
Human Behavior, Development and Society
E-ISSN 2651-1762, Vol 25 No 2, August 2024

60

Exploring the Potential of 𝒌𝒏-Tree for Efficient Representation of 𝒏-ary Relations

Sebastián Alexis Moraga, Asia-Pacific International University, Thailand

Date Received: 28 May 2024 Revised: 16 July 2024 Accepted: 19 July 2024

Abstract

The objective of this experimental study was to investigate the scalability of 𝑘𝑛-trees, a compact
data structure designed for representing 𝑛-ary relations, compared to a baseline based on a plain
representation of adjacency lists. A literature review of compact data structures was conducted,
focusing on 𝑘𝑛-trees and their potential for efficient 𝑛-ary data representation. To assess scalability,
experiments comparing 𝑘𝑛 -tree performance against the baseline using set intersection as a
benchmark were conducted. Results demonstrated superior 𝑘𝑛-tree scalability in terms of time and
memory, especially for high-dimensional and clustered datasets. On average, 𝑘𝑛-trees were eight
times faster and consumed 35 times less memory than the baseline. The study also analyzed the
impact of the order parameter 𝑘 on performance, revealing a trade-off between space efficiency and
query time. This study provides valuable insights into the practical applicability of 𝑘𝑛 -trees for
managing and querying high-dimensional data.

Keywords: Compact data structures, 𝑘𝑛-tree, 𝑛-ary relations, scalability

Introduction

The exponential growth of high-dimensional and multi-attribute data necessitates efficient data
management solutions. Traditional data structures often incur significant memory overhead,
hindering the scalability of processing and analysis. Compact data structures, which aim to minimize
space while maintaining query efficiency, have emerged as a promising approach to tackle this
challenge. The 𝑘𝑛-tree, a compact representation for 𝑛-ary relations, holds potential for modeling
multi-dimensional data, particularly in scenarios where space efficiency is crucial.

Previous work has explored the 𝑘2-tree, a specific case of the 𝑘𝑛-tree for 2-ary relations, but
further investigation is needed to assess the scalability of 𝑘𝑛-trees for higher dimensions and varying
data distributions. This research addresses this gap by delving into the scalability of 𝑘𝑛-trees, focusing
on their performance in set intersection – a critical operation in data analysis. To evaluate the
scalability of 𝑘𝑛-trees, a series of experiments were conducted comparing their performance against
a baseline using a plain representation of adjacency lists. The set intersection operation served as a
benchmark to assess the efficiency of both representations. The insights gleaned from these
experiments shed light on the practical applicability of 𝑘𝑛 -trees for managing and querying high-
dimensional data in real-world scenarios.

Literature Review

Compact data structures have emerged as a powerful paradigm for representing data with
minimal space that makes them particularly valuable for handling the ever-growing amount of data.
This section provides details on these data structures, dissecting their design, implementation basis,
operations, and complexity. While not comprehensive, this review focuses on the foundational
compact data structures found in the literature.

Fixed-Size Arrays

The traditional approach of using a fixed-size array 𝐴 with 𝑛 elements encoded in 𝑤 bits can be
wasteful if the data requires less than 𝑤 bits for representation. To address this problem, Navarro
(2016) proposed determining the minimum number of bits, denoted by ℓ, required to encode the
elements in an array, where ℓ ≤ 𝑤. Then, the data can be packed within words of 𝑤 bits.

The implementation utilizes a virtual bit array 𝐵 that stores actual data elements, with a total size
of ℓ𝑛 bits to accommodate all elements of 𝐴. Each element in 𝐵 is encoded using ℓ bits. Additionally,

61

a word array 𝑊 of integers of 𝑤 bits is used, large enough to pack all encoded elements from 𝐵. The
packing strategy utilizes bit-level operations. Individual elements in 𝐵 are placed in 𝑊, starting from
the most significant bit. The specific location within a word in 𝑊 depends on the element's position 𝑗

in 𝐵. The formula 𝑟 = ((𝑗 − 1) 𝑚𝑜𝑑 𝑤) + 1 is used to calculate this starting position (𝑟) within a word

in 𝑊 [⌈
𝑗

𝑤
⌉].

This design allows for reading and writing individual elements. On the one hand, reading a bit at
position 𝑗 in 𝐵 involves calculating the word index in 𝑊 and performing bitwise operations to isolate
the desired bit. On the other hand, reading a whole encoded integer within a single word in 𝑊
requires calculating the chunk to be read, and performing bitwise operations to extract the relevant ℓ
bits. If the encoded integer spans two words in 𝑊, additional calculations are needed to handle bits
across words. Writing a value involves clearing the existing data in 𝑊 before writing the new value.
The clearing process also utilizes bitwise operations and mechanisms to handle bits across words.

In summary, the space of a fixed size array is 𝑂 (⌈
ℓ𝑛

𝑤
⌉ 𝑤), and time for reading and writing is 𝑂(𝑐).

Variable-Size Arrays

Variable size arrays (Raman et al., 2007) address the limitation of fixed size arrays by allowing
elements to have different bit lengths in 𝐵. There are two main design approaches for variable size
arrays. The first uses a separate array 𝑃 to store the length information for each encoded element.
Then, 𝑃 is used to determine the starting and ending positions of elements within 𝐵 . The other
approach is using a strategy for self-describing length. This approach embeds the length information
within the encoded element itself. This eliminates the need for a separate data structure for storing
lengths. However, it might introduce some overhead for encoding/decoding lengths.

In both approaches, the element locations in 𝐵 differ from fixed size arrays. Instead of fixed

intervals, the starting position of𝐴[𝑖] depends on the sum of encoded lengths ℓ, i. e. , ∑ ℓ𝑗
𝑖−1
𝑗=1 . The

implementation involves a main bit array 𝐵, and a pointer array 𝑃. The array 𝐵 stores the actual
encoded data elements, with each element 𝑖 using variable bits ℓ𝑖. The array 𝑃 acts as an index of 𝐵.

There are two variations for 𝑃. The first one is implementing 𝑃 as an array of sampled pointers.
This approach partitions the array 𝐴 into consecutive blocks of 𝑘 elements. Then, 𝑃 stores the starting
position for each block in 𝐵. To access 𝐴[𝑖], the block that it belongs to is calculated and then the
corresponding pointer in 𝑃 is used to find the starting position in 𝐵. The last step is looking for the
target element within that block. Additionally, if the encoding in 𝐵 uses 𝛾-coding (Elias, 1975), this
property can be leveraged to efficiently skip to the desired element within a block by reading only the
codeword headers. The other variation is implementing 𝑃 along with another array 𝑃′ of dense
pointers (Ferragina & Venturini, 2007; Raman et al., 2007) to avoid the need for calculating the sum
of preceding lengths during access. 𝑃′ stores offsets within 𝐵, directly pointing to the starting position
of each 𝐴[𝑖].

This design supports reading and writing individual elements. However, accessing requires
additional computation to look up starting bits; this can be reduced by using dense pointers. In
summary, for variable size array with sampled pointers and 𝛾 -coding, the time cost is 𝑂(𝑘 lg(𝑥)),
where 𝑥 is a 𝛾-coded element. Its space cost is 𝑂(𝑛 lg(𝑤)) bits, with 𝑘 ≅ ln(2). For variable size array
with dense pointers, the time cost is 𝑂(𝑐), and space is 𝑂(𝑛 lg(𝑤)).

Bitvectors

The bitvector (Jacobson, 1989) is a bit array designed to use space close to its zero-order empirical
entropy, i.e. 𝑛ℋ0(𝐵) bits. It achieves this by dividing the bit array into blocks of size 𝑏 and encoding
them as a pair (𝑐𝑖 , 𝑜𝑖), where 𝑐𝑖 is the class (number of 1s) of the block, and 𝑜𝑖 is the offset within 𝑐𝑖
that identifies a specific permutation among what is allowed by 𝑐𝑖.

The implementation uses an array 𝐶 for classes, and an array 𝑂 for corresponding offsets. The
lengths of the offsets are determined by the class and stored in an array 𝐿, where 𝐿[𝑐] gives the
number of bits needed to encode a class 𝑐 offset.

62

The bitvector supports 𝑎𝑐𝑐𝑒𝑠𝑠(𝐵, 𝑖) to retrieve the 𝑖 -th bit in 𝐵; 𝑟𝑎𝑛𝑘(𝐵, 𝑖) to count the number
of occurrences of a specific bit (0 or 1) up to position 𝑖; and, 𝑠𝑒𝑙𝑒𝑐𝑡(𝐵, 𝑗) to find the position of the 𝑗-
th occurrence of a specific bit (0 or 1).

The space is 𝑛ℋ0(𝐵) +
𝑛

𝑏
lg(𝑏) + 𝑂 (

𝑛

𝑏
) + 𝑤𝑏2 bits (Raman et al., 2007; Pagh, 2001), where 𝑛 is

the number of bits, and 𝑤 is the word length. The worst-case time for all operations is 𝑂(𝑏), but it can
be improved (Clark, 1997; Jacobson, 1989) by using precomputed tables for encoding and decoding.
In practice, the 𝑂(𝑏) time cost is often sufficient, as the block size 𝑏 is typically chosen to be small.

Wavelet Trees

Wavelet trees (Grossi et al., 2003) are designed to represent and query sequences over larger
alphabets. They hierarchically decompose the alphabet, creating a binary tree structure where each
node corresponds to a range of symbols. The tree's root represents the entire alphabet, and each leaf
represents a single symbol. Internal nodes store bitvectors that indicate whether a symbol in the
sequence belongs to the left or right half of the alphabet range at that level.

Wavelet trees support 𝑎𝑐𝑐𝑒𝑠𝑠(𝑆, 𝑖) to retrieve the symbol at position 𝑖 in the sequence 𝑆 ;
𝑟𝑎𝑛𝑘𝑐(𝑆, 𝑖) to count the number of occurrences of symbol 𝑐 up to position 𝑖 by traversing the path
from the root to the leaf of 𝑐 , accumulating the counts from the bitvectors along the way; and,
𝑠𝑒𝑙𝑒𝑐𝑡𝑐(𝑆, 𝑗) to find the position of the 𝑗-th occurrence of symbol 𝑐 by traversing the tree from the
leaf of 𝑐 to the root, using the bitvectors to determine the position at each level.

The space cost is 𝑛  lg(𝜎)   +  𝑜(𝑛  lg(𝜎))  +  𝑂(𝜎𝑤) bits, where 𝑛 is the length of the sequence, 𝜎
is the alphabet size, and 𝑤 is the word size. The 𝑜(𝑛  lg(𝜎)) term is on account of the extra space
required for 𝑟𝑎𝑛𝑘 and 𝑠𝑒𝑙𝑒𝑐𝑡 . The worst-case time complexity for all operations is 𝑂(lg(𝜎)).

The wavelet tree can use compressed representations for the bitvectors, achieving space close to
𝑛ℋ0(𝑆), while maintaining the same time cost (Barbay & Navarro, 2013; Golynski et al., 2008).

Sequences

The sequence 𝑆[1, 𝑛] is designed as a generalization of bitvectors. It supports 𝑎𝑐𝑐𝑒𝑠𝑠, 𝑟𝑎𝑛𝑘, and
𝑠𝑒𝑙𝑒𝑐𝑡 operations while minimizing space usage. Two primary approaches are employed. One uses a
permutation-based representation (Golynski et al., 2006) along with bitvectors to achieve efficient
operations. It is particularly suitable for large alphabets. The other uses wavelet trees (Grossi et al.,
2003), enabling efficient operations through binary 𝑟𝑎𝑛𝑘 and 𝑠𝑒𝑙𝑒𝑐𝑡 on bitvectors. When using
permutation-based representation, the sequence is divided into chunks. Each one is represented using
a permutation and a bitvector. The bitvectors store the frequency of each symbol within the chunk,
while the permutation encodes symbols’ order. This enables efficient 𝑟𝑎𝑛𝑘 and 𝑠𝑒𝑙𝑒𝑐𝑡 operations
within chunks.

When using wavelet trees, it recursively partitions the alphabet into halves, creating a binary tree
structure. Each node is associated with a bitvector that indicates whether a symbol belongs to the left
or right half at that level. This enables efficient operations on account of the structures used.

Both implementations support 𝑎𝑐𝑐𝑒𝑠𝑠(𝑆, 𝑖) to retrieve the symbol at position 𝑖 in the sequence;
𝑟𝑎𝑛𝑘𝑐(𝑆, 𝑖) to count the number of occurrences of symbol 𝑐 up to position 𝑖; and, 𝑠𝑒𝑙𝑒𝑐𝑡𝑐(𝑆, 𝑗) to find
the position of the 𝑗-th occurrence of symbol 𝑐.

In summary, for permutation-based representation, the space cost is 𝑛  lg(𝜎)   +  𝑛 𝑜(lg(𝜎)) bits.
The time cost (Grossi et al., 2010) is 𝑂(lg(lg(𝜎))) for 𝑎𝑐𝑐𝑒𝑠𝑠, 𝑂(lg(lg(𝜎))) for 𝑟𝑎𝑛𝑘, and 𝑂(𝑐) for
𝑠𝑒𝑙𝑒𝑐𝑡 . For a representation using wavelet trees, space using a plain approach is 𝑛  lg(𝜎)   +
 𝑜(𝑛  lg(𝜎))  +  𝑂(𝜎𝑤) bits, and 𝑛 ℋ0(𝑆)  +  𝑜(𝑛  lg(𝜎))  +  𝑂(𝜎𝑤) bits for a compressed approach
(Barbay and Navarro, 2013). Time cost is 𝑂(lg(𝜎)) for 𝑎𝑐𝑐𝑒𝑠𝑠, 𝑂(lg(𝜎)) for 𝑟𝑎𝑛𝑘, and 𝑂(lg(𝜎)) for
𝑠𝑒𝑙𝑒𝑐𝑡 both approaches. In practice, wavelet trees are often preferred for small to moderate alphabet
sizes due to its lower space overhead. For larger alphabets, permutation-based representation can be
more space-efficient, especially when combined with alphabet partitioning techniques.

63

Level-Order Unary Degree Sequence (LOUDS)
The Level-Order Unary Degree Sequence (LOUDS) representation, first reported by Jacobson

(1989) and implemented in Delpratt et al. (2006), is designed to encode the topology of an ordinal
tree by using a bitvector to store the unary degree sequence of the tree in a level-wise order. The
unary degree sequence is made of 1𝑠 followed by 0 , where the number 1𝑠 are the number of
children of a node.

The implementation uses a bitvector. The first two bits are set to 10, and then the tree is traversed
in level-order, appending the unary degree sequence of each node to the bitvector. The bitvector
results of 𝑛 + 1 0𝑠 (one 0 per node, plus the initial one), and 𝑛 1𝑠 (one 1 per edge – 𝑛 − 1 –, plus the
initial one). Therefore, the bitvector length is 2𝑛 + 1.

LOUDS supports operations such as 𝑟𝑜𝑜𝑡(𝑣) to retrieve the root of the tree; 𝑖𝑠𝑙𝑒𝑎𝑓(𝑣) that
checks if a node 𝑣 is a leaf; 𝑝𝑎𝑟𝑒𝑛𝑡(𝑣) that returns the parent of a node 𝑣; 𝑐ℎ𝑖𝑙𝑑(𝑣, 𝑡) that returns
the 𝑡 -th child of a node 𝑣 ; 𝑐ℎ𝑖𝑙𝑑𝑟𝑎𝑛𝑘(𝑣) that returns the 𝑟𝑎𝑛𝑘 of a node 𝑣 among its siblings;
𝑓𝑐ℎ𝑖𝑙𝑑(𝑣) and 𝑙𝑐ℎ𝑖𝑙𝑑(𝑣) that return the first/last child of a node 𝑣 ; and, 𝑛𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑣) and
𝑝𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑣) that return the next/previous sibling of a node 𝑣.

The space cost is 2𝑛 + 1 bits. If the bitvector uses constant time 𝑟𝑎𝑛𝑘 and 𝑠𝑒𝑙𝑒𝑐𝑡, the time cost
for all operations is constant (Clark, 1997), but using 3.6𝑛 additional bits. If compressed counterparts
are used, 2.65𝑛 of extra bits are added only at expense of speed.

The cardinal variation of LOUDS is designed to represent cardinal trees, where each node has a
fixed set of child types (𝜎 in total), and a node might have a child of each type. This variation represents
each node using 𝜎 bits in the bitvector. The 𝑘 -th bit indicates whether the node has a child of type 𝑘
(1) or not (0). For example, in a binary tree with 𝜎 = 2, a node with two children is 11, a node with
only a left one is 10, a node with only a right one is 01, and a leaf is 00.

LOUDS supports operations of ordinal LOUDS plus 𝑙𝑎𝑏𝑒𝑙𝑒𝑑𝑐ℎ𝑖𝑙𝑑(𝑣, 𝑙) that returns the child of
node 𝑣 with label 𝑙, if it exists (equivalent to 𝑐ℎ𝑖𝑙𝑑(𝑣, 𝑡) in cardinal trees); 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑(𝑣, 𝑙) that
checks if the child of node 𝑣 with label 𝑙 exists (returns 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒); and 𝑐ℎ𝑖𝑙𝑑𝑙𝑎𝑏𝑒𝑙(𝑣) that
returns the label of the edge leading to node 𝑣.

The space cost of cardinal LOUDS is 𝜎𝑛 bits. The time cost of most operations is 𝑂(𝑐), assuming
constant-time 𝑟𝑎𝑛𝑘 and 𝑠𝑒𝑙𝑒𝑐𝑡 on the bitvector. However, for large values of 𝜎, the space overhead
can be significant. In such cases, compressed representations of the bitvector can be used to reduce
the space to 𝑛  lg(𝜎) + 𝑂(𝑛) bits, but this may increase the time of some operations to 𝑂 (lg(𝜎)).

Balanced Parenthesis (BP)

The Balanced Parenthesis (BP) representation (Jacobson, 1989) is designed to encode ordinal trees
using a balanced sequence of parentheses. Each node is represented by a pair of matching
parentheses, with the opening parenthesis marking the node's first visit in a depth-first traversal and
the closing parenthesis marking the completion. This representation captures the hierarchical
structure of the tree, where the nesting of parentheses corresponds to the parent-child relationships.

BP is implemented using a bitvector, where 1 is an opening parenthesis and 0 is a closing one. The
bitvector is preprocessed to support parenthesis queries, such as 𝑐𝑙𝑜𝑠𝑒 (where an opening
parenthesis closes), 𝑜𝑝𝑒𝑛 (where an closing parenthesis opens), 𝑒𝑛𝑐𝑙𝑜𝑠𝑒 (index of the parent node),
𝑓𝑤𝑑𝑠𝑒𝑎𝑟𝑐ℎ (next index of a given value), 𝑏𝑤𝑑𝑠𝑒𝑎𝑟𝑐ℎ (previous index of a given value), 𝑟𝑚𝑞 (range
minimum query – used to find the position of the minimum value within a given range), 𝑟𝑀𝑞 (range
maximum query – used to find the position of the maximum value within a given range),𝑚𝑖𝑛𝑐𝑜𝑢𝑛𝑡 (it
counts how many times the minimum occurs within a given range), and 𝑚𝑖𝑛𝑠𝑒𝑙𝑒𝑐𝑡 (position of a given
minimum), which are used to navigate and query the tree structure efficiently.

BP additionally supports navigation operations (𝑟𝑜𝑜𝑡 , 𝑓𝑐ℎ𝑖𝑙𝑑 , 𝑙𝑐ℎ𝑖𝑙𝑑 , 𝑛𝑠𝑖𝑏𝑙𝑖𝑛𝑔 , 𝑝𝑠𝑖𝑏𝑙𝑖𝑛𝑔 ,
𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟); structure operations (𝑖𝑠𝑙𝑒𝑎𝑓 , 𝑛𝑜𝑑𝑒𝑚𝑎𝑝 , 𝑛𝑜𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑝𝑟𝑒𝑜𝑟𝑑𝑒𝑟 ,
𝑝𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 , 𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑙𝑒𝑐𝑡); depth- and subtree-related operations (𝑑𝑒𝑝𝑡ℎ ,
𝑠𝑢𝑏𝑡𝑟𝑒𝑒, 𝑖𝑠𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟, 𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟); leaf-related operations (𝑙𝑒𝑎𝑓𝑛𝑢𝑚, 𝑙𝑒𝑎𝑓𝑟𝑎𝑛𝑘, 𝑙𝑒𝑎𝑓𝑠𝑒𝑙𝑒𝑐𝑡);
and the hierarchy operator 𝑙𝑐𝑎 (lowest common ancestor).

64

The space cost is 2𝑛 + 𝑜(𝑛) bits (Munro & Raman, 2001), where 𝑛 is the number of nodes in the
tree. The time cost for all the operations is 𝑂(lg(𝑛)).

Depth-First Unary Degree Sequence (DFUDS)

The Depth-First Unary Degree Sequence (DFUDS) representation (Benoit et al., 2005), similarly to
ordinal LOUDS, is designed to encode the topology of an ordinal tree. However, it uses a depth-first
unary degree sequence. Each node is represented by a sequence of 1𝑠 (indicating the number of
children) followed by a 0 . This sequence is concatenated in depth-first order to form a bitvector. The
key property of DFUDS is that all nodes in a subtree are contiguous in the bitvector, and the net excess
(Benoit et al., 2005; Jacobson, 1989) within any subtree is −1 .

The first three bits of the bitvector are set to 110 , and then the tree is traversed in preorder,
appending the unary degree sequence of each node to the bitvector. The bitvector results of 𝑛 + 1
0𝑠 (one 0 per node, plus the initial one), and 𝑛 + 1 1𝑠 (one 1 per edge – 𝑛 − 1 – plus the two initial
ones). Therefore, the bitvector length is 2𝑛 + 1 bits.

DFUDS supports navigation operations (𝑟𝑜𝑜𝑡 , 𝑓𝑐ℎ𝑖𝑙𝑑 , 𝑙𝑐ℎ𝑖𝑙𝑑 , 𝑛𝑠𝑖𝑏𝑙𝑖𝑛𝑔 , 𝑝𝑠𝑖𝑏𝑙𝑖𝑛𝑔 , 𝑝𝑎𝑟𝑒𝑛𝑡);
structure-related operations (𝑖𝑠𝑙𝑒𝑎𝑓 , 𝑛𝑜𝑑𝑒𝑚𝑎𝑝 , 𝑛𝑜𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑝𝑟𝑒𝑜𝑟𝑑𝑒𝑟 , 𝑝𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑠𝑒𝑙𝑒𝑐𝑡);
subtree-related operations (𝑠𝑢𝑏𝑡𝑟𝑒𝑒 , 𝑖𝑠𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟); leaf-related operations (𝑙𝑒𝑎𝑓𝑛𝑢𝑚 , 𝑙𝑒𝑎𝑓𝑟𝑎𝑛𝑘 ,
𝑙𝑒𝑎𝑓𝑠𝑒𝑙𝑒𝑐𝑡); and the lowest common ancestor operator (𝑙𝑐𝑎).

The space cost is 2𝑛 + 1 bits. Time of most operations is 𝑂(lg(𝑛)), assuming constant-time
operations on balanced parentheses. However, 𝑐ℎ𝑖𝑙𝑑 and 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 can be performed in constant
time, making DFUDS particularly efficient for navigating towards specific children.

k2-Tree

The 𝑘2-tree (Brisaboa et al., 2014) is designed to represent clustered graphs, where nodes can be
divided into subsets of as many edges as possible. It recursively partitions the adjacency matrix of the
graph into 𝑘2 submatrices, representing it as a 𝑘2-ary tree. Empty submatrices are not represented,
leading to space savings. The tree structure is encoded as cardinal LOUDS bitvector. Each internal node
in the tree is represented by 𝑘2 bits, indicating the presence or absence of its children. Leaf nodes are
either 1 (representing an edge) or 0 (no edge). The bitvector is preprocessed to support 𝑟𝑎𝑛𝑘 and
𝑠𝑒𝑙𝑒𝑐𝑡, enabling efficient navigation and querying.

The choice of the order parameter, 𝑘, involves a trade-off between space efficiency and query
performance. A higher 𝑘 typically leads to better space efficiency, as it results in a shallower tree with
fewer internal nodes. However, it also increases the fan-out of each node, potentially increasing the
time required to traverse the tree during queries.

For smaller matrices with side size 𝑠 = 2𝑚, where 𝑚 ∈ ℤ, a smaller 𝑘 value (𝑘 = 2𝑖, with 𝑖 ∈ ℤ
and 𝑖 = 1) might be more suitable, as the space savings from a higher 𝑘 may be insignificant compared
to the increased query time. Conversely, for larger matrices, with side size of the form 𝑠 = 4𝑚, where

𝑚 ∈ ℤ , a higher 𝑘 value (𝑘 = 2𝑖 , with 𝑖 > 1) could be advantageous. The space savings from a
shallower tree can become more significant as the matrix size grows, outweighing the potential
increase in query time. Moreover, if a dataset is clustered, a higher 𝑘 value can effectively capture the
clustered structure, leading to further space savings and potentially faster query times due to reduced
tree traversal.The 𝑘2-tree supports 𝑎𝑑𝑗(𝐺, 𝑣, 𝑢) that checks if there is an edge between nodes 𝑣 and
𝑢; 𝑛𝑒𝑖𝑔ℎ(𝐺, 𝑣) that returns the list of neighbors of node 𝑣; and 𝑟𝑛𝑒𝑖𝑔ℎ(𝐺, 𝑣) that returns the list of
reverse neighbors of node 𝑣.

The space cost is influenced by different factors, such as number of nodes and edges, distinct
paths and nodes, representation of the bitvector, and grid size. For instance, using a sparse bitvector,

the space could result of 𝑂 (𝑒  lg (
𝑛2

𝑒
) + 𝑒  lg(𝑘)) bits, where 𝑛 is the number of nodes, 𝑒 is the

number of edges, and 𝑘 is the tree order. In practice, the space is often much lower for clustered
graphs due to unrepresented empty submatrices. For that reason, several studies have explored the
alternative of graph clustering and partitioning (Hernández & Navarro, 2014; Chierichetti et al., 2009;
Maserrat & Pei, 2010; Boldi et al., 2011; Claude & Ladra, 2011; Grabowski & Bieniecki, 2014).

65

The time cost is 𝑂(lg𝑘(𝑛)) for 𝑎𝑑𝑗(𝐺, 𝑣, 𝑢), 𝑂(𝑛) for 𝑛𝑒𝑖𝑔ℎ(𝐺, 𝑣), and 𝑂(𝑛) for 𝑟𝑛𝑒𝑖𝑔ℎ(𝐺, 𝑣).
The 𝑂(𝑛) time cost for 𝑛𝑒𝑖𝑔ℎ and 𝑟𝑛𝑒𝑖𝑔ℎ is a worst-case bound.

kn-Tree

The 𝑘𝑛-tree (de Bernardo et al., 2013; de Bernardo, 2014) is designed to represent 𝑛-ary relations
encoded in 𝑛-dimensional matrix (hypermatrix). It extends the 𝑘2 -trees to higher dimensions by
recursively partitioning a hypermatrix into 𝑘𝑛 equal-sized sub-hypermatrices. This hierarchical
partitioning allows for efficient representation of clustered data, where most of the 1𝑠 are
concentrated in a few partitions. The tree is encoded using a cardinal LOUDS bitvector, following the
same principles of the 𝑘2-tree. However, each internal node is represented by 𝑘𝑛 bits.

The 𝑘𝑛 -tree supports 𝑐ℎ𝑒𝑐𝑘𝑐𝑒𝑙𝑙(𝐶) that checks if the cell at coordinate 𝐶 contains a 1 ; and
𝑟𝑎𝑛𝑔𝑒(𝑆, 𝐸) that reports all the cells within the range defined by starting coordinate 𝑆 and ending
coordinate 𝐸 that contain a 1.

Similarly to 𝑘2-tree, the 𝑘𝑛-tree space cost is influenced by different factors (number of nodes
and edges, distinct paths and nodes, representation of the bitvector, and grid size). For instance, using

a sparse bitvector, the space is 𝑂 (𝑟  lg (
𝑠𝑛

𝑟
)   +  𝑛 𝑟  lg(𝑘)) bits, where 𝑟 is the number of relations (1𝑠

in the hypermatrix), 𝑠 is the standardized size of the hypermatrix (𝑠 = 2⌊lg(𝑠𝑚𝑎𝑥)⌋, with 𝑠𝑚𝑎𝑥 as the
largest dimension), and 𝑘 is the tree order. The time cost of 𝑐ℎ𝑒𝑐𝑘𝑐𝑒𝑙𝑙(𝐶) is 𝑂(ℎ) = 𝑂(log𝑘(𝑠)). For
𝑟𝑎𝑛𝑔𝑒(𝑆, 𝐸), it depends on the hypermatrix distribution. In the worst case, it can be as high as 𝑂(𝑠𝑛),
but for clustered data it can be much lower, as the 𝑘𝑛-tree can efficiently skip empty partitions.

Graphs

The representation of general graphs provides efficient support for various operations while
minimizing space. Two approaches are proposed. The first approach represents each row of the
graph’s adjacency matrix as a sparse bitvector (Navarro, 2016) that optimizes space usage, especially
for graphs with fewer edges. The other approach uses a permutation-based sequence (Claude &
Navarro, 2011) for storing the matrix’s adjacency lists as a concatenation of each node’s neighbor list
into a single sequence.

When using sparse bitvectors, 1 indicates the presence of an edge and 0 indicates its absence.
Operations like 𝑎𝑑𝑗 (checking for an edge), 𝑛𝑒𝑖𝑔ℎ (retrieving neighbors), and 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 (counting
outgoing edges) are implemented using bit-vector 𝑎𝑐𝑐𝑒𝑠𝑠, 𝑟𝑎𝑛𝑘, and 𝑠𝑒𝑙𝑒𝑐𝑡. When using sequence,
a bitvector is used to mark the starting position of each node's neighbor list within the sequence. This
allows for efficient 𝑎𝑐𝑐𝑒𝑠𝑠 on the sequence, and 𝑟𝑎𝑛𝑘 and 𝑠𝑒𝑙𝑒𝑐𝑡 on the bitvector. Additionally,
reverse neighbors and indegree can be computed efficiently using 𝑟𝑎𝑛𝑘 and 𝑠𝑒𝑙𝑒𝑐𝑡 on the sequence.

Both representations support 𝑎𝑑𝑗(𝐺, 𝑣, 𝑢) that checks if there is an edge from node 𝑣 to node 𝑢;
𝑛𝑒𝑖𝑔ℎ(𝐺, 𝑣) that returns the list of neighbors of node 𝑣 ; and outdegree(𝐺, 𝑣) that returns the
outdegree of node 𝑣. The sequence representation additionally supports 𝑟𝑛𝑒𝑖𝑔ℎ(𝐺, 𝑣) that returns
the list of reverse neighbors of node 𝑣; and indegree(𝐺, 𝑣) that returns the indegree of node 𝑣.

The space of a bitvector representation is 𝑒  lg (
𝑛2

𝑒
) + 𝑂(𝑒) bits (worst-case entropy for directed

graphs), and the time complexity of 𝑎𝑑𝑗 is 𝑂(lg(𝑛)), 𝑂(𝑐) for 𝑛𝑒𝑖𝑔ℎ , 𝑂(lg(𝑛)) for outdegree. The
operation 𝑟𝑛𝑒𝑖𝑔ℎ is not space-efficiently supported.

For a sequence, the space is 𝑒  lg(𝑛)  (1 + 𝑜(1)) + 𝑂(𝑛) bits. The time of 𝑎𝑑𝑗 is 𝑂(lg(lg(𝑛))),

𝑂(lg(lg(𝑛))) for 𝑛𝑒𝑖𝑔ℎ , 𝑂(𝑐) for outdegree,𝑂(𝑐) for 𝑟𝑛𝑒𝑖𝑔ℎ , and 𝑂(lg(lg(𝑛))) for indegree.
Note that the time costs for sequence assume constant-time 𝑟𝑎𝑛𝑘 and 𝑠𝑒𝑙𝑒𝑐𝑡 on the bitvector.

In practice, these operations can be implemented efficiently, resulting in fast graph operations.

Findings

Compact data structures efficiently handle various data types. Fixed-size arrays suit numeric
datasets with narrow ranges, while variable-size arrays cater to wider ranges. By combining these

66

structures, one can efficiently encode 𝑛-ary relations like geographic data (latitude, longitude, and
altitude) or customer purchases (customer ID, product ID, and purchase amount).

Bitvectors serve as fundamental building blocks for compact data structures and can encode
binary relations, such as friendships in a social network. Wavelet-trees represent 𝑛-ary relations as
strings over a larger alphabet, enabling efficient queries but potentially impacting space efficiency if
the alphabet becomes too large (Barbay et al., 2014). The 𝑘𝑛 -tree is a promising structure for
representing 𝑛 -ary relations in GIS, recommender systems, and RDF data. However, scalability
concerns exist regarding its exponential space growth with dimensionality (de Bernardo et al., 2013;
de Bernardo, 2014; Navarro, 2016), especially for non-clustered data.

To validate scalability concerns, experiments were conducted to compare the time and space
performance of a specific query on synthetic 𝑛-ary datasets represented as 𝑘𝑛-trees against plain
representations of adjacency lists as baseline. Synthetic datasets were chosen for their controlled
nature, allowing systematic variation of parameters to isolate the effects of individual factors on
scalability.

Multiple datasets were generated with varying sizes (𝑠 ∈ [12,32,64,128]), dimensions (𝑛 ∈
[2,3,4]; while 2-ary relations are common, many applications involve 3-ary or higher-order relations),
and densities (𝑑 ∈ [0.125,0.25,0.5,0.75] ; this wide range of sparsity levels helps to reflect the
variability of real-world datasets), distributed randomly (to simulate scenarios where relationships
between entities are uniformly distributed), randomly along the main diagonal, and in clusters (it
helps to simulate scenarios where relationships are grouped together in specific regions with 𝑐 ∈
[1,2,4,8]). Those parameter ranges were chosen to simulate various real-world scenarios and to
stress-test the 𝑘𝑛-tree under different conditions. A systematic variation of them, with two samples
per variation, yielded 576 different samples. Experiments were conducted on pairs of samples with
equivalent size, dimension, and order 𝑘 ∈ [2,4] , resulting in 6,912 baseline and 10,368 𝑘𝑛 -tree
experiments.

To measure the scalability, the set operator intersection was used as benchmark, since it is a
relevant operation that requires traversing the entire data, thus revealing advantages and
disadvantages in terms of space and time efficiency of each type of encoding. This choice aligns with
the work of Quijada-Fuentes et al. (2019), where the authors focused on set operations to evaluate
the performance and scalability of 𝑘2-trees on 2-ary relations.

The intersection algorithm for 𝑘𝑛-tree is shown in Algorithm 1. The algorithm receives two 𝑘𝑛-
trees 𝐴 and 𝐵 , along with other related parameters, and returns a 𝑘𝑛 -tree 𝐶 as the intersection
between 𝐴 and 𝐵. The algorithm recursively traverses the trees 𝐴 and 𝐵 level by level, comparing
corresponding bits in the bitmaps. For each level, it iterates through the potential 𝑘𝑛 child positions,
recursively finding the intersection of children if they exist. If there are no more levels, it directly
compares leaves (actual relation values). Pointers 𝑝𝐴 and 𝑝𝐵 are used to navigate the bitmaps,
skipping over non-existent children (empty sub-hypermatrices). The results are accumulated in a
bitmap 𝐶 representing the intersection at each level. Ultimately, the algorithm returns whether 𝑡 is
not empty (negation of the flag 𝜀) used to set bits in earlier recursion levels as the algorithm returns.

67

Algorithm 1 Set Intersection for 𝑘𝑛-Tree

Inputs: 𝑘𝑛-tree bitmaps 𝐴 and 𝐵; 𝑝𝐴 is an array of pointers to bits in 𝐴, one per level of 𝐴; 𝑝𝐵 is an
array of pointers to bits in 𝐵, one per level of 𝐵; 𝐶 is an array of ℎ bitmaps that represents the
intersection between 𝐴 and 𝐵 at each level; constants 𝑘 and ℎ related to the input 𝑘𝑛-trees; 𝑙 is
the current visited level in both 𝑘𝑛-trees 𝐴 and 𝐵; 𝐴 and 𝐵 have the same height ℎ; 𝐴 and 𝐵 have
the same size 𝑠; 𝐴 and 𝐵 have the same order 𝑘.

Output: 𝑘𝑛-tree 𝐶 as the intersection of 𝐴 and 𝐵.

Function intersection(𝐴, 𝐵, 𝑝_𝐴, 𝑝_𝐵, 𝐶, 𝑘, ℎ, 𝑙)
𝑡 ← ∅ // Variable 𝑡 is a bitmap that keeps a result for the current level 𝑙.
𝜀 ← 1 // 𝜀 is a flag to mean that 𝑡 does not contain any 1.
For 𝑖 ∈ [0, 𝑘𝑛 − 1] do

If 𝑙 < ℎ
If 𝐴𝑝𝐴(𝑙−1)

∧ 𝐵𝑝𝐵(𝑙−1)
 then

𝑡𝑖 ← intersection(𝐴, 𝐵, 𝑝𝐴, 𝑝𝐵, 𝐶, 𝑘, ℎ, 𝑙 + 1)
Else

𝑡𝑖 ← 0

skip_node(𝐴, 𝑝𝐴, 𝑙 + 1, 𝐴𝑝𝐴(𝑙−1), 𝑘𝑛, ℎ)

skip_node(𝐵, 𝑝𝐵, 𝑙 + 1, 𝐵𝑝𝐵(𝑙−1), 𝑘𝑛, ℎ)

Else
𝑡𝑖 ← 𝐴𝑝𝐴(𝑙−1) ∧ 𝐵𝑝𝐵(𝑙−1)

𝜀 ← 𝜀 ∧ ¬𝑡𝑖
𝑝𝐴(𝑙 − 1) ← 𝑝𝐴(𝑙 − 1) + 1
𝑝𝐵(𝑙 − 1) ← 𝑝𝐵(𝑙 − 1) + 1

If ¬𝜀 then
𝐶𝑙−1 ← 𝐶𝑙−1 ∥ 𝑡 // Concatenate 𝐶𝑙−1 with bitmap 𝑡.

Return ¬𝜀

The skip-node function used in Algorithm 1 helps skip subtrees of a 𝑘𝑛-tree (represented as a

bitmap) that are not part of an intersection. If a node in the tree has children, the function skips over
the parts of the bitmap representing those children using rank1 function to count 1𝑠 within a range
of the bitmap to determine if there are any existing children.

The set intersection algorithm for adjacency lists is shown in Algorithm 2. It finds the intersection
of two sorted adjacency lists 𝐴 and 𝐵. It iterates through both lists simultaneously, comparing the
current elements from each list. If they match, the element is added to the result; if not, the algorithm
advances the pointer of the list with the smaller element. This continues until one of the lists is
exhausted, ensuring that all common elements are identified and returned.

68

Algorithm 2 Set Intersection for Adjacency Lists

Inputs: 𝑘𝑛-tree bitmaps 𝐴 and 𝐵; 𝑝𝐴 is an array of pointers to bits in 𝐴, one per level of 𝐴; 𝑝𝐵 is an
array of pointers to bits in 𝐵, one per level of 𝐵; 𝐶 is an array of ℎ bitmaps that represents the
intersection between 𝐴 and 𝐵 at each level; constants 𝑘 and ℎ related to the input 𝑘𝑛-trees; 𝑙 is
the current visited level in both 𝑘𝑛-trees 𝐴 and 𝐵; 𝐴 and 𝐵 have the same height ℎ; 𝐴 and 𝐵 have
the same size 𝑠; 𝐴 and 𝐵 have the same order 𝑘.

Output: 𝑘𝑛-tree 𝐶 as the intersection of 𝐴 and 𝐵.

Function intersection(𝐴, 𝐵)
Let 𝐶 the result, initially empty.
𝛼 ← 𝛽 ← 𝑇𝑟𝑢𝑒
Loop

If 𝛼 ∧ has_more(𝐴) then
𝑎 ← next(𝐴) // next returns the next n-dimensional tuple.
𝛼 ← 𝐹𝑎𝑙𝑠𝑒

If 𝛽 ∧ ℎ𝑎𝑠_𝑚𝑜𝑟𝑒(𝐵) then
𝑏 ← next(𝐵) // next returns the next n-dimensional tuple.
𝛽 ← 𝐹𝑎𝑙𝑠𝑒

If ¬𝛼 ∧ ¬𝛽 then
α ← 𝑇𝑟𝑢𝑒 if 𝑎 < 𝑏 ∨ 𝑎 = 𝑏 else 𝐹𝑎𝑙𝑠𝑒
β ← 𝑇𝑟𝑢𝑒 if 𝑎 > 𝑏 ∨ 𝑎 = 𝑏 else 𝐹𝑎𝑙𝑠𝑒
If 𝑎 = 𝑏 then 𝐶 ← 𝐶 ∥ 𝑎

Else Break
Return 𝐶

Results

Figures 1, 2, and 3 present summarized results for 𝑠  ∈  [16,64], which are compatible with 𝑘 = 4.
Results for 𝑠  ∈  [32,128] (not compatible with 𝑘 = 4) follow the same trend.

Figure 1a shows that the 𝑘𝑛-tree consistently outperformed the baseline approach in terms of
execution time for the intersection operation. This advantage was particularly pronounced for higher
dimensional datasets (𝑛 > 2) and denser datasets (Figure 3a). On average, the 𝑘𝑛-tree performed
eight (8) times faster than the baseline.

Regarding memory, Figure 2a demonstrated a superior memory scalability of 𝑘𝑛-tree compared
to the baseline. This was evident in the lower memory usage of its main data structure across various
dataset sizes, dimensions, and densities (Figure 3b). On average, the 𝑘𝑛-tree consumed 35 times less
memory than the baseline.

The distribution of data points significantly affected the performance of both the 𝑘𝑛-tree and the
baseline. Clustered data distributions were most favorable for the 𝑘𝑛-tree (as expected), leading to
the best performance in terms of both time (Figure 1b) and memory usage (Figure 2b). However, even
with scattered data distributions, the 𝑘𝑛-tree with 𝑘 = 4 often outperformed the baseline.

Discussion

The experimental results align with previous studies (Brisaboa et al., 2014; de Bernardo et al.,
2013; de Bernardo, 2014), highlighting the impact of dimensionality and data distribution on 𝑘𝑛-tree
performance. Memory usage notably increased with dimensionality, particularly for denser datasets.
However, the 𝑘𝑛-tree consistently outperformed the baseline in terms of both time and memory
efficiency for higher dimensions, especially with clustered data (𝑐 > 1). This underscores the 𝑘𝑛-tree's
effectiveness in compressing and navigating clustered data, even in high-dimensional spaces. This
observation is aligned with the findings of Quijada-Fuentes et al. (2019) who observed that for 𝑘2-
trees.

69

Figure 1 Comparison of (a) Time to Size, and (b) Time to Clusters.

(a) (b)

Note. Results in logarithmic scale. Abbreviations: 𝑏 for baseline; 𝑛𝑖 for 𝑛 = 𝑖 ; 𝑘𝑖 for 𝑘𝑛-tree with 𝑘 = 𝑖 ; and 𝑐𝑖

for 𝑐 = 𝑖 .

Figure 2 Comparison of (a) Memory to Size, and (b) Memory to Clusters.

(a) (b)
Note. Results in logarithmic scale. Abbreviations: b for baseline; ni for n = i ; ki for kn-tree with k = i ; and ci
for c = i .

Figure 3 Comparison of (a) Time to Density, and (b) Memory to Density.

(a) (b)
Note. Results in logarithmic scale. Abbreviations: b for baseline; ki − j for kn-tree with k = i and d = j .

Experiments confirmed the trade-off between space and time efficiency with varying order

parameter (𝑘) values. While a higher order (𝑘 > 2) generally led to better space efficiency, it wasn't
always optimal. For lower dimensional and sparser datasets, 𝑘 = 2 proved more time and space
efficient. However, for clustered and denser data, 𝑘 = 4 was superior. This aligns with findings by
Quijada-Fuentes et al. (2019), where 𝑘2-trees with compression of 1𝑠 (akin to higher k values) were
more efficient for denser datasets, while the original 𝑘2-trees (akin to lower 𝑘 values) excelled with
sparser data.

70

Conclusion
The empirical evidence from our experiments demonstrated the 𝑘𝑛 -tree's effectiveness in

handling set intersection operations on high-dimensional or clustered data, showcasing an average of
eight (8) times faster execution and 35 times less memory consumption compared to the plain
representation of adjacency lists as baseline. These findings highlight the importance of considering
dataset characteristics and application requirements when selecting compact data structures. The
superior scalability of the 𝑘𝑛-tree for high-dimensional and clustered data suggests its potential for
efficient data management in various domains. For instance, in Geographic Information Systems (GIS)
dealing with multi-dimensional spatial data or recommender systems modelling user-item
interactions as high-dimensional relations, the 𝑘𝑛-tree could offer significant advantages in storage
and query processing.

Furthermore, this research confirms the impact of the order parameter 𝑘 on 𝑘𝑛-tree performance
as mentioned by Navarro (2016). Lower 𝑘 values are more efficient for lower-dimensional or sparser
datasets, while higher 𝑘 values are better suited for clustered and denser data.

However, this study is limited to experiments on synthetic datasets, which may not fully capture
the complexities and nuances of real-world data. Additionally, it is focused solely on the set
intersection operation, leaving the performance of the 𝑘𝑛-tree for other set operations unexplored.
Finally, the range of parameters explored in the experiments was limited.

Future work should evaluate the 𝑘𝑛-tree on real-world datasets, explore its performance for other
set operations, and conduct a more comprehensive parameter analysis. Additionally, comparing the
𝑘𝑛-tree with alternative compact data structures (Benoit et al., 2005; Delpratt et al., 2006; Quijada-
Fuentes et al., 2019) for 𝑛-ary relations would provide a more complete understanding of its strengths
and weaknesses. Furthermore, investigating the impact of different clustering algorithms on 𝑘𝑛-tree
performance could further enhance its real-world applicability.

References
Barbay, J., Claude, F., Gagie, T., Navarro, G., & Nekrich, Y. (2014). Efficient fully-compressed sequence

representations. Algorithmica, 69(1), 232–268. https://doi.org/10.1007/s00453-012-9726-3
Barbay, J., & Navarro, G. (2013). On compressing permutations and adaptive sorting. Theoretical Computer

Science, 513, 109–123. https://doi.org/10.1016/j.tcs.2013.10.019
Benoit, D., Demaine, E. D., Munro, J. I., Raman, R., Raman, V., & Rao, S. S. (2005). Representing trees of higher

degree. Algorithmica, 43, 275–292. https://doi.org/10.1007/s00453-004-1146-6
Boldi, P., Rosa, M., Santini, M., & Vigna, S. (2011, March). Layered label propagation: A multiresolution

coordinate-free ordering for compressing social networks. In Proceedings of the 20th International

Conference on World Wide Web (pp. 587–596). https://doi.org/10.1145/1963405.1963488
Brisaboa, N. R., Ladra, S., & Navarro, G. (2014). Compact representation of web graphs with extended

functionality. Information Systems, 39, 152–174. https://doi.org/10.1016/j.is.2013.08.003
Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A., & Raghavan, P. (2009, June). On

compressing social networks. In Proceedings of the 15th ACM SIGKDD International Conference On

Knowledge Discovery and Data Mining (pp. 219–228). https://doi.org/10.1145/1557019.1557049
Clark, D. (1997). Compact pat trees [Doctoral dissertation, The University of Waterloo, Canada].

https://uwspace.uwaterloo.ca/bitstream/handle/10012/64/nq21335.pdf
Claude, F., & Ladra, S. (2011, October). Practical representations for web and social graphs. In Proceedings of

the 20th ACM International Conference on Information and Knowledge Management (pp. 1185–1190).
https://doi.org/10.1145/2063576.2063747

Claude, F., & Navarro, G. (2011). Self-indexed grammar-based compression. Fundamenta Informaticae, 111(3),

313–337. https://dl.acm.org/doi/10.5555/2361502.2361504
de Bernardo, G. (2014). New data structures and algorithms for the efficient management of large spatial

datasets [Doctoral dissertation, Universidade da Coruña, Spain]. http://hdl.handle.net/2183/13769
De Bernardo, G., Álvarez-García, S., Brisaboa, N. R., Navarro, G., & Pedreira, O. (2013). Compact querieable

representations of raster data. In O. Kurland, M. Lewenstein, & Porat, E. (eds.), String processing and
information retrieval. SPIRE 2013. Lecture Notes in Computer Science, vol 8214. Springer, Cham.
https://doi.org/10.1007/978-3-319-02432-5_14

https://doi.org/10.1007/s00453-012-9726-3
https://doi.org/10.1007/s00453-004-1146-6
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1016/j.is.2013.08.003
https://doi.org/10.1145/1557019.1557049
https://uwspace.uwaterloo.ca/bitstream/handle/10012/64/nq21335.pdf
https://doi.org/10.1145/2063576.2063747
http://hdl.handle.net/2183/13769
https://doi.org/10.1007/978-3-319-02432-5_14

71

Delpratt, O. N., Rahman, N., & Raman, R. (2006). Engineering the LOUDS succinct tree representation. In C.
Àlvarez & M. Serna (eds.), Experimental algorithms. WEA 2006. Lecture Notes in Computer Science, vol
4007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11764298_12

Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE Transactions on Information

Theory, 21(2), 194–203. https://doi.org/10.1109/TIT.1975.1055349
Ferragina, P., & Venturini, R. (2007). A simple storage scheme for strings achieving entropy bounds. Theoretical

Computer Science, 372(1), 115–121. https://doi.org/10.1016/j.tcs.2006.12.012
Golynski, A., Munro, J. I., & Rao, S. S. (2006, January). Rank/select operations on large alphabets: A tool for text

indexing. In SODA (Vol. 6, pp. 368–373). In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2006, Miami, Florida, USA.

Golynski, A., Raman, R., & Rao, S. S. (2008, July). On the redundancy of succinct data structures. In J.
Gudmundsson (eds.) Algorithm theory – SWAT 2008. SWAT 2008. Lecture Notes in Computer Science, vol

5124. Springer, Berlin, Heidelberg. Scandinavian Workshop on Algorithm Theory (pp. 148–159). Springer.
https://doi.org/10.1007/978-3-540-69903-3_15

Grabowski, S., & Bieniecki, W. (2014). Tight and simple web graph compression for forward and reverse
neighbor queries. Discrete Applied Mathematics, 163, 298–306.
https://doi.org/10.1016/j.dam.2013.05.028

Grossi, R., Gupta, A., & Vitter, J. S. (2003). High-order entropy-compressed text indexes. In Proceedings of
SODA '03: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
https://dl.acm.org/doi/10.5555/644108.644250

Grossi, R., Orlandi, A., & Raman, R. (2010). Optimal trade-offs for succinct string indexes. In Automata,
Languages and Programming: 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10,
2010, Proceedings, Part I 37 (pp. 678–689). Springer. https://doi.org/10.1007/978-3-642-14165-2_57

Hernández, C., & Navarro, G. (2014). Compressed representations for web and social graphs. Knowledge and
Information Systems, 40(2), 279–313. https://doi.org/10.1007/s10115-013-0648-4

Jacobson, G. (1989, October). Space-efficient static trees and graphs. In Proceedings of the 30th Annual
Symposium on Foundations of Computer Science (pp. 549–554). IEEE Computer Society.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=63533

Maserrat, H., & Pei, J. (2010, July). Neighbor query friendly compression of social networks. In Proceedings of
the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 533–542).
https://doi.org/10.1145/1835804.1835873

Munro, J. I., & Raman, V. (2001). Succinct representation of balanced parentheses and static trees. SIAM
Journal on Computing, 31(3), 762–776. https://doi.org/10.1137/S0097539799364092

Navarro, G. (2016). Compact data structures: A practical approach. Cambridge University Press.
Pagh, R. (2001). Low redundancy in static dictionaries with constant query time. SIAM Journal on Computing,

31(2), 353–363. https://doi.org/10.1137/S0097539700369909
Quijada-Fuentes, C., Penabad, M. R., Ladra, S., & Gutiérrez, G. (2019). Set operations over compressed binary

relations. Information Systems, 80, 76–90. https://doi.org/10.1016/j.is.2018.10.001
Raman, R., Raman, V., & Satti, S. R. (2007). Succinct indexable dictionaries with applications to encoding k-ary

trees, prefix sums and multisets. ACM Transactions on Algorithms (TALG), 3(4), 43–es.
https://doi.org/10.1145/1290672.1290680

https://doi.org/10.1007/11764298_12
https://doi.org/10.1109/TIT.1975.1055349
https://doi.org/10.1007/978-3-540-69903-3_15
https://dl.acm.org/doi/10.5555/644108.644250
https://doi.org/10.1007/978-3-642-14165-2_57
https://doi.org/10.1007/s10115-013-0648-4
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=63533
https://doi.org/10.1145/1835804.1835873
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1137/S0097539700369909
https://doi.org/10.1016/j.is.2018.10.001
https://doi.org/10.1145/1290672.1290680

