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Abstract

More often than not, “recommender systems” intend to help users find the relevant items
from a big set of options available in several online applications. Generally, majority of prevalent
recommendation techniques have concentrated on improving recommendation accuracy;,
nevertheless, diversity of recommendations also has been increasingly considered as a crucial part of
recommendation quality. This paper proposes a multi-criteria matching approach to make best use of
ageregate recommendation diversity derived from matching computations. The proposed approach
uses real life product rating datasets in order to illustrate significant improvements in terms of diversity.
Finally, the proposed approach improves the quality of recommending the right items to users through

a less accuracy reduction process in comparison with other existing recommendation approaches.
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