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Abstract

Tracking human movement and interactions in complex environments is a key challenge in
computer vision, especially for multi-object tracking. Transformer-based models have shown promise
in addressing these challenges due to their capacity to recognize complex patterns across sequences.
However, their high computational demands and substantial training data requirements often restrict
their real-world applicability. This study aimed to enhance multi-object tracking by introducing a
Compact Model Adjustment approach that integrates trainable rank-decomposition matrices within
the Transformer architecture. This approach involves freezing the pre-trained model weights and
adding trainable low-rank matrices to each layer, substantially reducing the number of parameters
that need updating during training. This design allows the model to retain its pre-trained knowledge
while efficiently adapting to new tasks, thereby reducing the overall computational load. Additionally,
the proposed approach utilizes data from both the current and previous frames to refine object
localization and association. Experimental results on the MOT17 benchmark demonstrated that this
method achieved a Multiple Object Tracking Accuracy of 71.0, comparable to state-of-the-art
techniques while enhancing computational efficiency. This work provides a practical solution for real-
world applications in areas such as surveillance, autonomous driving, and sports analytics.
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Introduction

Multi-object tracking (MOT) (Amosa et al., 2023) has become an essential area of research in
computer vision, driven by the increasing demand for automated systems capable of monitoring and
analyzing dynamic environments. The ability to accurately track multiple objects over time is crucial
for a wide range of applications, such as surveillance, robotics, autonomous driving, sports analytics,
and human-computer interaction. The primary challenge in MOT lies in accurately detecting and
tracking multiple objects across frames in a video sequence, especially in dynamic environments
where occlusions, varying object appearances, and complex interactions occur (Du et al., 2024).
Recent advancements in deep learning, particularly through the use of transformer architectures,
have shown promise in addressing these challenges by effectively capturing temporal dependencies
and spatial relationships among objects (Manakitsa et al., 2024).

The introduction of transformer models has revolutionized various domains, including natural
language processing and computer vision, by utilizing self-attention mechanisms to capture long-
range dependencies and contextual information (Patwardhan et al., 2023). One of the notable
contributions in this domain is the DEtection TRansformer (DETR), which models object detection as
a translation task, converting image features into object-level representations (Carion et al., 2020).
DETR's innovative approach allows it to handle complex scenes more effectively than traditional
detection methods, laying the groundwork for subsequent models that extend its capabilities to multi-
object tracking.

In addition to DETR, other transformer-based models have also made significant strides in MOT.
For example, the TrackFormer model (Meinhardt et al., 2022) employs a transformer architecture to
simultaneously perform object detection and tracking. It utilizes a bipartite matching algorithm to
associate detected objects across frames, effectively leveraging the strengths of transformers to
enhance tracking accuracy in dynamic scenarios. Similarly, the TransTrack model (Sun et al., 2020)
employs a transformer-based architecture for simultaneous object detection and tracking. By
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leveraging the self-attention mechanism, this model can capture relationships between objects across
frames, enhancing tracking performance in complex scenarios.

Despite these advancements, the computational demands of transformer-based models have
remained a concern, especially when they are deployed in real-time applications. The need for
extensive training data and high computational resources can limit their practicality. To address these
challenges, researchers have explored various adaptation techniques that reduce the number of
trainable parameters while preserving model performance. For example, the Dynamic Layer Tying
technique (Hay & Wolf, 2024) involves dynamically selecting layers during training and tying them
together, facilitating weight sharing across layers. By employing reinforcement learning to determine
whether to train each layer independently or to share weights from previous layers, this method can
significantly reduce the number of trainable parameters. However, the reliance on reinforcement
learning can introduce complexity in implementation and may require careful tuning to achieve
optimal performance.

Another technique is Teacher-Student Learning (Wang et al., 2019), where a larger, more complex
model (teacher) is trained first, and then its knowledge is transferred to a smaller, more efficient
model (student). The student model can be trained to mimic the teacher's output, often using
techniques like knowledge distillation. While these techniques can effectively reduce the number of
trainable parameters in transformers, they also have potential disadvantages, such as performance
degradation, where techniques like aggressive pruning or quantization (Wu et al., 2019) can lead to a
decrease in model performance. In a related study, Hu et al. (2021) proposed a low-rank adaptation
approach in natural language processing (NLP), which decomposes large weight matrices into smaller
ones. This technique can significantly reduce the number of parameters and the computational
complexity of the model.

To address these limitations, the present researcher proposed a novel approach termed Compact
Model Adjustment (CMA), which integrates the concept of trainable rank-decomposition matrices into
the transformer encoder architecture. The trainable rank-decomposition matrices technique allows
for the efficient adaptation of large pre-trained models by freezing the original model weights and
adding trainable rank-decomposition matrices to each layer of the transformer architecture. This
method drastically reduces the number of trainable parameters, thereby minimizing computational
overhead while maintaining or even improving model performance. The rationale behind CMA comes
from the observation that not all parameters in a model contribute equally to its performance on
specific tasks. By focusing on updates to trainable rank-decomposition matrices, CMA enables models
to adapt effectively to new tasks without the need for extensive retraining of all parameters. This is
particularly beneficial for multi-object tracking, where rapid adaptation to varying conditions and
object behaviors is essential.

The key contributions can be outlined as follows:

e An architectural innovation was proposed that incorporated the Compact Model Adjustment
technique specifically designed for multi-object tracking (MOT). This technique addresses the
challenges of high computational complexity and extensive training data requirements
commonly associated with transformer-based models.

e Anpairof consecutive video frames was utilized, specifically the current frame and the previous
frame, to enhance object tracking and association.

o The performance of the proposed method was evaluated by comparing it to state-of-the-art
techniques on the MOT17 benchmark, demonstrating the effectiveness of the approach in
real-world tracking scenarios.

The structure of the remaining manuscript is outlined as follows: Section 2 introduces the related

work, Section 3 presents the proposed method, Section 4 demonstrates the experimental results, and
Section 5 concludes this work.
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Related Work
Multi-Object Tracking in Complex Environments

Multi-Object Tracking has seen significant advancements over the years, particularly in dealing
with complex environments. These environments, characterized by occlusions, varying object
appearances, and dynamic backgrounds, pose substantial challenges to tracking algorithms. One of
the foundational approaches to MOT has been the Kalman Filter (Khodarahmi & Maihami, 2023),
which provides a recursive solution for estimating the state of a dynamic system in the presence of
noise. Although it was primarily developed for single-object tracking, it has been adapted for multiple
objects by employing data association techniques (Yilmaz et al., 2006). In recent years, deep learning
has revolutionized MOT, especially with the introduction of deep appearance models that enhance
the robustness of data association (Emami et al., 2020).These models can learn discriminative features
from object appearances, which are crucial in distinguishing between similar objects in crowded
scenes. Moreover, approaches like the SORT (Simple Online and Realtime Tracking) algorithm (Bewley
et al., 2016), have demonstrated the effectiveness of combining a Kalman Filter with a Hungarian
algorithm for data association in real-time tracking scenarios. This method has been further improved
by extending it with deep learning-based re-identification models, resulting in DeepSORT (Wojke et
al., 2017).

Transformer-Based Models in Computer Vision

Transformers, initially developed for natural language processing, have recently gained popularity
in computer vision tasks due to their capacity to capture long-range dependencies and contextual
information across sequences (Meinhardt et al., 2022). In the context of MOT, transformer-based
models offer a promising solution by utilizing attention mechanisms to effectively associate objects
across frames, even in complex and crowded scenes. These models, however, come with their own
set of challenges. The computational complexity of transformers is quadratic with respect to input
size, making them resource-intensive and requiring extensive training data to achieve optimal
performance (Fournier et al., 2023) .

Challenges and Limitations of Transformer Models in MOT

Despite their potential, transformer-based models for MOT face significant hurdles in real-world
applications. One major limitation is the high computational cost associated with training and
deploying these models. As the input sequence length increases, the memory and processing power
required grows substantially, often making real-time applications impractical (Carion et al., 2020).
Moreover, transformers require large amounts of labeled data to avoid overfitting, which can be a
bottleneck in domains where annotated data is scarce or expensive to obtain (Alzubaidi et al., 2023).

Advancements in Reducing Computational Complexity

Recent advancements in MOT have focused on reducing computational complexity to enable real-
time applications. One approach has involved model pruning, where redundant parameters are
removed from deep neural networks (Wu et al., 2019). Another technique is quantization, which
reduces the precision of model weights and activations to smaller data types, resulting in smaller
models and faster inference (Xie et al., 2023). While parameter pruning and quantization are effective
techniques for reducing the size and computational complexity of deep learning enhancement
models, they can also lead to performance degradation, require careful hyperparameter tuning, and
may not be fully compatible with all hardware platforms or generalize well to different datasets or
noise conditions. Additionally, knowledge distillation transfers knowledge from a large, complex
model to a smaller, more efficient one (Faber et al., 2024). These techniques have shown promising
results in reducing computational complexity. However, they may require fine-tuning and careful
design to achieve optimal performance, which can be time-consuming and challenging.
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Proposed Method

The proposed method was based on encoder-decoder transformer architecture. It leverages the
power of transformers to simultaneously perform detection and tracking within a unified framework.
By treating object tracking as a sequence prediction problem, the researcher utilized transformers to
model the relationships between detected objects across consecutive frames. The encoder-decoder
transformer architecture consisted of multi-head attention layers, residual connections, layer
normalization, feed-forward networks, and cross-attention. Multi-head attention, a mechanism for
self-attention, operates in parallel multiple times. The overall architecture of the proposed method is
illustrated in Figure 1.

The process begins with a pair of consecutive video frames, typically denoted as the current frame
F: and the previous frame F.1. Both frames are processed by a convolutional neural network (CNN)
backbone network, specifically employing ResNet50, to extract deep features. These features capture
various aspects of the objects in the scene, such as their appearance, shape, and position.

Figure 1 Overall Architecture of the Proposed Method
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The extracted features from both frames are flattened and combined, then passed through a
transformer encoder. The encoder processes these features to capture global contextual information
and interactions between objects within and across the frames. The encoder's role is to build rich
feature representations that are aware of the spatial and temporal relationships in the input frames.

The researcher introduced Compact Model Adjustment, a method that employs trainable rank-
decomposition matrices to significantly reduce the number of trainable parameters for downstream
tasks when applied to multi-head attention mechanisms in transformer encoders.

Compact Model Adjustment

The researcher introduced a CMA method that was designed to efficiently adapt large models to
new tasks or domains without requiring full fine-tuning. Full fine-tuning can be computationally
expensive, time-consuming, and storage-intensive. The CMA method chosen addressed these issues
by incorporating trainable rank-decomposition matrices into the pre-trained model's parameters
while freezing the original weights. This approach allows for efficient adaptation while preserving the
valuable knowledge stored in the pre-trained model.

Applying CMA to a transformer's multi-head attention mechanism involves a series of steps to
adapt the pre-trained model weights with updates to trainable rank-decomposition matrices. In
transformers, the multi-head attention mechanism is a crucial component. It consists of several
attention heads that allow the model to focus on different parts of the input sequence. Each head
computes the following (1):
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. QKT
Attention (Q,K,V) = softmax (—)V 1
(Q.K,V) = softmax (1= 1
Where Q=XWq , K=XW , V=XWy, X is the input, Wq, Wk and W are learned weight matrices for

Queries, Keys, and Values, respectively, and di is the dimensionality of the Key Vectors.

In CMA, the weight matrix W (for any of Wq, Wx, Wy ) is decomposed into two parts as shown in

2).
W'=W+AW (2)

Where AW is an update of trainable rank-decomposition matrices represented as shown in (3).
AW=BxA (3)

Where BER* and AER™ are the trainable rank-decomposition matrices with r (the rank) being
much smaller than the original dimension d. The idea is to train these trainable rank-decomposition
matrices A and B while keeping the original W frozen.

The process begins with a pre-trained transformer model with weights W and initializing these
trainable rank-decomposition matrices B and A for each attention head. During the forward pass, the
input X is projected using the adapted weight matrices W’ to compute the Queries, Keys, and Values
as shown in (4).

Q' = X(Wa+AWq) = X(Wq+BoAq) (4)

The same calculations apply for K’ and V'. During training, only the trainable rank-decomposition
matrices B and A are modified. The original weights Wq, Wk, and Wy remain unchanged. By restricting
the adaptation to the update of trainable rank-decomposition matrices, the number of trainable
parameters is substantially decreased, resulting in more efficient fine-tuning while still enabling
effective model adaptation. Figure 2 visually illustrates the Cross-Modal Attention mechanism within
the encoder transformer's multi-head attention. CMA utilizes a bounding box regression loss function
to minimize the error between the predicted and ground truth bounding boxes.

Figure 2 lllustration of the Compact Model Adjustment in the Encoder Transformer
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Detection Decoder

The detection decoder is initialized with a set of object queries, which are learnable embeddings
that the model uses to search for objects within the encoded features. These queries aid in identifying
and locating objects in the current frame. The detection decoder processes the encoded features and
queries to generate object predictions. Specifically, for each query, the decoder outputs a set of
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bounding boxes and class scores, representing the locations and categories of detected objects in the
current frame. The detection decoder block's output comprises a set of bounding boxes indicating the
objects' locations in the current frame, along with corresponding confidence scores for each
detection, as illustrated in Figure 3(a).

Figure 3 Detection Decoder and Tracking Decoder Architecture
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Tracking Decoder

The tracking process utilizes track queries, which are derived from the detected objects in the
previous frame. These track queries preserve the appearance and positional information of objects
detected in F.;. The tracking decoder as shown in Figure 3(b), identical in architecture to the detection
decoder as shown in Figure 3(a), employs these track queries to associate objects detected in the
previous frame with those in the current frame. It updates the positions of these objects and generates
tracking boxes for each object in F.. The output of the tracking decoder consists of a set of bounding
boxes that indicate the tracked objects' positions in the current frame, linking them to the detections
from the previous frame as illustrated in Figure 4.
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Figure 4 Overview of Object Detection and Object Tracking
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In Figure 4, the image feature maps act as a shared key. This key represents specific regions within
the image that correspond to the features of an object. These features are crucial for determining the
relevance of this object to other objects within a sequence. The "object query" refers to the
representation of the object that the model is focusing on or interested in at a particular moment. The
attention mechanism uses these keys (feature maps) and queries (object representations) to
determine which parts of the image are most relevant to the task at hand.

Matching

The matching model associates detected objects in the current frame with tracked objects from
the previous frame. This association is based on the bounding boxes and the feature similarities
between the frames. The final output consists of the detected and tracked objects, where each tracked
object is linked to its corresponding detection in the current frame. The model outputs the updated
trajectories for all objects, which are continuously refined as the video progresses. To match detection
boxes and tracking boxes, the Hungarian algorithm is used based on Intersection over Union (loU)
similarity.

Training Loss
Loss Function

The training of the model involves a combination of loss functions to train the model. The loss
function consists of two main components: a classification loss for detecting the presence of objects
and a bounding box regression loss for accurately predicting the locations of the objects.

Classification Loss
Classification loss measures the model's ability to correctly identify objects. Equation (5) defined
the calculation of classification loss (Singh & Principe, 2010).

Las = —a; (1 —p)Y log(py) (5)

In this equation, p; represents the model's predicted probability for the correct class. The
parameter a; serves as a weighting factor to balance the significance of positive and negative
examples. Meanwhile, y is a focusing parameter that reduces the loss for well-classified examples,
making the model focus on challenging cases.

Bounding Box Regression Loss

For bounding box regression, the researcher used a combination of L1 loss and Generalized
Intersection over Union (GloU) loss to evaluate the difference between the predicted bounding boxes
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and the ground truth boxes. The L1 loss specifically quantifies the absolute difference between the
predicted and actual bounding box coordinates. It is defined as the average absolute error across all
bounding boxes, where the loss is computed as the sum of the absolute differences between each
predicted bounding box and its corresponding ground truth, divided by the total number of bounding
boxes. The L1 loss for bounding box regression (Zhai et al., 2020) is defined in equation (6):

1 "
Li; = N Yty lyi — 9l (6)

In this context, y; represents the ground truth bounding box, J; denotes the predicted bounding box,
and N is the number of bounding boxes.

Generalized Intersection over Union (GloU) Loss
The GloU loss (Cao, 2021) is defined in equation (7):
|Intersection| |C-U|
|Union| |1C|

(7)

Lgroy =1—

In this formula, |Intersection |Intersection| represents the area of overlap between the predicted
and ground truth bounding boxes, while |Union| denotes the total area covered by both boxes
combined. The term |C| refers to the area of the smallest enclosing box that contains both the
predicted and ground truth boxes, and |U| corresponds to the area of the union of the two boxes. The
GloU loss incorporates these elements to provide a more comprehensive measure of the alignment
between the predicted and ground truth bounding boxes.

Overall Loss Function
The overall loss function used for training is a combination of several components, as
represented in equation (8).
L= Les+ Ly + Lerou (8)

In this formulation, L, referred to the classification loss, L;; denoted the loss associated with
bounding box regression. Lastly, GloU represented the Generalized Intersection over Union loss.
Together, these losses guide the training process to optimize both object classification and bounding
box accuracy.

Experimental results
Datasets

The MOT17 dataset is a widely recognized benchmark for evaluating the performance of multi-
object tracking (MOT) algorithms. As a publicly available dataset, MOT17 serves as a valuable resource
for researchers to develop and improve their algorithms. It comprises a collection of video sequences
with annotated bounding boxes, where the primary objective is to track multiple objects, typically
pedestrians, across frames. Experiments were conducted on the pedestrian-tracking dataset MOT17.
The researcher utilized the standard split of the MOT17 dataset, which included a training set and a
validation set. The MOT17 dataset consisted of seven training sequences and seven test sequences,
each representing a distinct video clip featuring people navigating various environments, such as
streets, squares, or other public spaces. The dataset was specifically designed to offer diverse and
challenging scenarios for testing multi-object tracking algorithms. The training sequences were
provided with ground truth annotations, indicating the trajectories of objects, while the test
sequences were supplied without ground truth annotations. The evaluation of the test set was
performed by submitting the results to the MOT Challenge website. The MOT17 test set included
2,355 trajectories spread across 17,757 frames. Trajectories represented the paths or sequences of
positions that objects (such as people) follow over time as they move through different frames in a
video.
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Evaluation Metrics

To evaluate the performance of this proposed method, the researcher utilized the widely
recognized MOT metrics set for quantitative assessment. The primary metric is Multiple-Object
Tracking Accuracy (MOTA), which measures overall tracking performance. Identity Switches (ID Sw)
qguantify the number of instances where an object's identity is mistakenly assigned to another object.
This issue arises when the tracker loses track of an object and subsequently re-detects it, leading to
the assignment of a different ID. The Identity F1 Score (IDF1) represents the harmonic mean of
precision and recall for object identity, offering a balanced evaluation of how effectively the tracker
assigns identities to objects. Multiple Object Loss (ML) measures the frequency with which an object
is incorrectly associated with another object or fails to be associated with any object at all; a lower ML
value signifies better tracking accuracy. Finally, Missed Targets (MT) counts the instances where an
object goes undetected by the tracker, with a lower MT value indicating superior object detection
accuracy.

Implementation Details

The researcher utilized the ResNet-50 architecture as the backbone of the network. ResNet-50 is
a widely-used convolutional neural network known for its depth and ability to learn complex patterns,
which enhances model robustness and generalization. To further improve generalization and prevent
overfitting, data augmentation techniques were incorporated such as random horizontal flipping,
random cropping, scaling, and resizing of input images. These techniques artificially expand the size
and diversity of the training dataset by applying random transformations to the images. The AdamW
optimizer, initialized with a learning rate of 2.0 x-10™%, was employed to guide the model's learning
process. The model was trained for 100 epochs.

Comparison

The performance comparison between the proposed method and other state-of-the-art methods
on the MOT17 dataset is summarized in Table |. The proposed method achieved a Multiple-Object
Tracking Accuracy (MOTA) of 71.0, surpassing all other methods listed, indicating a superior overall
tracking performance. While this study's Identity F1 Score (IDF1) of 63.8 is slightly lower than SUSHI
(71.5), it still reflected a robust balance between precision and recall in identity assignment.

In terms of Missed Targets (MT), this method successfully tracked 1,038 targets, which is among
the highest, second only to NCT, which tracked 1,092 targets. This demonstrated the method's strong
ability to maintain object tracking across sequences. Additionally, this method had a relatively low
number of Multiple Object Losses (ML) at 464, which is among the lowest, although NCT achieved an
even lower ML of 399. This further highlighted the method's tracking consistency.

Regarding ldentity Switches (ID Sw.), this study's method recorded 4,113 switches, which,
although not the lowest, showed a reasonable performance when considering the complexity of
maintaining consistent object identities. Overall, this study's method demonstrated a leading
performance in MOTA and a strong balance across other key metrics, making it highly effective in
addressing the challenges posed by the MOT17 dataset.
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Table 1 Comparison of the Proposed Method and Other Methods Evaluated on MOT17 (Arrows
Indicating Low or High Optimal Metric Values)

Method MOTA P IDF1 N MT DN ML ¥ ID Sw. \V
TADN (Psalta et al., 2024) 54.6 49.0 528 711 4869
IQHAT (He et al., 2022) 58.4 61.8 568 829 1261
UnsupTrack (Karthik et al., 2020) 61.7 58.1 640 760 1864
SUSHI (Karthik et al., 2020) 62.0 71.5 801 741 1041
MPTC (Stadler & Beyerer, 2021) 62.6 65.8 627 750 4074
UTM (You et al., 2023) 63.5 65.1 881 635 1686
Hugmot (Wan et al., 2021) 64.8 62.8 738 645 2102
BYTE_Pub (Wan et al., 2021) 67.4 70.0 730 735 1331
OUTrack_fm_p (Liu et al., 2022) 69.0 66.8 885 464 4472
NCT (Zeng et al., 2023) 69.5 68.5 1092 399 4919
PixelGuided (Boragule et al., 2022) 69.7 68.4 903 615 3639
Proposed method 71.0 63.8 1038 464 4113

Note. The range for Multiple-Object Tracking Accuracy (MOTA) scores is 0—-100; model accuracy is being
reported.

Conclusion

In this study, the challenge of Multi-Object Tracking in complex environments was addressed by
proposing a Compact Model Adjustment approach that enhanced the efficiency of transformer-based
models. The results demonstrated that incorporating trainable rank-decomposition matrices into
transformer architecture is an effective strategy for balancing model complexity and performance. By
leveraging data from both the current and previous frames, this study's approach improved the
model's ability to track objects over time, thereby addressing some of the critical challenges
associated with MOT in dynamic and complex environments. The performance of the model was
comparable to state-of-the-art techniques, highlighting the potential of this approach for real-world
applications where computational resources may be limited.

Despite the promising results, this study's approach has limitations. This method is applicable only
after the full model has been trained, limiting its use in scenarios where training from scratch is
required. Future work should focus on extending the CMA approach to incorporate multi-camera
setups or integrating 3D tracking capabilities to enhance the model's robustness in scenarios with
significant occlusions or complex interactions between tracked objects.
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