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More Fun with Pythagoras

Martin Bredenkamp

Abstract

Students may be introduced to a set of formulae that defines all primitive Pythagorean triples: For all 
positive integers i and j where i is an uneven number and j is an even number and i and j have no common 
factors, h = i2 + ij + j2/2, e = ij + j2/2, u = i2 + ij where h is the hypotenuse, e is the even-numbered leg and u is 
the uneven-numbered leg of the Pythagorean triangle. A collection of well-defined subsets of the universal 
set of triangles described by i and j form sequences of triangles that approach in proportion a triangle which 
has one side defined by an irrational number while the other two are positive integers. This also creates 
sequences of rational numbers that approach an irrational limit.  Finding and defining these series of triangles 
and numbers require the use of good algebra, giving relevance to the student’s learning of factorising and 
manipulating algebraic expressions.

Introduction

As part of the Mathematics curriculum of most high schools across the world, pupils are introduced to 
the theorem of Pythagoras. It provides an interesting opportunity in algebra and geometry, where the square 
of the hypotenuse of a right-angled triangle is equal to the sum of the squares of the legs of the triangle. As 
model triangle, the 3,4,5-triangle is used most often, and now and then the 5,12,13- and the 15,8,17-triangles 
also appear.

This paper provides an infinite matrix of Pythagorean triangles1 for pupils, which may be generated by 
indices related to the hypotenuse (h), the even (e) and the uneven (u) legs with very simple algebra, well within 
reach of the high school pupil. From this matrix of triangles, infinite series of triangles may be selected that in 
their proportions approach a triangle that has one side irrational with respect to the other two sides.2  From 
these series of triangles, series of rational numbers are generated that also have as their limit an irrational 
number.  These are all concepts that are taught in high school mathematics, thus these series of triangles and 
rational numbers provide an opportunity for pupils to find application for some of these concepts.

These concepts also require rigorous algebra of high school standard because in converting from the 
formulae of the indices of these triangles to the formulae for respective sides of the triangles, algebra is 
required that includes factorisation, dealing with differences of squares, radicands and their manipulation, etc.  
The pupil is thus exposed to good algebra and geometry, and at the same time sees that all this mathematics 
has some kind of application.

Often the schooling systems across the world have a tendency to discourage original thought. This paper 
illustrates how children can be stimulated to pursue their own ideas and be creative, using the tools they 
acquire at school.  Indeed, mathematics can be fun, even for children, and children that have been stimulated 
at school to have fun, turn out to be original thinkers, becoming engineers, architects, businessmen, politicians, 
and a whole lot of other vocations where creativity is required.

History

The author would like to share a little of the history of this Pythagorean mathematics, which in itself will 
model to the pupils how an idea and creative thinking came to fruition in providing the concepts of this paper.

As a primary school youngster at the age of around 10, I was playing with a Meccano set, making structures 
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with right angles that had to be stabilised with diagonal girders. My grandfather (a carpenter by profession 
but very interested in mathematics) introduced me to Pythagoras’ theorem to help me build structures with 
right angles. I was very fascinated by Pythagoras’ theorem. My father (a primary school teacher who taught 
ia mathematics) showed me a mathematical concept in which the sequence of perfect squares was lined up. 
Their differences formed a new sequence that was all the uneven numbers. The differences of the differences 
was therefore 2.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

n2 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361

dif 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
dif2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Bringing together what my grandfather had taught me, and my father had shown me, it dawned on me 
that if the differences of perfect squares was the sequence of all the odd numbers, then it quite clearly the 
perfect squares of all the odd numbers are a part of the sequence of differences. All these situations where 
the difference of two perfect squares was also a perfect square, each created a new Pythagorean triangle.  
For example, 9 is the difference between 52 and 42, and is in itself 32, therefore (3,4,5) is a Pythagorean triple.  
Similarly, 25 is the difference between 132 and 122, and is in itself 52, therefore (5,12,13) is a Pythagorean 
triple, etc. This provided an infinite series of Pythagorean triangles where the hypotenuse and the even leg 
differed by 1. Fibonacci3,4 and Stifel5,6 were aware of this infinite sequence of triangles. In a similar manner, I 
discovered the infinite series of triangles where the hypotenuse and the uneven leg differ by 2. This series has 
also already been described by Ozanam.7

I then went about seeking a series of triangles where the legs differed by only 1, and as a high school pupil, 
found it as well:  {(3,4,5), (21,20,29), (119,120,169), (697,696,985), ……}  An interesting aspect of this series of 
right-angled triangles is that the shape of the triangle more and more resembles the 45° right-angled triangle 
as the series progresses. Using this sequence of triangles, it is quite obvious that a series of rational numbers 
derived from dividing the hypotenuse with either of the legs may be produced, that have as their limit, an 
irrational number.

This is where my childhood exploration of right-angled triangles stopped, but since, I had wondered 
whether it would be possible to find other sequences of triangles that would approximate other non-rational 
right-angled triangles such as the 30/60° right-angled triangle.  In the past five years I have had the opportunity 
to discover such series.

The indices

All primitive right-angled triangles are defined by a pair of indices (i,j) where i is an uneven positive integer, 
and j is an even positive integer, on condition the i and j do not have any common factors.1  (If they do have a 
common factor, then the triangle will not be primitive.)  The hypotenuse (h), the uneven leg (u) and the even 
leg (e) of the right-angled triangle are defined as follows:

u = i2 + ij                              (1)

e = ij + j2/2                           (2)

h = i2 + ij + j2/2                    (3)

This provides an infinite two-dimensional matrix of right-angled triangles which form the universal set 
from which the series of triangles are selected (Scheme 1).

The series of triangles were manually searched until a pattern was observed.2  Once a pattern was identified for 
finding the next member of the series, the series was extended algebraically.  To illustrate this concept, the series 
for the 45° triangle is used.  The series is provided above and the formula for finding the next member of a series is:

For the series (i, j)n, (i, j)n+1 = (in + jn, 2in + jn) where (i, j)1 = (1, 2) 		  (4)
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Series in terms of the sides of triangles

Now converting this series of indices into the triangles they represent, requires combining what we have 
in terms of the indices, and converting that to h, u and e. This demands command of good algebra from the 
pupil, but also shows the pupil good application of many of the tools he has acquired in algebra. Continuing 
with the 45°-triangle the algebraic process is illustrated:
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The algebra may seem quite formidable, but all the steps are within the reach of high school mathematics, 
maybe just a little long. After an exercise as long as this, it is useful to test the newly generated formulae by 
applying them to the already established series of triangles. For example, tested at the first level, we generate 
the second triangle from (3,4,5):

Indeed, we have reached the second member of the series of triangles, and therefore know that the 
algebra was developed without a hitch.

The algebraic formula to find the series of triangles that lead to the 30/60°-triangle follows:

For the series (i, j)n, (i, j)n+1 = (in + jn, 2in + 3jn) where (i, j)1 = (1, 2)                          (13)

The pupil may want to try his own hand at finding formulae to generate the next triangle in terms of the 
sides of the triangle, deriving it from the indices as was done above for the 45°-triangle.

Other triangles

Besides the 45°- and the 30/60°-triangles, there are many more. Table 1 illustrates a sequence of triangles 
that are the limits of series of primitive Pythagorean triangles. Note that the square roots of 9 (3) and of 25 
(5) do not feature in these series because these numbers are not irrational, yet they are displayed in the table 
to provide continuity to the sequence of irrational triangles:

Table 1:  A sequence of triangles with one side irrational.

hypotenuse 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
rational leg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
irrational leg √3 √5 √7 3 √11 √13 √15 √17 √19 √21 √23 5 √27 √29 √31 √33

The pupil may want to try a few more.  Below are the formulae for finding the series of triangles in terms 
of the indices. Try converting the indices to h, u and e.

For the √5 triangles (i, j)n, (i, j)n+1 = (in + 2jn, 2in + 3jn) where (i, j)1 = (1, 2)

For the √7 triangles (i, j)n, (i, j)n+1 = (5in + 9jn, 6in + 11jn) where (i, j)1 = (1, 2)

For the √11 triangles (i, j)n, (i, j)n+1 = (7in + 15jn, 6in + 13jn) where (i, j)1 = (3, 2)

For the √13 triangles (i, j)n, (i, j)n+1 = (13in + 30jn, 10in + 23jn) where (i, j)1 = (3, 2)

For the √15 triangles (i, j)n, (i, j)n+1 = (3in + 7jn, 2in + 5jn) where (i, j)1 = (3, 2)

For the √17 triangles (i, j)n, (i, j)n+1 = (3in + 8jn, 2in + 5jn) where (i, j)1 = (3, 2)

For the √19 triangles (i, j)n, (i, j)n+1 = (131in + 351jn, 78in + 209jn) where (i, j)1 = (3, 2)
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For the √21 triangles (i, j)n, (i, j)n+1 = (43in + 120jn, 24in + 67jn) where (i, j)1 = (3, 2)

For the √23 triangles (i, j)n, (i, j)n+1 = (19in + 55jn, 10in + 29jn) where (i, j)1 = (3, 2)

Some of these series operate on big coefficients and will require extra vigilance to not make mistakes, but 
may all be verified by testing as illustrated above.

Series of rational numbers

Having established the series of triangles, choice of the right pair of sides will lead to a series of numbers 
that will converge to an irrational number as the limit. The 45º-triangle will again serve as an example.  
The 45º-triangle may be represented as having the two legs equal to 1, then the hypotenuse is. Taking the 
hypotenuse and the even leg of every triangle in this series as a rational number where the hypotenuse is the 
numerator and the even leg the denominator, we have a series of numbers that approach the √2 as their limit:

				  

Turning these rational numbers into decimal fractions, notice how they are approaching the approximated 
decimal value for the √2 (1.4142135):

{1.20,  1.45,  1.408333,  1.4152298, ……}

The pupil may apply this same procedure for √3, √5, etc.  Just bear in mind that for √5 and upward, to get 
the approximation of the root, the even side has to be multiplied by a factor in the numerator.  This is because 
none of the sides in the triangle for √5 are one but a bigger integer. For √5  the formula is 2e/u, derived from 
the 2,√5,3-triangle (see Table 1). Likewise, for √7 the formula is 3e/u, derived from the 3,√7,4-triangle, etc.

Conclusion

New developments in the classical field of mathematics with respect to Pythagorean triangles have opened 
new avenues in the training of mathematics at the upper high school level. Pythagorean triangles form an 
infinite two dimensional matrix defined by indices (i, j) where i is an uneven positive integer and j is an even 
positive integer.  Pupils can use these indices to find new triangles by substituting numbers for the indices and 
determining the lengths of the respective sides of the triangles.

Series of triangles may be found in the infinite matrix that have as their limiting triangles, a triangle with 
one side irrational. For example, for the 45º-triangle:

and for the 30º/60º-triangle:

Algebraic formulae define the (n+1)th triangle in the series where the nth one is known (the 1st triangle is 
defined) in terms of the indices. Formulae may then be algebraically developed to redefine the (n+1)th triangle 
in the series in terms of the sides of the nth triangle. For example, for the 45º-triangle [the first triangle is 
(3,4,5)]:
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This requires rigorous algebra, but well within the scope of high school algebra. The series of triangles in 
terms of the sides of triangles, provide an easy way to generate series of rational numbers that have as their 
limit an irrational number. For example, in the 45º-triangle, the square root of 2 may be found by using h/u or 
h/e of the series of triangles to define the respective series that will have as their limit the square root of 2.

This mathematics should boost the quality of the high school mathematical curriculum in that it provides 
meaningful application to many of the aspects of algebra. Pupils get an opportunity to see how mathematics 
may be applied in solving real problems. This will also provide the more gifted students with something that 
may grip their attention, generating interest in mathematics, and possibly opening doors to careers that are 
more mathematically inclined such as engineering, statistics, economics and other related occupations.
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