลือกหัวข้อที่น่ามาอบรมหรือถ่ายทอดองค์ความรู้ เริ่มจากการวิเคราะห์ความต้องการที่แท้จริงของชุมชน ผ่านเครื่องมือ Smart A4 ประเด็นที่เกษตรกรยังมีความเข้าใจไม่เพียงพอหรือขาด ทักษะในการลงมือปฏิบัติจริง จะถูกกำหนดให้เป็นหัวข้ออบรม ลำดับต้น ๆ เพื่อให้เกษตรกรได้รับองค์ความรู้เพิ่มเติมก่อนถูกกล่าว เผาปลูก และสามารถนำไปปฏิบัติได้ทันทีในแปลงของตนเอง

การจัดการเรียนรู้ใช้วิธีการหลากหลาย ทั้งการอบรมใน พื้นที่ การสาธิตแบบมีส่วนร่วม และการแลกเปลี่ยนประสบการณ์ ระหว่างเกษตรกร โดยมีหน่วยงานที่เกี่ยวข้องให้การสนับสนุน ดังนี้ นักวิชาการส่งเสริมการเกษตร จากสำนักงานเกษตรจังหวัดครุฑาร์ด ให้ความรู้เรื่องการจัดการวัชพืชในนาข้าว และแนวทางการป้องกัน และกำจัดอย่างมีประสิทธิภาพ ผู้เชี่ยวชาญจากศูนย์เมล็ดพันธุ์ข้าว นครศรีธรรมราช ถ่ายทอดองค์ความรู้ด้านพันธุ์ข้าว การจำแนกแมลง ศัตรูพืชและแมลงที่เป็นประโยชน์ พร้อมแนวทางการจัดการแมลง แบบผสมผสาน ประชญาชาวบ้านจากตำบลยางขาว อำเภอพยุหะคีรี แลกเปลี่ยนแนวทางการปลูกข้าวแบบเบิกสับแห้ง (AWD) ที่ ชาวบ้านสามารถนำไปประยุกต์ใช้ในพื้นที่ นักวิชาการเกษตรจาก มหาวิทยาลัยมหิดล ถ่ายทอดความรู้เรื่องคุณสมบัติของดิน การ ปรับปรุงบำรุงดิน และการใช้ผลวิเคราะห์ดินเพื่อการใช้ปุ๋ยอย่างมี ประสิทธิภาพ พร้อมทั้งสาธิตการใช้ชุดตรวจ KU soil test kit เพื่อ ให้เกษตรกรสามารถตรวจวิเคราะห์และใช้ปุ๋ยด้วยตนเองได้

การเรียนรู้ผ่านกิจกรรมเหล่านี้เป็นการถ่ายทอดความรู้ แบบทางเดียว และเป็นกระบวนการแลกเปลี่ยนและปรับใช้

(Adaptation) ที่เกษตรกรมีบทบาทในการตั้งค่าสถานะ ลงทะเบียนความ คิดเห็น และเลือกแนวทางที่เหมาะสมกับบริบทของตนเอง เป็นการ จุดประกายความเข้าใจใหม่ ๆ และสร้างความมั่นใจในการลงมือ ปฏิบัติจริงในแปลงนา องค์ความรู้ที่ได้รับไม่ได้จำกัดอยู่เพียงกลุ่ม ผู้เข้าอบรม หากแต่กระจายผ่านเครือข่ายการเรียนรู้ในชุมชน โดย เกษตรกรที่ผ่านการอบรมทำหน้าที่เป็นผู้ถ่ายทอดประสบการณ์ และให้คำแนะนำแก่เพื่อนบ้าน ซึ่งเป็นหัวใจสำคัญของการขับเคลื่อน การเปลี่ยนแปลงในระดับชุมชนรากอย่างยั่งยืน

6. การเยี่ยมเยียนแปลงนาสาธิตโดยชุมชนเพื่อการ แลกเปลี่ยนเรียนรู้

การเยี่ยมเยียนแปลงนาสาธิตของเกษตรกรอาสา เป็นส่วน หนึ่งของกระบวนการเรียนรู้แบบมีส่วนร่วมที่มุ่งเน้นการแลกเปลี่ยน ประสบการณ์ระหว่างผู้ลงมือปฏิบัติจริงกับผู้ที่อยู่ระหว่างการ ตัดสินใจเปลี่ยนแปลง โดยเปิดโอกาสให้เกษตรกรรายอื่น หน่วยงาน ด้านการเกษตรในพื้นที่ และหน่วยงานที่เกี่ยวข้อง ลงพื้นที่ร่วมพูดคุย อย่างไม่เป็นทางการกับเกษตรกรอาสา แปลงนาสาธิตของแต่ละ ราย ดังภาพที่ 6 (Figure 6) มีเป้าหมายเพื่อเสริมสร้างกำลังใจและ ความเชื่อมั่นให้แก่เกษตรกรอาสาผู้ทดลองใช้เทคโนโลยีใหม่ ๆ พร้อมทั้งให้คำปรึกษาและข้อเสนอแนะเชิงเทคนิคในระหว่าง กระบวนการเพาะปลูก นอกจากนี้ ยังทำหน้าที่เป็นเวที “เรียนรู้จาก การลงมือทำ” ที่เอื้อให้เกษตรกรผู้เยี่ยมชมได้ตั้งค่าสถานะ แลกเปลี่ยน ความคิดเห็น และซึมซับแนวทางการจัดการที่เหมาะสมกับบริบท ของตนเอง

เกษตรกรอาสาถ่ายทอดประสบการณ์ตรงดังนี้ แนวทาง การลดต้นทุน การบริหารจัดการน้ำ การสังเกตพัฒนาการของ

Figure 6 On-site visits to volunteer farmers' demonstration plots for monitoring and knowledge exchange; (a) Researchers visited the fields to gather data and provide support and encouragement to volunteer farmers and (b) Volunteer farmers shared their first-hand experiences from their own rice fields regarding cost reduction, water management, monitoring rice growth development, and addressing field-specific problems

ต้นข้าว หรือการแก้ปัญหาเฉพาะหน้า ซึ่งช่วยกระตุ้นให้เกิดกระบวนการเรียนรู้ร่วม (Co-learning) และสร้างแรงบันดาลใจให้แก่ผู้ที่อยู่ในช่วงการตัดสินใจว่าจะปรับเปลี่ยนแนวทางการผลิตหรือไม่ กิจกรรมนี้จะท่อนถึงบทบาทของชุมชนในฐานะแหล่งเรียนรู้ ซึ่งเกษตรกรไม่เพียงเป็นผู้รับเทคโนโลยีจากภายนอก แต่ยังสามารถทำหน้าที่เป็นผู้ถ่ายทอดองค์ความรู้แก่เพื่อนเกษตรกรในรูปแบบที่เข้าใจง่าย สมพันธ์กับบริบทจริง และเกิดความไว้วางใจมากกว่าแนวทางที่ส่งตรงจากหน่วยงานวิชาการ การเขียนเรื่องราวและภาพถ่ายเป็นพื้นที่กลางของการเปลี่ยนแปลง ซึ่งทุกภาคส่วนสามารถมีบทบาทร่วม เป็นผู้ลั่งมือปฏิบัติ ผู้สนับสนุน หรือผู้สนับสนุน ส่งผลให้เกิดวัฒนธรรมการเรียนรู้ในชุมชนที่ต่อเนื่องและยั่งยืน

7. การจัดเวทีคืนข้อมูลโดยชุมชนในการตรวจสอบข้อมูลร่วม สร้างความเข้าใจ และขับเคลื่อนการตัดสินใจเพื่อการเปลี่ยนแปลงที่ยั่งยืน

การจัดเวทีคืนข้อมูล (Feedback forum) เป็นกลไกสำคัญที่เปิดโอกาสให้ชุมชนได้ “รับรู้-สะท้อน-ตรวจสอบ” ข้อมูลที่ได้จากการดำเนินกิจกรรมในแต่ละระยะ โดยเฉพาะข้อมูลจากการเก็บรวบรวมในแปลงนาสาธิต แปลงนาดังเดิม และการสัมภาษณ์ผู้เกี่ยวข้อง เวทีคืนข้อมูลจัดขึ้นเพื่อส่งกลับผลการเก็บข้อมูลไปยังกลุ่มเป้าหมายหลัก ได้แก่ เกษตรกรอาสา เกษตรกรที่สนใจปรับเปลี่ยนวิธีการผลิต และหน่วยงานท้องถิ่นที่เกี่ยวข้อง โดยมีวัตถุประสงค์เพื่อ (1) ตรวจสอบความถูกต้องของข้อมูลร่วมกัน (2) เปิดโอกาสให้เพิ่มเติมหรือแก้ไขข้อมูลที่อาจคลาดเคลื่อน และ (3) สร้างความเข้าใจร่วมถึงผลลัพธ์จากการทำนารูปแบบใหม่เมื่อเปรียบเทียบกับรูปแบบดั้งเดิม

การนำเสนอข้อมูลเชิงเปรียบเทียบระหว่างแปลงนา รูปแบบใหม่ที่ใช้การจัดการน้ำแบบเปรียบลับแห้ง การใช้ปุ๋ยตามค่าวิเคราะห์ดินกับแปลงนารูปแบบดั้งเดิม โดยเน้นข้อมูลที่เกี่ยวกับต้นทุน ผลผลิต รายได้ ความยากง่ายในการดูแล การจัดการคัตตูร์ฟิช และการอนุรักษ์ทรัพยากรในพื้นที่ พร้อมทั้งเปรียบพื้นที่ให้เกษตรกรผู้ดำเนินการจัดทำแปลงสาธิตและท่อนถังผลการทดลองจริงทั้งด้านความสำเร็จ ปัญหา และข้อจำกัด กระบวนการนี้มีส่วนสำคัญในการสร้างความเชื่อมั่นให้กับเกษตรกรรายอื่นที่อยู่ระหว่างการตัดสินใจปรับเปลี่ยนวิธีการผลิต ซึ่งทำหน้าที่เสริมพื้นที่กลางในการแลกเปลี่ยนความคิดเห็น ถาม-ตอบข้อสงสัย และชี้ให้เห็นถึงข้อแตกต่างอย่างเป็นรูปธรรมระหว่างวิธีดั้งเดิมและวิธีใหม่ นอกจากนี้ ยังเป็นจุดเดิมต้นของการร่วมกันวางแผนพัฒนาการผลิตในดูกาลังด้วยอิทธิพลจากชุมชน ซึ่งจะท่อนถังกระบวนการเรียนรู้และตัดสินใจแบบมีส่วนร่วม (Participatory decision-making) ที่เกิดจากฐานข้อมูลจริงของชุมชน

8. การกำหนดขอบเขตเทคโนโลยีและการจัดทำแปลงสาธิตโดยชุมชน เพื่อเพิ่มประสิทธิภาพการผลิตข้าวอย่างยั่งยืน

การวางแผนฐานของการเปลี่ยนแปลงด้านการผลิตข้าวอย่างเป็นระบบ โดยกำหนดขอบเขตของเทคโนโลยีที่เหมาะสม สำหรับทดลองใช้ในพื้นที่ โดยมุ่งเน้นการเพิ่มประสิทธิภาพการผลิตผ่านการประยุกต์ใช้เทคโนโลยีการจัดการที่มีงานวิจัยรองรับ และสามารถมีอปภีปต์ได้จริงในระดับชุมชน รูปแบบเทคโนโลยีที่เลือกใช้ คือ การใช้ปุ๋ยตามค่าวิเคราะห์ดิน (SSF) การจัดการน้ำแบบเปรียบลับแห้ง (AWD) ซึ่งถูกนำมาปรับใช้ร่วมกันในระบบนาด้ำ และเปรียบเทียบกับการปลูกข้าวแบบดั้งเดิมของเกษตรกร ได้แก่ การทำนาหัวน้ำหัวต้มและการใช้ปั๊มจ่ายการผลิตอื่น ๆ ที่เกษตรกรใช้งานโดยจัดทำแปลงทดลองทั้งสองรูปแบบ จำนวน 8 แปลง รูปแบบละ 4 แปลง เพื่อให้สามารถวิเคราะห์และประเมินผลเชิงเปรียบเทียบได้อย่างเป็นระบบ โดยสุ่มเก็บตัวอย่างติดตุกแปลงนาที่ระดับความลึก 15 เซนติเมตร เพื่อนำไปวิเคราะห์ด้วยชุดทดสอบ KU soil test kit เพื่อหาค่าความเป็นกรด – ด่างของดิน (pH) ปริมาณไนโตรเจน (N) ปริมาณฟอสฟอรัส (P) และปริมาณโพแทสเซียม (K)

ขั้นตอนการปลูกข้าวรูปแบบใหม่มีดังนี้ การเตรียมดินใช้วิธีทั่วไปของเกษตรกร ใช้กล้าข้าวพันธุ์ กข 41 อายุ 21 วัน ปักดำโดยรดด่านที่ระยะหัวงั้น 18 เซนติเมตร และหัวงั้น 25 เซนติเมตร หลังจากปักดำข้าวประมาณ 30 วัน ผงหอคราจัดระดับน้ำในแปลงนา รักษาระดับน้ำไว้ 5 เซนติเมตร เนื้อผิดินช่วงที่ปัลอยให้ข้าวขาดน้ำมี 2 ครั้ง ต่อครั้งที่ 1 ในช่วงเจริญเติบโตทางลำต้น (อายุข้าว 35–45 วัน) เป็นเวลาประมาณ 10–14 วัน หรือจนกว่าระดับน้ำในแปลงนาจะลดลงต่ำกว่าผิวดิน 10–15 เซนติเมตร หรือดินในแปลงนาแตกร่าง จากนั้นเติมน้ำเข้ามาที่ระดับ 5 เซนติเมตร เนื้อผิดินครั้งที่ 2 ในช่วงข้าวแตกอ่อนสูงสุด (อายุข้าว 60–65 วัน) เป็นเวลาอีก 10–14 วัน หรือจนกว่าระดับน้ำในแปลงนาจะลดลงต่ำกว่าผิวดิน 10–15 เซนติเมตร หรือดินในแปลงนาแตกร่าง เติมน้ำเข้าแปลงนา ในช่วงตั้งห้องออกดอกถึงระยะน้ำนมให้ชั้นน้ำโดยระดับน้ำในแปลงอยู่ที่ 5–10 เซนติเมตร เนื้อผิดินจากนั้นเก็บห่อคราจัดระดับน้ำและระบายน้ำออกจากแปลงก่อนเก็บเกี่ยว 20 วัน เพื่อให้พื้นดินแห้ง การป้องกันโรคแมลงและการจัดการวัชพืช ใช้วิธีตามที่เกษตรกรพบในแปลงนา ใช้ปุ๋ยตามค่าวิเคราะห์ดิน (SSF) โดยแบ่งใส่ 3 ครั้ง อัตราการใส่ปุ๋ยแต่ละชนิดในแต่ละแปลงจะขึ้นอยู่กับปริมาณธาตุอาหารที่ตรวจสอบได้แล้วนำไปคำนวณการใช้ปุ๋ย สั่งตัดและปุ๋ยตามค่าวิเคราะห์ดินตามคุณภาพ และทำการเก็บเกี่ยวข้าวในระยะพลับพลึง สำหรับการปลูกข้าวรูปแบบดั้งเดิมหลังจากหัวน้ำข้าวแล้ว และหัวงั้น 3–5 วัน รักษาความชื้นดี เพื่อให้ต้นอ่อนมีพันน้ำ ข้าวเจริญเติบโตระยะหนึ่งจะดำเนินการขังน้ำสูงจากผิวดิน 5–10 เซนติเมตร ตลอดช่วงการเพาะปลูก และปล่อยน้ำแห้งก่อน

เก็บเกี่ยว 7 วันและการใช้ปุ๋ยขี้นอุ่นอยู่กับความต้องการของเกษตรกร แต่ละราย ไม่มีสูตรปุ๋ยและอัตราส่วนที่แน่นอนตายตัว

การดำเนินการเก็บข้อมูลใช้หลักการวิจัยแบบมีส่วนร่วม โดยเกษตรกรเป็นผู้ร่วมเก็บข้อมูลภาคสนามกับนักวิจัย ตลอดกระบวนการผลิต ข้อมูลด้านการเจริญเติบโต ดังภาพที่ 7 (Figure 7) ได้แก่ ความสูงของต้นข้าว จำนวนการแตกกอ ซึ่งดำเนินการเก็บ ในพื้นที่ 1 ตารางเมตร จำนวน 6 ชั้ตอแปลง โดยแต่ละชั้ตอสูมเก็บ ข้อมูลจาก 10 กอ ในระยะการเจริญเติบโต 3 ช่วง คือ วันที่ 45, 60 และ 75 หลังปลูก เพื่อให้ได้ข้อมูลที่หลากหลายและครอบคลุม ตลอดระยะเวลาการเจริญเติบโต

การเก็บข้อมูลความสูงของต้นข้าวในแปลงปลูกข้าวสาขิต พบร้ามีความสูงมากกว่าแปลงปลูกข้าวรูปแบบดั้งเดิมทุกช่วงเวลา แต่ผลการทดสอบทางสถิติพบว่า ความสูงของต้นข้าวยังไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ ($p > 0.05$) อย่างไรก็ตาม ค่า p ที่ใกล้ระดับนัยสำคัญ ($p = 0.08$) ในช่วง 60 และ 75 วัน แสดงให้เห็นว่าแนวโน้มความแตกต่างอาจเกิดขึ้นได้ แปลงปลูกข้าวสาขิตมีความสูงเฉลี่ยของต้นข้าวยสูงกว่าแปลงปลูกข้าวรูปแบบดั้งเดิมในทุกช่วงเวลาถึงแม้จะไม่แตกต่างทางสถิติ แปลงปลูกข้าวสาขิตในรูปแบบใหม่แสดงผลลัพธ์ที่ดีในช่วงท้ายฤดูปลูก ส่วนจำนวนหน่อของต้นข้าวระหว่างแปลงปลูกข้าวสาขิต และแปลงปลูกข้าวรูปแบบดั้งเดิมของเกษตรกรในช่วง 45, 60 และ 75 วันหลังปลูก ทุกช่วงเวลา ค่าทั้งหมดมี p -value < 0.01 แสดงว่า จำนวนหน่อของต้นข้าวในแปลงปลูกข้าวสาขิต มีมากกว่าแปลงปลูกข้าวรูปแบบดั้งเดิมอย่างมีนัยสำคัญยังทางสถิติในทุกช่วงเวลา ดังตารางที่ 4 (Table 4)

การเก็บข้อมูลผลผลิตข้าวเปลือกหลังการเก็บเกี่ยว รวมถึงข้อมูลต้นทุนตั้งแต่ต้นทางของกระบวนการผลิต ผลตอบแทนสุทธิจากการจำหน่าย โดยการวิเคราะห์เชิงเปรียบเทียบทั้งด้านเชิงภาพ และเศรษฐกิจ เพื่อหาความแตกต่างอย่างมีนัยสำคัญทางสถิติระหว่างเทคโนโลยีใหม่กับวิธีดั้งเดิม กระบวนการนี้จะหักอนึ่งชุมชน มีบทบาทร่วมในการกำหนดขอบเขตของการทดลอง ตัดสินใจร่วมกับนักวิจัย และสร้างความเข้าใจผ่านการเรียนรู้จากข้อมูลจริงที่มีส่วนร่วมในการผลิต ส่งผลให้การตัดสินใจเปลี่ยนแปลงวิธีการผลิต มีความมั่นคงมากขึ้น เนื่องจากเป็นการเปลี่ยนแปลงที่ตั้งอยู่บนฐานของประสบการณ์ตรง และผลลัพธ์ที่จับต้องได้ในพื้นที่ของตนเอง

การเก็บข้อมูลต้นทุนและผลตอบแทนการปลูกข้าวในแปลงนาสาขิต พบร้า ต้นทุนการผลิตทั้งหมด ไว้ละ 5,575.89 บาท แบ่งเป็นต้นทุนผันแปร 3,625.22 บาท คิดเป็นร้อยละ 65.02 ของต้นทุนทั้งหมด และต้นทุนคงที่ 1,950.67 บาท คิดเป็นร้อยละ 34.98 ของต้นทุนทั้งหมด โดยมีต้นทุนเฉลี่ยกิโลกรัมละ 6.86 บาท สำหรับต้นทุนผันแปรพบว่า ค่าพันธุ์ข้าวมีต้นทุนมากที่สุด ไว้ละ 900.00 บาท รองลงมาเป็นค่าปุ๋ยเคมี ไว้ละ 537.34 บาท คิดเป็นร้อยละ 16.14 และ 9.64 ตามลำดับ ทั้งนี้เนื่องจากเกษตรกรต้องใช้กล้าพันธุ์จากแหล่งผลิตกล้าพันธุ์โดยเฉพาะสำหรับทดแทน จึงทำให้ต้นทุนในส่วนนี้สูง ส่วนต้นทุนคงที่พบร้า ค่าใช้ที่ติดของตนเอง (ไม่เป็นเงินสด) เป็นต้นทุนที่สูงที่สุดของต้นทุนทั้งหมดเฉลี่ยไว้ละ 1,800.00 บาท คิดเป็นร้อยละ 32.28 ของต้นทุนทั้งหมด เมื่อพิจารณาผลตอบแทนต่อไว้ พบร้า การผลิตข้าว 1 ไร่ ได้ผลผลิตเฉลี่ยไว้ละ 812.33 กิโลกรัม เกษตรขยายข้าวเปลือกแห่งกิโลกรัมละ 10.20 บาท

Figure 7 Collaborative data collection on rice plant growth by volunteer farmers and the research team in demonstration fields; (a) Data collection of rice plant height and (b) Joint assessment of rice tiller numbers

Table 4 Plant height and tillers number between TFP and DPF plots at 45, 60, and 75 days after transplanting

Day after transplanting	Plant height (cm)				Tillers			
	TFP	DPF	t	p-value	TFP	DPF	t	p-value
45	59.28	57.09	0.7	0.27 ^{ns}	4.42	19.94	8.2	0.0006**
60	74.71	82.97	1.7	0.08 ^{ns}	4.5	18.45	3.9	0.0005**
75	93.46	107.78	1.7	0.08 ^{ns}	3.08	12.53	6.4	0.0015**

Note: TFP: Traditional Farmer Practice, DPF: Demonstration Paddy Fields, ns = not significant, ** = p < 0.01

ดังนั้นเกษตรกรรมมีผลตอบแทนไว้ระ 8,285.80 บาท และมีผลตอบแทนสูงที่ไว้ระ 2,709.91 บาท โดยคิดเป็นอัตราผลตอบแทนต่อต้นทุนทั้งหมด 1.49 ดังตารางที่ 5 (Table 5)

ข้อมูลต้นทุนและผลตอบแทนของแปลงนาสาธิตเปรียบเทียบกับการปลูกข้าวรูปแบบดั้งเดิมของเกษตรกรพบว่า ต้นทุนการผลิตทั้งหมดของการปลูกข้าวรูปแบบดั้งเดิมไว้ระ 5,359.09 บาท ต่ำกว่าต้นทุนการปลูกข้าวรูปแบบใหม่ ซึ่งอยู่ที่ไว้ระ 5,575.89 บาท โดยรูปแบบใหม่มีต้นทุนสูงกว่า 216.80 บาท/ไร่ (เพิ่มขึ้นร้อยละ 4.05) ดังนั้นการปลูกข้าวรูปแบบใหม่มีต้นทุนสูงกว่ารูปแบบเดิมประมาณ 1 ใน 25 ของต้นทุนเดิม คิดเป็นสัดส่วน การปลูกข้าวรูปแบบใหม่ : การปลูกข้าวรูปแบบดั้งเดิม = 1.04 : 1 ในส่วนของต้นทุนการปลูกข้าวรูปแบบดั้งเดิมมีต้นทุนผันแปร ได้แก่ ปุ๋ยเคมี สารกำจัดวัชพืช ค่าจ้างเดรียมดิน ค่าจ้างโดรนเกษตร ค่าดูแลรักษา ค่าน้ำมันเชื้อเพลิง สูงกว่าการปลูกข้าวรูปแบบใหม่ โดยมีต้นทุนไว้ระ 841.69, 179.90, 324.98, 247.43, 274.81 และ 217.34 ตามลำดับ เนื่องจาก การทำนารูปแบบดั้งเดิมของเกษตรกรแบบนาหัวน้ำต้องมีขั้นตอนในการเตรียมแปลง การไถ และปรับระดับนาหัวอยู่ต่อเนื่องให้ดินกลาดเป็นเนินและเรียบสม่ำเสมอ ซึ่งทั้งการปลูกใช้เมล็ดพันธุ์ข้าวในอัตรา 30 – 35 กก./ไร่ ซึ่งเป็นอัตราส่วนที่มากเกินความจำเป็น ทำให้ต้นข้าวอกเบี้ยดกันแน่น โดยอัตราที่เหมาะสมของกรรมการข้าวคือ 20 กก./ไร่ แปลงนาที่ปลูกข้าวด้วยวิธีการแบบดั้งเดิม มักพบปัญหาการเริ่มต้นของต้นข้าวที่เบี้ยดชิดกันแน่น ล่งผลให้บริเวณโคนต้นข้าวมีการหลุดร่องของกาตาน้อย เกิดสภาพแวดล้อมที่อับลง ซึ่งเอื้อต่อการแพร่กระจายของโรคพืชและแมลงศัตรูข้าว เกษตรกรจึงต้องเข้าสำรวจแปลงนาและดูแลอย่างครั้งมากขึ้นเพื่อควบคุมการระบาดของศัตรูพืช โดยส่วนใหญ่เลือกใช้สารเคมีเพิ่มมากขึ้น ล่งผลให้ต้นทุนการผลิตสูงขึ้น นอกจากนี้ แปลงนาแบบดั้งเดิมใช้สารเคมีกำจัดวัชพืชในปริมาณสูง เนื่องจากปรับเปลี่ยนทางการแพร่กระจายของวัชพืชและข้าววัชพืชเป็นจำนวนมาก แม้จะใช้สารเคมีต่อเนื่อง แต่ไม่สามารถควบคุมการระบาดได้อย่างมีประสิทธิภาพ เนื่องจากเมล็ดวัชพืชจำนวนมากยังคงตกค้างในดิน และบางครั้งเมล็ดวัชพืชจากแปลงใกล้เคียงก็หล่อเข้ามาพร้อมน้ำ เนื่องจากมีการจัดการไม่ถูกต้อง ด้านการจัดการธาตุอาหาร พบว่าเกษตรกรส่วนใหญ่ใช้ปุ๋ยเคมีในอัตราสูงเกินความจำเป็น เนื่องจาก

การขาดความรู้เรื่องชนิดและปริมาณปุ๋ยที่เหมาะสมกับความต้องการของต้นข้าว ส่งผลให้ต้นทุนด้านปุ๋ยเคมีสูงขึ้น และการซั่งน้ำในแปลงนาเกือบตลอดอายุการเจริญเติบโตของข้าวตามวิธีการแบบดั้งเดิม ยังทำให้เกิดต้นทุนค่าน้ำมันในการสูบน้ำ เนื่องจากไม่มีการบริหารจัดการน้ำอย่างประยุตและมีประสิทธิภาพ

การปลูกข้าวรูปแบบใหม่มีผลตอบแทนสูงกว่าการปลูกข้าวรูปแบบดั้งเดิม โดยมีผลตอบแทนไว้ระ 8,285.80 บาท และ 7,571.63 บาท ตามลำดับ หรือมีอัตราผลตอบแทนต่อต้นทุนทั้งหมด 1.49 และ 1.41 ตามลำดับ ดังตารางที่ 6 (Table 6) เนื่องจาก การปลูกข้าวรูปแบบใหม่มีผลผลิตต่อไร่สูงกว่า เกษตรกรที่ปลูกข้าวรูปแบบใหม่มีประสบการณ์การทำนารูปแบบใหม่ไม่มาก จึงทำให้ผลผลิตที่ได้ไม่เป็นไปตามที่คาดการณ์ไว้ แต่หากเกษตรกรมีความชำนาญและประสบการณ์มากขึ้น ก็จะส่งผลให้ในฤดูกาลหน้าสามารถเพิ่มผลผลิตได้ ทำให้มีรายได้เพิ่มมากขึ้น

9. การตรวจวิเคราะห์ดินและจัดการปุ๋ยตามค่าวิเคราะห์ดิน

เกษตรกรอาสาเป็นผู้นำตัวอย่างดีนักจากแปลงของตนเอง มาตรวจวิเคราะห์ค่าความอุดมสมบูรณ์ของดิน โดยมีนักวิจัยเป็นพี่เลี้ยงสนับสนุนด้านเทคนิคและการประมวลผลข้อมูล จากนั้นคำนวณปริมาณปุ๋ยที่เหมาะสม ขั้นตอนนี้เป็นการวางแผนฐานข้อมูล สำหรับการจัดการปุ๋ยอย่างมีประสิทธิภาพตามค่าวิเคราะห์ดิน (SSF) ร่วมกับการจัดการน้ำแบบเบิกกลั๊บแห้ง (AWD) โดยปลูกข้าวในระบบนาด้ำ ส่วนแปลงนารูปแบบดั้งเดิม 4 แปลง เกษตรกรจะทำนาหัวน้ำต้องมีร่วมกับการใช้ปุ๋ยตามที่เกษตรกรเคยใช้ ผลการวิเคราะห์พบว่าดินในแปลงสาธิตทุกแปลงมีค่าความเป็นกรด-ด่าง (pH) อยู่ในระดับกรดอ่อน พอสฟอรัส (P) และ โพแทสเซียม (K) อยู่ในระดับต่ำๆ แปลง ในโตรเจน (N) ในแปลงสาธิตที่ DPF 1 และ DPF 2 อยู่ในระดับต่ำ ส่วนแปลงที่ DPF 3 และ DPF 4 อยู่ในระดับปานกลาง

ผลการวิเคราะห์ในโตรเจนสอดคล้องกับพฤติกรรมการจัดการหลังการเก็บเกี่ยวของเกษตรกร โดยแปลงสาธิตที่ DPF 3 และ DPF 4 ไม่ได้เพาตอซั่งข้าว ส่งผลให้การสะสมของอินทรีย์วัตถุ และในโตรเจนในดินมากกว่า ดังตารางที่ 7 (Table 7) ดังนั้นเพื่อ

Table 5 Production cost and return of improved rice cultivation method

Item	Cash cost (THB)	Non-cash cost (THB)	Total (THB)	Percentage (%)
1. Variable costs	3,140.12	485.11	3,625.22	65.02
1.1 Agricultural inputs				
Rice seeds	900.00	–	900.00	16.14
Chemical fertilizers	534.01	3.33	537.34	9.64
Pesticides (disease/insect control)	182.67	–	182.67	3.28
Herbicides	79.00	–	79.00	1.42
1.2 Labor and operations				
Land preparation	73.33	225.00	298.33	5.35
Wage for transplanting	480.00	–	480.00	8.61
Transportation	87.33	–	87.33	1.57
Harvesting	450.00	–	450.00	8.07
Drone service	60.00	–	60.00	1.08
Wage for seed broadcasting	16.77	45.11	61.88	1.11
Water management	–	78.33	78.33	1.40
Field maintenance	–	133.33	133.33	2.39
1.3 Other expenses				
Fuel	187.93	–	187.93	3.37
Equipment maintenance	89.07	–	89.07	1.60
1.4 Opportunity cost of short-term investment capital	31.40	–	31.40	0.56
2. Fixed Costs	20.00	1,930.67	1,950.67	34.98
2.1 Land use (own land)	–	1,800.00	1,800.00	32.28
2.2 Land tax	20.00	–	20.00	0.36
2.3 Depreciation of agricultural tools	–	130.67	130.67	2.34
3. Total production cost	3,160.12	2,415.77	5,575.89	100.00
4. Cost per kilogram (THB/kg)	3.89	2.97	6.86	
5. Average yield (kg/Rai)			812.33	
6. Selling price (THB/kg)			10.20	
7. Gross return per Rai (THB)			8,285.80	
8. Net return per Rai (THB)			2,709.91	
9. Return on total cost (benefit-cost ratio)			1.49	

กำหนดปริมาณและสูตรปุ๋ยเคมีที่เหมาะสมกับแต่ละแปลง น้ำวิจัย และเกษตรกรร่วมกันเปรียบเทียบผลการตรวจนิวเคราะห์ดินกับตารางคำแนะนำการใช้ปุ๋ยในนาข้าว เกษตรกรอาสาทั้งหมดเลือกปลูกข้าวพันธุ์ กข 41 ซึ่งเป็นข้าวไม่ไวต่อช่วงแสง ทำให้การจัดการปุ๋ยต้องลดความต้องการของพืชในแต่ละช่วงการเจริญ

เติบโต โดยแบ่งการใส่ปุ๋ยออกเป็น 3 ครั้ง ครั้งที่ 1 วันที่ 5-7 หลังจากปักดำ ครั้งที่ 2 วันที่ 27 หลังจากปักดำ และครั้งที่ 3 ช่วงระหว่างวันที่ 42-47 วันหลังจากปักดำ สูตรปุ๋ยและปริมาณในแต่ละแปลงจะเฉพาะเจาะจง ดังตารางที่ 8 (Table 8) แต่สังเกตว่า ปริมาณปุ๋ยสูตร 46-0-0 ในแปลงสาขิตี่ DPF 3 และ DPF 4 มีค่า

Table 6 Comparison of cash and non-cash cost between traditional and improved cultivation methods

Item	Traditional method			Improved method		
	Cash cost (THB)	Non-cash cost (THB)	Total (THB)	Cash cost (THB)	Non-cash cost (THB)	Total (THB)
1. Variable costs	2,992.09	353.50	3,345.59	3,140.12	485.11	3,625.22
1.1 Agricultural inputs						
Rice seeds	433.33	-	433.33	900.00	-	900.00
Chemical fertilizers	841.69	-	841.69	534.01	3.33	537.34
Pesticides (disease/insect control)	135.89	-	135.89	182.67	-	182.67
Herbicides	179.90	-	179.90	79.00	-	79.00
1.2 Labor and operations						
Land preparation	303.33	21.65	324.98	73.33	225.00	298.33
Wage for transplanting	-	-	-	480.00	-	480.00
Transportation	116.67	-	116.67	87.33	-	87.33
Harvesting	450.00	9.09	459.09	450.00	-	450.00
Drone service	247.43	-	247.43	60.00	-	60.00
Weed/disease/insect control	-	23.31	23.31	16.77	45.11	61.88
Water management	12.50	24.65	37.15	-	78.33	78.33
Field maintenance	-	274.81	274.81	-	133.33	133.33
1.3 Other expenses						
Fuel	217.34	-	217.34	187.93	-	187.93
Equipment maintenance	54.01	-	54.01	89.07	-	89.07
1.4 Opportunity cost of short-term investment capital	30.09	-	30.09	31.40	-	31.40
2. Fixed Costs	20.00	1,993.50	2,013.50	20.00	1,930.67	1,950.67
2.1 Land use (own land)	-	1,800.00	1,800.00	-	1,800.00	1,800.00
2.2 Land tax	20.00	-	20.00	20.00	-	20.00
2.3 Depreciation of agricultural tools	-	193.50	193.50	-	130.67	130.67
3. Total production cost	3,012.09	2,347.00	5,359.09	3,160.12	2,415.77	5,575.89
4. Cost per kilogram (THB/kg)	4.06	3.16	6.89	3.89	2.97	6.86
5. Average yield (kg/Rai)			742.32			812.33
6. Selling price (THB/kg)			10.20			10.20
7. Gross return per Rai (THB)			7,571.63			8,285.80
8. Net return per Rai (THB)			2,212.54			2,709.91
9. Return on total cost (benefit-cost ratio)			1.41			1.49

น้อยกว่าแปลงสาธิตที่ DPF 1 และ DPF 2 เนื่องจากแปลงเหล่านี้ สามารถลดการพึ่งพาปุ๋ยเคมีได้โดยไม่กระทบต่อการเจริญเติบโต ซึ่งมีในโตรเจนสะสมในดินจากอินทรีย์วัตถุที่ไม่ถูกเผาทำลาย จึง ของข้าว กระบวนการนี้จะช่วยลดการนำเข้ามูลทางวิทยาศาสตร์มา

ใช้ร่วมกับภูมิปัญญาและประสบการณ์ของเกณฑ์การอย่างมีล้วนร่วม เป็นการส่งเสริมให้ชุมชน เกิดความเข้าใจที่ลึกซึ้งเกี่ยวกับระบบเศรษฐกิจ ในนา และสามารถวางแผนการใช้ปุ๋ยได้อย่างแม่นยำ ประหยัด และ ไม่ส่งผลกระทบต่อสิ่งแวดล้อม ซึ่งเป็นหัวใจของการขับเคลื่อนสู่ การเปลี่ยนแปลงการผลิตที่ยั่งยืนโดยชุมชนเป็นผู้นำ

การนำกระบวนการพัฒนาแบบมีส่วนร่วมของชุมชนและการประยุกต์ใช้เทคโนโลยีการผลิตข้าวรูปแบบใหม่ การจัดการปุ๋ยตามค่าวิเคราะห์ดิน (SSF) และการจัดการน้ำแบบเปลี่ยนแปลงสับเปลี่ยน (AWD) มาใช้ในพื้นที่น้ำร่อง โดยมีการจัดทำแปลงสาธิตเพื่อเปรียบเทียบกับวิธีการปลูกข้าวแบบดั้งเดิม เป็นการเปลี่ยนแปลงที่ส่งผลทั้งด้านชีวภาพ เศรษฐกิจ และการจัดการทรัพยากร ดังข้อมูลเบรียบเทียบในตารางที่ 9 (Table 9) ซึ่งสะท้อนถึงความแตกต่างของสถานการณ์ การปลูกข้าวในอดีตกับปัจจุบัน ทั้งด้านวิธีการปลูก การจัดการน้ำ การใช้ปัจจัยการผลิต ผลผลิต ต้นทุน และการยอมรับเทคโนโลยีของเกษตรกร

ความรู้หรือความเชี่ยวชาญที่ใช้

๖๙

ข้าวเป็นพืชตระกูลหญ้า จัดเป็นพืชล้มลุกในสกุลօร์ยา (Genus *Oryza*) วงศ์แกรมมีนี (Family Gramineae) เจริญเติบโตได้ดีทั้งในเขตร้อนชื้น (Tropical zone) และเขตอุ่น (Temperate zone)

สามารถเจริญเติบโตในสภาพแวดล้อมที่หลักหลาຍ ทั้งเป็นที่ดอนที่ลุ่ມ และที่น้ำลึก พืชในสกุลօอิโรชาเพริ่งร่าจายทั่วโลกอย่างน้อย 22 ชนิด แบ่งเป็นข้าวเพื่อบริโภค 2 ชนิด คือ ข้าวปลูกເອເຊຍ (*O. sativa*) และข้าวปลูกແພວິກາ (*O. glaberrima*) อีก 20 ชนิด เป็นข้าวปาที่พับในทวีปເອເຊຍ (Ariyanaatakatawong, 2015) ข้าวจำแนกออกเป็น 3 ชนิด (Technology Transfer Division Rice Research Institute, 2000) ดังนี้

1) จำแนกตามฤดูกาลการปลูก ได้แก่ ข้าวนาปี หรือข้าวนา
น้ำฝน (Rain fed rice) หมายถึง ข้าวที่เพาะปลูกในช่วงฤดูฝนซึ่งเป็น
ฤดูกาลการปลูกข้าวปกติของประเทศไทย โดยจะเริ่มทำการตั้งแต่เดือน
พฤษภาคมถึงเดือนตุลาคมและเก็บเกี่ยวผลผลิตเสร็จลิ่มประมาณ
เดือนมกราคมถึงเดือนกุมภาพันธ์ของแต่ละปี และข้าวนาปรัง หรือ
ข้าวนอกฤดู (Off-season rice) หมายถึง ข้าวที่เพาะปลูกนอกฤดูฝน
โดยส่วนใหญ่ปลูกในพื้นที่ชลประทานดีหรือมีน้ำเพียงพอ โดยพื้นที่
ข้าวที่นำมาใช้ปลูกข้าวปรังเป็นพื้นที่ไม่ได้ต่อช่วงแสง ส่วนใหญ่
จะเริ่มทำการตั้งแต่เดือนมกราคม หรือแตกต่างกันในแต่ละพื้นที่

2) จำแนกตามความไวต่อช่วงแสง (Photoperiod sensitive variety) ได้แก่ ข้าวที่ไวต่อช่วงแสง หมายถึง ข้าวที่ปลูกโดยมีวันออกดอกและวันเก็บเกี่ยวตามปฏิทิน เพราะการออกดอกอยู่ครบคุม ด้วยความยาวของช่วงแสงทำให้สามารถปลูกได้ผลดีในสภาพธรรมชาติเพียงปีละครั้ง โดยจะปลูกในช่วงการปลูกข้าวนาปี และ ข้าวที่ไม่ไวต่อช่วงแสง (Non-photoperiod sensitive variety) หมายถึง ข้าวที่ปลูกโดยมีอายุนับจากวันปลูกถึงวันเก็บเกี่ยวคงที่ เพราะการ

Table 7 Soil properties results (pH, N, P, K) in each Demonstration Paddy Fields (DPF) before planting

Type	pH	N	P	K
DPF 1	5	Low	Low	Low
DPF 2	5	Low	Low	Low
DPF 3	6	moderate	Low	Low
DPF 4	5.5	moderate	Low	Low

Table 8 Fertilizer rates in each Demonstration Paddy Fields (DPF) determined according to soil test results

Type	Rate and time for fertilizer application (kg/Rai)				
	1st			2nd	3rd
	46-0-0	18-46-0	0-0-60	46-0-0	46-0-0
DPF 1	3	11	7	3.5	3.5
DPF 2	3	11	7	3.5	3.5
DPF 3	1	11	7	2.5	2.5
DPF 4	1	11	7	2.5	2.5

Table 9 Comparison of past and present rice cultivation practices in the Bueng Boraphet area

Aspect	Past (traditional method)	Present (after implementation of 9-step process)
Cultivation method	Broadcast seeding in puddled fields with continuous flooding	Transplanting with controlled water levels based on growth stage (AWD)
Water management	Average 1,351 cu.m./Rai, 5 irrigations per production cycle	Average 810–910 cu.m./Rai, 3 irrigations per production cycle
Number of tillers	Average 4.42 tillers/clump at 45 days after planting	Average 19.94 tillers/clump at 45 days after planting (over 4 times higher, $p < 0.01$)
Yield per Rai	742.32 kg/Rai	812.33 kg/Rai (+70.01 kg/Rai or +9.43%)
Total production cost	5,359.09 THB/Rai	5,575.89 THB/Rai (+4.05%), but lower costs for fertilizer, chemicals, and water
Benefit–cost ratio (BCR)	1.41	1.49
Weed management	High herbicide use, difficult weed control	Weed problems reduced by ~70%, weedy rice reduced by ~80%
Soil quality	Post-harvest residue burning, soil degradation, low organic matter	No burning in some plots, increased organic matter and soil nutrients
Chemical use	High usage of chemical fertilizers and herbicides	Site-specific fertilizer management (SSF) and reduced chemical use
Technology adoption	Adherence to traditional methods, lack of confidence in change	Farmers accept and are confident due to visible local results
Scalability potential	Limited to local area and traditional methods	Potential to expand to surrounding Bueng Boraphet areas and similar contexts

อกรวงไม่เกี่ยวข้องกับความขาวของช่วงแสงเจ็งสามารถปลูกได้ตลอดปี ข้าวที่ไม่ไวต่อแสงสามารถปลูกได้ทั้งนาปีและนาปรัง โดยเฉพาะในเขตพื้นที่ชลประทานที่มีน้ำใช้ตลอดปี

3) จำแนกตามวิธีการปลูกข้าว ได้แก่ ข้าวน้ำด้ำ หมายถึง ข้าวที่ปลูกโดยวิธีปักด้ำ ข้าวน้ำห่วน หมายถึง ข้าวที่ปลูกโดยวิธีห่วนอาจเป็นการห่วนข้างอก (ห่วนน้ำดัม) หรือห่วนข้าวแห้ง (ห่วนสำราญ หรือห่วนหลังขี้ไก) และข้าวน้ำหยอด หมายถึง ข้าวที่ปลูกโดยวิธีหยอดเมล็ดในหลุม เช่น การปลูกข้าวไร่

พันธุ์ข้าวใหม่ในประเทศไทยที่มีการพัฒนาคือ ข้าวเจ้าพันธุ์ กช107 (พิษณุโลก 72) เป็นข้าวไม่ไวต่อช่วงแสง อายุการเก็บเกี่ยวข้าวแบบน้ำด้ำจะอยู่ในช่วง 107 ถึง 108 วัน ในขณะที่นาห่วนน้ำดัม อยู่ในช่วง 89 ถึง 100 วัน โดยกอข้าวมีลักษณะทรงกอตั้งสูงจากพื้น 102 เซนติเมตร ใบมีลีสีเขียวเข้ม รวงແน่นปานกลาง จำนวนเมล็ดต่อ 114 เมล็ด/รวง เมล็ดมีลักษณะรวงง่าย มีผลผลิตเฉลี่ย 674–1070 กิโลกรัมต่อไร่ คุณภาพการสีดีมาก การหุงต้มเมื่อข้าวสุกจะไม่มีกลิ่นหอม เป็นข้าวร่วนไม่เกะตัว เนื้อสัมผัสร้อนขึ้นง่าย มีความสามารถในการทนทานต่อเพลี้ยกระโดดสีน้ำตาล อ่อนแอต่อโรค ชอบใบแห้ง โรคใหม่ และเพลี้ยกระโดดหลังข้าว เหมาะสำหรับปลูก

ในพื้นที่นาชลประทานภาคกลางและภาคเหนือตอนล่างของประเทศไทย (Phonkhod et al., 2025)

การปลูกข้าวแบบเปียกสลับแห้ง (Alternate wetting and drying: AWD)

การปลูกข้าวแบบเปียกสลับแห้ง หรือการปลูกข้าวแบบใช้น้ำข้ออย เป็นการปล่อยให้ข้าวขาดน้ำในช่วงเวลาที่เหมาะสม เพื่อเป็นการกระตุ้นให้รากและลำต้นข้าวเจริญเติบโตเพื่อต้านหาเหล่งน้ำ ทำให้ต้นข้าวขยายขนาด ไม่เหมาะสมกับนาที่เป็นดินทรายและดินเดิม ผืนนาต้องมีผิดติดเรียบได้ระดับทั่วทั้งแปลง การปลูกข้าวควรปลูกในรูปแบบนาด้ำซึ่งจะส่งผลดีต่อการเจริญเติบโตมากกว่าห่วน และพื้นที่ต้องสามารถสูบน้ำกลับล่อยเข้าหรือออกได้สะดวก ในระยะเวลา 1 เดือนหลังจากการดำเนินจะรักษาระดับน้ำในแปลงนาที่ความลึกเหนือผิดติด 5 เซนติเมตร และทำการปล่อยน้ำให้แห้ง 2 ครั้ง คือ ครั้งที่ 1 ในช่วงข้าวเจริญเติบโตทางลำต้น และครั้งที่ 2 ช่วงข้าวแตกกอสูงสุด จากนั้นรักษาระดับน้ำไว้ที่ 5–10 เซนติเมตร ก่อนเก็บเกี่ยว 10 วัน จึงปล่อยให้แห้ง (Water Management Development Division, 2016) การปลูกข้าวแบบเปียกสลับแห้ง ช่วย

ให้มีการใช้น้ำอย่างมีประสิทธิภาพโดยไม่ส่งผลกระทบต่อปริมาณผลผลิต ลดค่าใช้จ่ายด้านพลังงาน ส่งผลให้ต้นข้าวมีการเจริญเติบโตที่ดีทั้งขนาดลำต้น ความสูง และการตั้งต้นการเจริญเติบโตของรากข้าวอย่างชัดเจน (Bumrungbood et al., 2020)

การจัดการปุ่ยตามค่าวิเคราะห์ดิน (SSF)

การใช้ปุ๋ยเท่าที่จำเป็น โดยการประเมินหรือวิเคราะห์ความ
อุดมสมบูรณ์ของดินก่อนการปลูกพืชต้องใช้วิธีการเก็บตัวอย่างดิน¹
มาวิเคราะห์เพื่อให้ทราบปริมาณธาตุอาหาร และค่าความเป็น
กรด-ด่างของดิน แล้วนำมาปรับปรุงเทียบกับปริมาณความต้องการ
ธาตุอาหารของพืชที่ปลูก จากนั้นจึงคำนวณปริมาณธาตุอาหาร
หลักที่เหมาะสมกับพืชชนิดนั้น ๆ หากดินมีปัจุหาน่า เช่น เป็นดินกรด
ต้องมีการจัดการปรับสภาพให้เหมาะสม (Suphan Buri Land
Development Station, 2016)

การพัฒนาการผลิต

ใช้วิธีวิจัยแบบมีล่วงร่วมและการถ่ายทอดเทคโนโลยี พนบฯ การใช้พัฒนชุดข้าว กข22 (RD22) ร่วมกับการใส่ปุ๋ยเคมีตามค่าวิเคราะห์ดิน และการจัดการตัตระพืชที่เป็นมิตรต่อสิ่งแวดล้อม เช่น การใช้การตักแมลงและจุลินทรีย์ปฎิปักษ์ สามารถเพิ่มผลผลิตเฉลี่ยได้ร้อยละ 20 (ประมาณ 102 กิโลกรัมต่ำไร่) และลดต้นทุนการผลิตลงร้อยละ 13 (ประมาณ 477 บาทต่ำไร่) เมื่อเทียบกับรูปแบบดั้งเดิม นอกจากนี้ ยังส่งผลให้รายได้สูงขึ้นของเกษตรกรเพิ่มขึ้น และเสริมสร้างความมั่นคงทางอาหารระดับครัวเรือน อีกทั้งส่งผลต่อการพัฒนาชุมชน เกิดการรวมกลุ่มเกษตรกร การแลกเปลี่ยนความรู้ และการจัดตั้งศูนย์ข้าวชุมชน ตลอดจนสามารถใช้เป็นต้นแบบเชิงนโยบายในการขยายผลไปยังพื้นที่อื่น ๆ ได้ (Hantanapong et al., 2025)

การวิเคราะห์ต้นทุนและผลตอบแทนการผลิต

การวิเคราะห์ต้นทุนการผลิต จะพิจารณาหัวทั้งต้นทุนที่เป็นเงินสด หมายถึง ต้นทุนที่ผู้ผลิตจ่ายออกไปเป็นเงินสด และต้นทุนที่ไม่ใช่เงินสด หมายถึง ต้นทุนที่ผู้ผลิตไม่ได้จ่ายเป็นเงินสด แต่ได้ประเมินให้สำหรับค่าปัจจัยการผลิตต่าง ๆ ที่เป็นของผู้ผลิตซึ่งหาได้จากการประเมินตามราคาห้องถิน โดยองค์ประกอบของต้นทุนการผลิตแบ่งออกเป็น 2 ประเภท คือ ต้นทุนคงที่ และต้นทุนผันแปร (Pochana, 2012)

การวิเคราะห์ผลตอบแทน

- รายได้ทั้งหมด (Total revenue: TR) หมายถึง ผลคูณระหว่างผลผลิตต่อไร่กับราคาผลผลิตที่เกษตรกรได้รับ ณ ระดับฟาร์ม: $TR = TP \times P$ หรือ $P = \frac{TR}{TP}$ ค่าเฉลี่ยของวิธี

พาร์ม $TR = TR \times Py$ เมื่อ Py คือ ราคาผลผลิต

- รายได้สูงชั้น หมายถึง รายได้ทั้งหมดลับตัวยั่นทุนการผันแปร

- กำไรสุทธิ (Profit : π) หมายถึง รายได้ทั้งหมดลบด้วยต้นทุนทั้งหมด

กำไรสุทธิ = รายได้ทั้งหมด (TR) – ต้นทุนทั้งหมด (TC)

- รายได้เนื้อตันทุนเงินสด หมายถึง ผลต่างระหว่างรายได้ทั้งหมดกับต้นทุนที่เป็นเงินสดทั้งหมด

Saruno (2023) ศึกษาการเปรียบเทียบต้นทุนและผลตอบแทนการปลูกข้าวเจ้าสุวรรณบุรี 1 ระหว่างวิธีหวานและวิธีปักดำในพื้นที่ตำบลห้วยยางโนน อำเภอปากท่อ จังหวัดราชบุรี โดยเก็บข้อมูลจากเกษตรกรจำนวน 30 ราย พบร่วม การปลูกแบบหวานมีต้นทุนการผลิตเฉลี่ยต่อไร่สูงกว่าเมื่อเทียบกับการปักดำ และการปักดำมีรายได้เฉลี่ยต่อไร่และกำไรสูงที่เฉลี่ยต่อไร่สูงกว่า วิธีหวาน อีกทั้งอัตรากำไรสูงที่ต่อยอดขยายของ การปักดำยังสูงกว่า การหวาน สะท้อนให้เห็นว่าวิธีปักดำมีความคุ้มค่ามากกว่าและเหมาะสมต่อการพัฒนาในเชิงเศรษฐกิจสำหรับเกษตรกร

การวิจัยเชิงบูรณาการ (Integrative research)

การวิจัยโดยใช้มโนญาณรู้ในสาขาวิชาต่าง ๆ ที่เกี่ยวข้องมาประยุกต์ร่วมกัน เพื่อสร้างองค์ความรู้ หรืออนวัตกรรมใหม่เชิงพัฒนา ซึ่งตอบสนองต่อโจทย์ หรือสภาพปัจจุบันที่ต้องการคำตอบ หรือการนำความรู้เหล่านั้นไปประยุกต์ใช้ในการแก้ไขปัญหาที่เกิดขึ้น ที่มีความครบถ้วนสมบูรณ์ในตัวเอง ในลักษณะการวิจัยและพัฒนา เพื่อการใช้ประโยชน์ในเรื่องนั้น ต้องมีการจัดการในรูปแบบต่าง ๆ เช่น การเปิดโอกาสให้ผู้มีส่วนได้ส่วนเสีย (Stakeholder) เข้ามาร่วมตั้งโจทย์การแก้ไขปัญหา หรืออาจร่วมเป็นทีมงานวิจัย การจัดเวลาที่ระดมความคิดเห็น การร่วมประชุม หรือการจัดทำประชาพิจารณ์ เพื่อนำไปสู่การกำหนดโจทย์ และวิธีการแสวงหาคำตอบ ซึ่งทำให้ได้ผลการวิจัยที่ใช้ประโยชน์อย่างแท้จริง หรืออาจมีการเปิดโอกาสให้ผู้ใช้ประโยชน์ร่วมลงทุนในการทำวิจัย หรือมีการนำผลงานวิจัยเผยแพร่สู่สาธารณะ เพื่อการรับรู้และผลลัพธ์ท่อนกลับ และการขยายผลงานวิจัยอย่างกว้างขวาง สะท้อนความเห็นไปสู่ภาครัฐที่เป็นผู้กำหนดนโยบาย (Angsurat, 2013)

Chanayotha et al. (2025) ใช้การบริหารสถานศึกษาตามแนวพุทธศาสนาสร้างสรรค์ร่วมกับเทคโนโลยีสร้างสรรค์ สำหรับโรงเรียนประถมศึกษาขนาดเล็ก พบว่าโรงเรียนมีความต้องการบูรณาการแนวพุทธศาสนาสร้างสรรค์กับเทคโนโลยีสร้างสรรค์ในระดับสูง โดยเน้นด้านวิชาการมากที่สุด โดยมีโมเดลที่พัฒนาประกอบด้วย 11 กลยุทธ์ ครอบคลุม มิติวิชาการ งบประมาณ บุคลากร ทั่วไป และผ่านการรับรองว่ามีความเหมาะสม แล้วความเป็นไปได้ระดับมาก โดยเสนอให้นำไปใช้เป็นกรอบนิยามรายระดับจังหวัดและเขตพื้นที่ เพื่อยกระดับการบริหารโรงเรียนขนาดเล็ก

ทฤษฎีการมีส่วนร่วม (Participation theory)

แนวคิดที่สำคัญในการพัฒนาชุมชน การศึกษาอย่างมีคุณภาพ การจัดการทรัพยากร และการพัฒนาที่ยั่งยืน ซึ่งเน้นให้ประชาชนหรือกลุ่มเป้าหมายมีส่วนร่วมในการตัดสินใจและ

กระบวนการต่าง ๆ ที่ส่งผลกระทบต่อชีวิต แนวคิดนี้เชื่อว่าการมีส่วนร่วมจะช่วยเสริมสร้างความมุติธรรม ความโปร่งใส และประสิทธิภาพในการดำเนินงานต่าง ๆ (Cornwall, 2008)

Hantanapong et al. (2025) ใช้แนวทางการบริจัยแบบมีส่วนร่วม โดยเน้นการบูรณาการของค์ความรู้ทางวิทยาศาสตร์กับประสบการณ์ของเกษตรกรในชุมชน การมีส่วนร่วมสะท้อนผ่านกระบวนการ 5 ขั้นตอนหลัก ได้แก่ (1) การประชุมหารือร่วมกับเจ้าหน้าที่รัฐ ผู้นำชุมชน และตัวแทนเกษตรกรเพื่อระบุปัญหาและความต้องการ (2) การถ่ายทอดความรู้ด้านเทคโนโลยีการผลิตข้าว (3) การเปิดโอกาสให้เกษตรกรมีส่วนร่วมในการคัดเลือกเทคโนโลยีการผลิตที่เหมาะสมกับพื้นที่ (4) การจัดประชุมกลุ่มย่อยและฝึกอบรม จัดตั้งศูนย์เรียนรู้ในชุมชน (5) การประเมินผลผลิตและต้นทุนร่วมกันเพื่อให้เกษตรกรตัดสินใจยอมรับเทคโนโลยีได้ด้วยตนเอง

ເຂົ້ມທີ່ສ່ຽງສ່າງ

แนวคิดและเครื่องมือเชิงกระบวนการการที่ใช้เป็นแนวทางในการพัฒนาชุมชนโดยยึด “คน” เป็นศูนย์กลาง โดยเฉพาะในบริบทของการพัฒนาเกษตรเชิงพื้นที่ระดับตำบล ซึ่งมีเป้าหมายปลายทางคือ “ความสุข” ของเกษตรกร โดยให้ “คน” เป็นคนคิด” มุ่งสร้างพลังจากภายใน “ระเบิดจากข้างใน” ผ่านการมีส่วนร่วมอย่างมีคุณภาพและการเรียนรู้ร่วมกัน โดยเริ่มจากการตั้งคำถามเพื่อค้นหา “เป้าหมายใหญ่” ที่ต้องการบรรลุในระยะเวลา 3 ปี ซึ่งมักจะเกี่ยวข้องกับคุณภาพชีวิต การประกอบอาชีพ หรือความมั่นคงในระดับชุมชนราก จากนั้นจึงให้เกษตรกรร่วมกันประเมินสถานภาพปัจจุบันในแต่ละมิติของเป้าหมายที่ตั้งไว้ และวิเคราะห์ระดับความสำคัญเร่งด่วนของปัญหา โดยใช้หลักคิดการพึงตันของประกอบกับเครื่องมือ Smart A4 เพื่อจัดทำแผนปฏิบัติการที่สามารถวัดผลได้จริง เช่นที่ศรีสวัสดิ์สุขสิ่งไม่เพียงเป็นเครื่องมือศิริศาสตร์ แต่ยังทำหน้าที่ “เครื่องมือความคิด” เพื่อสร้างแรงบันดาลใจให้

เกษตรกรเกิดความเข้าใจในตนเองและชุมชน พร้อมลงมือพัฒนาพื้นที่ของตนอย่างมีเป้าหมาย ลดความลังกับบริบท และยังยืน (Weeraphatanniran, 2022)

Smart A4

Smart A4 เป็นเครื่องมือวางแผนปฏิบัติการที่ออกแบบมาเพื่อส่งเสริมให้ “คนทำเป็นคนคิด” โดยยึดหลักการพึงต้นเองในการพัฒนาอย่างยั่งยืน หมายความว่า ให้สามารถกำหนดเป้าหมายที่ชัดเจน วัดผลได้ และมีความท้าทาย โดยใช้กระดาย A4 แผ่นเดียว แบ่งออกเป็น 8 ช่อง สำหรับกำหนดเป้าหมาย 1 ช่อง และระบุปัญหาสำคัญ 7 ช่อง โดยกระบวนการเริ่มจากการตั้ง “เป้าหมายที่ชัดเจนและท้าทาย” เช่น ต้องการลดต้นทุน เพิ่มผลผลิต หรือพัฒนาคุณภาพชีวิตให้ดีขึ้น ภายในระยะเวลาที่กำหนด จากนั้นจึงวิเคราะห์ปัญหาโดยรอบ (360 องศา) และคัดเลือกแนวทางที่ “แก้ได้ แก้ทัน” และจัดลำดับความสำคัญไม่เกิน 3 ปัญหา เพื่อวางแผนแก้ไขที่ตรงจุดและมีประสิทธิภาพ Smart A4 ยังช่วยปรับทัศนคติและพัฒนาทักษะการคิดวิเคราะห์ของเกษตรกร ผ่านกระบวนการจัดทำแผนปฏิบัติการรายบุคคล (Individual Farmer Production Plan: IFPP) หรือแผนกลุ่ม ช่วยให้กระบวนการเรียนรู้ร่วมกันเกิดขึ้นจริงและนำไปสู่การเปลี่ยนแปลงอย่างยั่งยืน (Weeraphatanniran, 2022) นอกจากนี้ Smart A4 เป็นเครื่องมือที่ใช้วางแผนบนฐานคิดการพึงต้นเอง โดยกำหนดเป้าหมายที่ชัด ท้าทาย วัดผลได้ ให้คนคิดอย่างเป็นระบบ วิเคราะห์ปัญหาอย่างรอบด้าน เลือกแก้ที่จุดเล็ก แก่ง่าย ทันเวลา และส่งผลมาก (Rattanacharoen et al., 2024)

สถานการณ์ใหม่ ที่เปลี่ยนแปลงไปจากเดิม

1. ด้านการมีส่วนร่วมของชุมชน

กระบวนการมีส่วนร่วมในระดับชุมชนที่ใช้เครื่องมือ “เข้มทิศสร้างสุข” และ “Smart A4” เป็นการเปิดพื้นที่ให้เกษตรกร วิเคราะห์ปัญหาด้วยตนเอง วางแผนและออกแบบกิจกรรมพัฒนา ที่เหมาะสมกับบริบทของตนเอง ส่งผลให้เกษตรกรมีความเข้าใจ และยอมรับต่อการเปลี่ยนแปลงมากขึ้น โดยการจัดทำแปลงนา สาธิตเพื่อเปรียบเทียบการเจริญเติบโต ผลผลิต ด้านทุนการผลิต ทำให้สามารถวัดผลลัพธ์ได้อย่างชัดเจนทั้งในด้านชีวภาพ เศรษฐกิจ และความรู้ของเกษตรกร ซึ่งแสดงให้เห็นถึงความเป็นไปได้ในการ ยกระดับแนวทางการผลิตข้าวอย่างยั่งยืน ตามความเหมาะสมของ พื้นที่ การพัฒนาเกษตรกรรมที่เป็นมิตรกับสิ่งแวดล้อม มีดั่งทุนที่ เหมาะสม และสามารถปรับตัวต่อการเปลี่ยนแปลงสภาพภูมิอากาศ ได้อย่างมีประสิทธิภาพ ทั้งยังเป็นแนวทางในการบริหารจัดการ

ทรัพยากรน้ำอย่างมีส่วนร่วมที่อาจขยายผลต่อในพื้นที่รอบบึงบอระเพ็ดและพื้นที่อื่น ๆ ที่มีบริบทใกล้เดียงกัน ในอนาคตได้

วิธีการในแปลงปลูกข้าวสาขิตเป็นการดำเนินรูปแบบนาดำส์ผลต่อการเพิ่มจำนวนหน่อของต้นข้าวอย่างมีนัยสำคัญทางสถิติ เมื่อเปรียบเทียบกับแปลงปลูกข้าวแบบดั้งเดิมของเกษตรกรที่เป็นนาหัวร่วนที่มีการขังน้ำตลอดเวลา โดยเฉพาะในช่วง 45 วันหลังปลูก แปลงสาขิตมีจำนวนหน่อเฉลี่ยมากกว่าแปลงของเกษตรกรถึง 4 เท่า (19.94 เทียบกับ 4.42 หน่อ) ซึ่งสะท้อนให้เห็นถึงความสามารถของระบบหากในการแตกหน่ออย่างมีประสิทธิภาพ สาเหตุที่จำนวนหน่อในแปลงสาขิตสูงกว่าการปลูกข้าวรูปแบบดั้งเดิมของเกษตรกรอาจเนื่องมาจากพืชได้รับออกซิเจนในดินเพิ่มขึ้นในช่วงที่ไม่มีน้ำซึ่งช่วยให้อดอกระบวนการแปลงเซลล์และพัฒนาของตัวเจริญที่นำไปสู่การเกิดหน่อใหม่ได้ดีขึ้น การได้รับออกซิเจนในดินที่มากขึ้นยังช่วยส่งเสริมการทำงานของจุลินทรีย์ในดิน ซึ่งช่วยให้ธาตุอาหารพร้อมใช้มากขึ้น ล่งผลทางอ้อมต่อการแตกหน่อและการพัฒนาระบบต้นอย่างไร้กีดขวาง แม้ว่าระบบ AWD จะมีผลดีต่อการแตกหน่อในระยะแรก แต่พบว่า จำนวนหน่อในช่วง 75 วันหลังปลูกมีแนวโน้มลดลง ในทั้งสองกลุ่ม ซึ่งอาจเป็นผลจากการคัดเลือกตามธรรมชาติของต้นข้าว (Self-thinning) ที่คงไว้เฉพาะหน่อแข็งแรงเพื่อพัฒนาเป็นรากข้าวในช่วงออกดอกออก

2. ด้านปริมาณน้ำที่ใช้ในการดำเนินการและปริมาณผลผลิตข้าว

ปริมาณการใช้น้ำในการปลูกข้าวรูปแบบดั้งเดิมของเกษตรกร (นาหัวร่วนน้ำตาม) ซึ่งมีการใช้น้ำเฉลี่ย 1,351 ลบ.ม./ไร่ต่อรอบการผลิต (เกษตรกรจะสูบน้ำเข้านาประมาณ 5 ครั้งต่อรอบการผลิต) เมื่อเกษตรกรปรับเปลี่ยนการดำเนินรูปแบบเป็นกลับหลังมีปริมาณการใช้น้ำเฉลี่ยอยู่ที่ 810–910 ลบ.ม./ไร่ต่อรอบการผลิต (ลดการสูบน้ำเข้านาเหลือประมาณ 3 ครั้งต่อรอบการผลิต) การปลูกข้าวรูปแบบดั้งเดิมมีผลผลิตข้าวต่อไร่เฉลี่ย 742.32 กก. ส่วนแปลงนาสาขิตมีผลผลิตมากกว่า โดยเฉลี่ยมีผลผลิตไร่ละ 812.33 กก. และยังสูงกว่าค่าเฉลี่ยผลผลิตตระดับประเทศประมาณ 809 กก./ไร่ แปลงสาขิตให้ผลผลิตสูงกว่าการปลูกข้าวรูปแบบดั้งเดิม 70.01 กก./ไร่ คิดเป็นเพิ่มขึ้นร้อยละ 9.43 เมื่อเทียบเป็นสัดส่วน แปลงสาขิต : แบบดั้งเดิม = 1.09 : 1 ทั้งนี้เนื่องจากผลผลิตจากการปลูกข้าวรูปแบบดั้งเดิมในขั้นตอนเตรียมดินมีการเพาฟงข้าวทำให้มีอินทรีย์ตั้งตระหง่าน และการใช้ปุ๋ยเคมีที่ไม่ตรงกับความต้องการของข้าว ทำให้มีผลผลิตต่อไร่ต่ำกว่าการปลูกข้าวรูปแบบใหม่

3. ด้านต้นทุนและผลตอบแทน

การปลูกข้าวรูปแบบใหม่ของเกษตรกร มีผลตอบแทนสูงกว่าการดำเนินรูปแบบดั้งเดิม ถึงแม้จะมีต้นทุนการผลิต เช่น

ค่าพันธุ์ข้าวที่สูงกว่าแต่เมื่อต้นทุนด้านอื่น ๆ ส่วนใหญ่ต่ำกว่าและมีปริมาณผลผลิตสูงกว่าการดำเนินรูปแบบดั้งเดิม ทำให้มีผลตอบแทนสูงขึ้น ซึ่งเป็นแนวทางการปลูกข้าวที่ลดปริมาณการใช้น้ำและเป็นการปลูกข้าวที่เป็นมิตรกับสิ่งแวดล้อม อีกทั้งในการปรับรูปแบบการดำเนินการ เกษตรกรสามารถกำจัดวัชพืชได้ดีขึ้น เพราะในช่วง 1 เดือนแรกหลังดำเนินการขังน้ำในแปลงนา ทำให้วัชพืชไม่สามารถเจริญเติบโตได้จึงทำให้ปัญหาวัชพืชลดลงประมาณร้อยละ 70 และการปรับวิธีการปลูกข้าวเป็นรูปแบบนาดำ สามารถกำจัดข้าววัชพืชได้ง่ายขึ้น เนื่องจากหากข้าวขากดูกองกอกออกกอกแล้ว แสดงว่าข้าว กอนนั้นเป็นข้าววัชพืช เกษตรกรสามารถเก็บออกจากแปลงนาได้โดยง่าย ลดปัญหาข้าววัชพืชลงได้ประมาณร้อยละ 80

ผลกระทบและความยั่งยืนของ การเปลี่ยนแปลง

การดำเนินการวิจัยเชิงปฏิบัติการแบบมีส่วนร่วมในพื้นที่รอบบึงบอระเพ็ด ในตำบลลังมหาการและทับกฤษ นำไปสู่การเปลี่ยนแปลงเชิงโครงสร้างที่สำคัญในระดับชุมชน รากฐานของภาคเกษตรกรรม ทั้งในมิติของเศรษฐกิจ สิ่งแวดล้อม สังคม และกระบวนการเรียนรู้ของชุมชน โดยเฉพาะเมื่อชาวบ้านได้ลงมือปรับเปลี่ยนระบบการผลิตข้าวจากวิธีการเดิมที่พึ่งพาตัวและใช้สารเคมีในปริมาณสูง ไปสู่ระบบประหดันน้ำ ใช้ปุ๋ยและใช้สารเคมีกำจัดศัตรูพืชอย่างมีเหตุผล ความเปลี่ยนแปลงนี้นับเป็นสถานการณ์ใหม่ที่เกิดจากการมีส่วนร่วมอย่างแท้จริงของชุมชน ไม่ใช่การทดลองตามคำแนะนำของภาครัฐหรือภายนอก ความเชื่อมโยงระหว่างผลผลิต ต้นทุน สุขภาพ สิ่งแวดล้อม และคุณภาพชีวิตอย่างบูรณาการ ดังนี้

ผลกระทบเชิงเศรษฐกิจ เกษตรกรสามารถลดต้นทุนการผลิตบางรายการที่มีค่าใช้จ่ายสูงโดยไม่จำเป็น เช่น ปุ๋ยเคมีและค่าน้ำมันสูบน้ำ ขณะเดียวกันผลผลิตเพิ่มขึ้นและมีคุณภาพดีขึ้น ทำให้รายได้สูงขึ้นต่อไร่เพิ่มขึ้นจาก 2,212.54 บาท (รูปแบบดั้งเดิม) เป็น 2,709.91 บาท (รูปแบบใหม่) และอัตราผลตอบแทนต่อต้นทุนเพิ่มจาก 1.41 เป็น 1.49 ซึ่งสร้างแรงจูงใจให้เกษตรกรสืบสานแนวทางใหม่ต่อไป และสร้างแรงจูงใจแก่เกษตรกรรายอื่น

ผลกระทบต่อสิ่งแวดล้อม ระบบการปลูกข้าวแบบเป็นกลับหลัง ทำให้ใช้น้ำต่อไร่ลดลง ขณะเดียวกันการใช้ปุ๋ยตามค่าใช้จ่ายที่ต้องจ่ายลดลง แต่ต้องการผลผลิตเพิ่มขึ้นและมีคุณภาพดีขึ้น ลดปัญหามลพิษในพื้นที่รอบบึงบอระเพ็ด และช่วยรักษาสมดุลของระบบปักริเวชในระยะยาว

ผลกระทบทางสังคมและการเรียนรู้ของชุมชน กระบวนการมีส่วนร่วมส่งผลให้ชุมชนเกิดการเรียนรู้ร่วม (Collective learning) และเกิดกลุ่มเกษตรกรที่มีความพร้อมจะเป็นผู้นำการ

เปลี่ยนแปลงต่อไป เช่น การตั้งกลุ่มเรียนรู้ลดดั่นทุนข้าว การจัดเวทีพูดคุยแลกเปลี่ยนความรู้ การรวมกลุ่มเพื่อสื่อสารกับหน่วยงานภาครัฐ และกลุ่มวิสาหกิจชุมชนเป็นบอร์เดอร์ลิสต์การบอน สิ่งเหล่านี้ไม่เพียงส่งผลในด้านการเพาะปลูกเพียงครั้งเดียว แต่เป็นการสร้างทุนทางสังคม (Social capital) ที่จะเป็นพื้นฐานในการขับเคลื่อนชุมชนอย่างต่อเนื่อง

การสร้างต้นแบบในพื้นที่จริง แปลงนาสาธิตได้ถูกยกระดับให้เป็น “แหล่งเรียนรู้ประจำตำบล” โดยมีเกษตรกรเจ้าของแปลงทำหน้าที่เป็นวิทยากรท่องถิ่นถ่ายทอดความรู้ การสนับสนุนโดยหน่วยงานรัฐและห้องถิ่น จังหวัดนครสวรรค์ มีคำสั่งจัดตั้งคณะกรรมการขับเคลื่อนการพัฒนาเกษตรกรรมแบบเปียกสลับแห่งในพื้นที่ต้นแบบบึงบอร์เดอร์ (คำสั่งที่ 3387/2567) เพื่อสร้างกลไกสนับสนุนเชิงนโยบายและบประมาณอย่างต่อเนื่อง การสร้างระบบเครือข่ายชานาเพื่อการขยายผล เกษตรกรในตำบลต้นแบบได้ร่วมกันจัดตั้งเครือข่ายเกษตรกรผู้ใช้น้ำและผู้ปลูกข้าวแบบลดดั่นทุน ซึ่งสามารถแลกเปลี่ยนข้อมูลระหว่างตำบลและขยายองค์ความรู้ไปยังพื้นที่ใกล้เคียง การบูรณาการกับหลักสูตร

ฝึกอบรมในท้องถิ่น ความรู้จากการดำเนินการถูกถ่ายทอดไปสู่ชุมชน เรียนรู้การเกษตรประจำตำบล เพื่อใช้เป็นหลักสูตรฝึกอบรมให้เกษตรกรรุ่นใหม่ รวมถึงนักเรียนในโรงเรียนที่เข้าร่วมกิจกรรมด้านสิ่งแวดล้อมและเกษตรยั่งยืน การสนับสนุนเทคโนโลยีและชุดเครื่องมือ การสนับสนุนชุดทดลองดินจากหน่วยงานที่เกี่ยวข้อง หรือจากการรวมกลุ่มของเกษตรกรเพื่อจัดซื้อชุดทดลองดินมาใช้ตรวจวิเคราะห์ และจัดทำคู่มือการทำการเกษตรแบบ AWD เพื่อให้เกษตรกรสามารถทำซ้ำกิจกรรมได้ด้วยตนเอง

กิจกรรมประจำ

โครงการนี้ได้รับทุนอุดหนุนจากมูลนิธิรอกกี้เพลเลอร์ ภายใต้โครงการปรับวิถีการเกษตรในพื้นที่ชุมชนน้ำบึงบอร์เดอร์ ให้เป็นมิตรกับสิ่งแวดล้อม และแปลงต้นแบบการปลูกข้าวแบบเปียกสลับแห้งของกลุ่มผู้ผลิตเมล็ดพันธุ์ข้าวสามัคคีพันธุ์ข้าวตำบลพยุหะคีรี จังหวัดนครสวรรค์

References

Agricultural Production Information System. (2025). *Production report of crop cultivation by area, cropping year 2022/23*. Department of Agricultural Extension, Ministry of Agriculture and Cooperatives. Retrieved June 10, 2025, from: <https://production.doae.go.th/service/data-state-location>. (in Thai).

Angsurat, A. (2013). *Integrated research in agricultural extension*. Bangkok, Thailand: Kasetsart University. (in Thai).

Anuttarankun, N., Pohwiang, N., Kwangkwang, W., Thiruppasornkul, R., & Awakul, P. (2018). *Soil erosion assessment in the Bung Boraphet watershed using GIS*. Conference on Natural Resources, Geographic Information Systems, and Environment, December 14, 2018, Information Technology and Communication Service Center Building Naresuan University, Phitsanulok, Thailand. (in Thai).

Anuttarankun, N. (2022). *Participatory water management project in the Bung Boraphet wetland area Nakhon Sawan Campus Establishment Project*. (Final Reports). Mahidol University: Research and Academic Service Center. (in Thai).

Ariyatanakottawong, P. (2015). *Rice and production technology*. Bangkok: Triple Education Co., Ltd. (in Thai).

Arnstein, S. R. (1969). A ladder of citizen participation. *Journal of the American Institute of Planners*, 35(4), 216–224. <https://doi.org/10.1080/01944366908977225>.

Phonkhod, B., Deerusamee, C., Pattawatang, P., Moonninta, P., Pornsopon, K., Pornsopon, P.,, & Maneenuam, T. (2025). RD107 (Phitsanulok 72), a non-glutinous rice variety. *Thai Rice Research Journal*, 16(1), 6–16. (in Thai).

Bumrungbood, J., Hanpattanakit, P., Chidthaisong, A., Saeng-Ngam, S., & Vanitchung, S. (2020). Efficiency of water management by alternative wetting and drying on rice growth and production. *Srinakharinwirot University Journal of Science and Technology*, 12(24), 25–41. (in Thai).

Chanayotha, P., Watcharaporn, P. M., & Sombun, T. (2025). Model of integrated strategy development of school administration based on Buddhist principles and creative technology for small-sized elementary schools in Northeastern Thailand. *Journal of Educational Innovation and Research*, 9(1), 358–373. (in Thai).

Cornwall, A. (2008). Unpacking “participation”: Models, meanings and practices. *Community Development Journal*, 43(3), 269–283. <https://doi.org/10.1093/cdj-bsn010>.

Food and Agriculture Organization of the United Nations. (2021). *The state of food and agriculture 2021: Making agrifood systems more resilient to shocks and stresses*. Rome, Italy: FAO.

Hantanapong, A., Meepanya, S., Jaikawin, S., Kanghae, P., & Inted, S. (2025). Enhancement of rice production through the development of farmers by utilizing rice production technologies from Rice Department in Mae Jam District, Chiang Mai Province, Thailand. *Area Based Development Research Journal*, 17(1), 18–34. (in Thai).

Mahidol Channel. (2022). Water management in Bueng Boraphet. Mahidol university. Retrieved August 10, 2025, from: <https://youtu.be/C2VvypCijK4?si=kZXmTLzMT7KFW4f>. (in Thai).

National Oceanic and Atmospheric Administration. (2023). Climate change: Global temperature. Retrieved May 24, 2025, from <https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature>.

Office of Agricultural Economics. (2023a). Planted area, harvested area, production, and yield per Rai at 15% moisture content by country, region, and province, crop year 2022/23. Retrieved May 24, 2025, from: [https://www.oae.go.th/assets/portals/1/fileups/prcaidata/files/major%20rice%2065 \(1\).pdf](https://www.oae.go.th/assets/portals/1/fileups/prcaidata/files/major%20rice%2065 (1).pdf). (in Thai).

Office of Agricultural Economics. (2023b). Table of quantity and value of major chemical fertilizer imports, 2018–2022. Retrieved June 8, 2025, from: <https://www.oae.go.th/view/1/ปัจจัยการผลิต/TH-TH>. (in Thai).

Office of Agricultural Economics. (2023c). Report on the situation of major agricultural commodities, 2023. Retrieved June 8, 2025, from: <https://www.oae.go.th>. (in Thai).

Phumkumarn, P., Khwanyuen, B., Chomphuchan, C. & Samanmit, P. (2025). *Identifying dry season rice cultivation areas around Bueng Boraphet using multi-temporal Landsat-8 Imagery*. In Proceedings of The 30th National Convention on Civil Engineering, May 28–30, 2025, Prachuap Khiri Khan, Thailand. (in Thai).

Pochana, S. (2012). *Cost and socio-economic return analysis of farmers under the philosophy of sufficiency economy in Lampang Province*. (Master's thesis). Sukhothai Thammathirat Open University, Faculty of Economics. (in Thai).

Rattanacharoen, N., Phusiri, P., Tuisakda, W., Khumkhrong, T., Sukkasem, A., Saibunchuai, W., ..., & Boonprasert, S. (2024). Guidelines for learning process management (Training module/Teaching manual). Retrieved August 23, 2025, from: <https://k-station.doae.go.th/wp-content/uploads/2025/06/เฉลี่วิชา-AEK101-การจัดกระบวนการเรียนรู้.pdf>. (in Thai).

Saraphin, P., Bupphachart, U., & Anuttarankun, N. (2015). A study of the relationship between land use change and water balance in the Bung Boraphet wetland using modeling. *Academic Journal of Science and Technology Nakhon Sawan Rajabhat University*, 7(7). 1–18. (in Thai).

Saruno, Y. (2023). Comparison of costs and returns of Suphan Buri rice 1 between the paddy sown field and transplanted rice field in Huai Yang Thon Subdistrict, Pak Tho District, Ratchaburi Province. *Journal of Social Science and Culture*, 7(12), 73–81. (in Thai).

Suphan Buri Land Development Station. (2016). Principles of effective chemical fertilizer application in rice fields. Rice Department, Ministry of Agriculture and Cooperatives. Retrieved May 14, 2025, from: <https://r01.idd.go.th/spb/Document%2059/pui-sangtat.pdf>. (in Thai).

Technology Transfer Division Rice Research Institute. (2000). *Knowledge about rice*. Bangkok: Pathum Thani Rice Research Center, Department of Agriculture. (in Thai).

Thai PBS. (2024). Drought solution and water conflict mitigation in “Bung Boraphet”: Reducing conflicts between farmers and fishermen. Disaster. Retrieved August 10, 2025, from: <https://www.thaipbs.or.th/news/content/337926>. (in Thai).

Water Management Development Division. (2016). Handbook for alternate wetting and drying (AWD) rice farming under the demonstration field project, fiscal year 2015. Royal Irrigation Department, Ministry of Agriculture and Cooperatives. Retrieved May 10, 2025, from: <http://water.rid.go.th/waterm/template/manager/FProject/MAC/portfolio/58.pdf>. (in Thai).

Weeraphatanniran, P. (2022). Handbook for subdistrict-level area-based agricultural development planning. Ecosystem and Community Power Foundation. Retrieved May 10, 2025, from: <https://anyflip.com/hsknn/coul/basic> (in Thai).