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Abstract 
Tracking human movement and interactions in complex environments is a key challenge in 

computer vision, especially for multi-object tracking. Transformer-based models have shown promise 
in addressing these challenges due to their capacity to recognize complex patterns across sequences. 
However, their high computational demands and substantial training data requirements often restrict 
their real-world applicability. This study aimed to enhance multi-object tracking by introducing a 
Compact Model Adjustment approach that integrates trainable rank-decomposition matrices within 
the Transformer architecture. This approach involves freezing the pre-trained model weights and 
adding trainable low-rank matrices to each layer, substantially reducing the number of parameters 
that need updating during training. This design allows the model to retain its pre-trained knowledge 
while efficiently adapting to new tasks, thereby reducing the overall computational load. Additionally, 
the proposed approach utilizes data from both the current and previous frames to refine object 
localization and association. Experimental results on the MOT17 benchmark demonstrated that this 
method achieved a Multiple Object Tracking Accuracy of 71.0, comparable to state-of-the-art 
techniques while enhancing computational efficiency. This work provides a practical solution for real-
world applications in areas such as surveillance, autonomous driving, and sports analytics.   
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Introduction  

Multi-object tracking (MOT) (Amosa et al., 2023) has become an essential area of research in 
computer vision, driven by the increasing demand for automated systems capable of monitoring and 
analyzing dynamic environments. The ability to accurately track multiple objects over time is crucial 
for a wide range of applications, such as surveillance, robotics, autonomous driving, sports analytics, 
and human-computer interaction. The primary challenge in MOT lies in accurately detecting and 
tracking multiple objects across frames in a video sequence, especially in dynamic environments 
where occlusions, varying object appearances, and complex interactions occur (Du et al., 2024). 
Recent advancements in deep learning, particularly through the use of transformer architectures, 
have shown promise in addressing these challenges by effectively capturing temporal dependencies 
and spatial relationships among objects (Manakitsa et al., 2024). 

The introduction of transformer models has revolutionized various domains, including natural 
language processing and computer vision, by utilizing self-attention mechanisms to capture long-
range dependencies and contextual information (Patwardhan et al., 2023). One of the notable 
contributions in this domain is the DEtection TRansformer (DETR), which models object detection as 
a translation task, converting image features into object-level representations (Carion et al., 2020). 
DETR's innovative approach allows it to handle complex scenes more effectively than traditional 
detection methods, laying the groundwork for subsequent models that extend its capabilities to multi-
object tracking.  

In addition to DETR, other transformer-based models have also made significant strides in MOT. 
For example, the TrackFormer model (Meinhardt et al., 2022) employs a transformer architecture to 
simultaneously perform object detection and tracking. It utilizes a bipartite matching algorithm to 
associate detected objects across frames, effectively leveraging the strengths of transformers to 
enhance tracking accuracy in dynamic scenarios. Similarly, the TransTrack model (Sun et al., 2020) 
employs a transformer-based architecture for simultaneous object detection and tracking. By 
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leveraging the self-attention mechanism, this model can capture relationships between objects across 
frames, enhancing tracking performance in complex scenarios. 

Despite these advancements, the computational demands of transformer-based models have 
remained a concern, especially when they are deployed in real-time applications. The need for 
extensive training data and high computational resources can limit their practicality. To address these 
challenges, researchers have explored various adaptation techniques that reduce the number of 
trainable parameters while preserving model performance. For example, the Dynamic Layer Tying 
technique (Hay & Wolf, 2024) involves dynamically selecting layers during training and tying them 
together, facilitating weight sharing across layers. By employing reinforcement learning to determine 
whether to train each layer independently or to share weights from previous layers, this method can 
significantly reduce the number of trainable parameters. However, the reliance on reinforcement 
learning can introduce complexity in implementation and may require careful tuning to achieve 
optimal performance.  

Another technique is Teacher-Student Learning (Wang et al., 2019), where a larger, more complex 
model (teacher) is trained first, and then its knowledge is transferred to a smaller, more efficient 
model (student). The student model can be trained to mimic the teacher's output, often using 
techniques like knowledge distillation. While these techniques can effectively reduce the number of 
trainable parameters in transformers, they also have potential disadvantages, such as performance 
degradation, where techniques like aggressive pruning or quantization (Wu et al., 2019) can lead to a 
decrease in model performance. In a related study, Hu et al. (2021) proposed a low-rank adaptation 
approach in natural language processing (NLP), which decomposes large weight matrices into smaller 
ones. This technique can significantly reduce the number of parameters and the computational 
complexity of the model. 

To address these limitations, the present researcher proposed a novel approach termed Compact 
Model Adjustment (CMA), which integrates the concept of trainable rank-decomposition matrices into 
the transformer encoder architecture. The trainable rank-decomposition matrices technique allows 
for the efficient adaptation of large pre-trained models by freezing the original model weights and 
adding trainable rank-decomposition matrices to each layer of the transformer architecture. This 
method drastically reduces the number of trainable parameters, thereby minimizing computational 
overhead while maintaining or even improving model performance. The rationale behind CMA comes 
from the observation that not all parameters in a model contribute equally to its performance on 
specific tasks. By focusing on updates to trainable rank-decomposition matrices, CMA enables models 
to adapt effectively to new tasks without the need for extensive retraining of all parameters. This is 
particularly beneficial for multi-object tracking, where rapid adaptation to varying conditions and 
object behaviors is essential. 

The key contributions can be outlined as follows: 

 An architectural innovation was proposed that incorporated the Compact Model Adjustment 
technique specifically designed for multi-object tracking (MOT). This technique addresses the 
challenges of high computational complexity and extensive training data requirements 
commonly associated with transformer-based models. 

 A pair of consecutive video frames was utilized, specifically the current frame and the previous 
frame, to enhance object tracking and association. 

 The performance of the proposed method was evaluated by comparing it to state-of-the-art 
techniques on the MOT17 benchmark, demonstrating the effectiveness of the approach in 
real-world tracking scenarios. 
 

The structure of the remaining manuscript is outlined as follows: Section 2 introduces the related 
work, Section 3 presents the proposed method, Section 4 demonstrates the experimental results, and 
Section 5 concludes this work. 
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Related Work 
Multi-Object Tracking in Complex Environments 

Multi-Object Tracking has seen significant advancements over the years, particularly in dealing 
with complex environments. These environments, characterized by occlusions, varying object 
appearances, and dynamic backgrounds, pose substantial challenges to tracking algorithms. One of 
the foundational approaches to MOT has been the Kalman Filter (Khodarahmi & Maihami, 2023), 
which provides a recursive solution for estimating the state of a dynamic system in the presence of 
noise. Although it was primarily developed for single-object tracking, it has been adapted for multiple 
objects by employing data association techniques (Yilmaz et al., 2006). In recent years, deep learning 
has revolutionized MOT, especially with the introduction of deep appearance models that enhance 
the robustness of data association (Emami et al., 2020).These models can learn discriminative features 
from object appearances, which are crucial in distinguishing between similar objects in crowded 
scenes. Moreover, approaches like the SORT (Simple Online and Realtime Tracking) algorithm (Bewley 
et al., 2016), have demonstrated the effectiveness of combining a Kalman Filter with a Hungarian 
algorithm for data association in real-time tracking scenarios. This method has been further improved 
by extending it with deep learning-based re-identification models, resulting in DeepSORT (Wojke et 
al., 2017). 
 
Transformer-Based Models in Computer Vision 

Transformers, initially developed for natural language processing, have recently gained popularity 
in computer vision tasks due to their capacity to capture long-range dependencies and contextual 
information across sequences (Meinhardt et al., 2022). In the context of MOT, transformer-based 
models offer a promising solution by utilizing attention mechanisms to effectively associate objects 
across frames, even in complex and crowded scenes. These models, however, come with their own 
set of challenges. The computational complexity of transformers is quadratic with respect to input 
size, making them resource-intensive and requiring extensive training data to achieve optimal 
performance (Fournier et al., 2023) . 

 
Challenges and Limitations of Transformer Models in MOT 

Despite their potential, transformer-based models for MOT face significant hurdles in real-world 
applications. One major limitation is the high computational cost associated with training and 
deploying these models. As the input sequence length increases, the memory and processing power 
required grows substantially, often making real-time applications impractical (Carion et al., 2020). 
Moreover, transformers require large amounts of labeled data to avoid overfitting, which can be a 
bottleneck in domains where annotated data is scarce or expensive to obtain (Alzubaidi et al., 2023). 
 
Advancements in Reducing Computational Complexity 

Recent advancements in MOT have focused on reducing computational complexity to enable real-
time applications. One approach has involved model pruning, where redundant parameters are 
removed from deep neural networks (Wu et al., 2019). Another technique is quantization, which 
reduces the precision of model weights and activations to smaller data types, resulting in smaller 
models and faster inference (Xie et al., 2023). While parameter pruning and quantization are effective 
techniques for reducing the size and computational complexity of deep learning enhancement 
models, they can also lead to performance degradation, require careful hyperparameter tuning, and 
may not be fully compatible with all hardware platforms or generalize well to different datasets or 
noise conditions. Additionally, knowledge distillation transfers knowledge from a large, complex 
model to a smaller, more efficient one (Faber et al., 2024). These techniques have shown promising 
results in reducing computational complexity. However, they may require fine-tuning and careful 
design to achieve optimal performance, which can be time-consuming and challenging. 
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Proposed Method 
The proposed method was based on encoder-decoder transformer architecture. It leverages the 

power of transformers to simultaneously perform detection and tracking within a unified framework. 
By treating object tracking as a sequence prediction problem, the researcher utilized transformers to 
model the relationships between detected objects across consecutive frames. The encoder-decoder 
transformer architecture consisted of multi-head attention layers, residual connections, layer 
normalization, feed-forward networks, and cross-attention. Multi-head attention, a mechanism for 
self-attention, operates in parallel multiple times. The overall architecture of the proposed method is 
illustrated in Figure 1. 

The process begins with a pair of consecutive video frames, typically denoted as the current frame 
Ft and the previous frame Ft-1. Both frames are processed by a convolutional neural network (CNN) 
backbone network, specifically employing ResNet50, to extract deep features. These features capture 
various aspects of the objects in the scene, such as their appearance, shape, and position. 

 
Figure 1 Overall Architecture of the Proposed Method 

 
 
Transformer Encoder  

The extracted features from both frames are flattened and combined, then passed through a 
transformer encoder. The encoder processes these features to capture global contextual information 
and interactions between objects within and across the frames. The encoder's role is to build rich 
feature representations that are aware of the spatial and temporal relationships in the input frames. 

The researcher introduced Compact Model Adjustment, a method that employs trainable rank-
decomposition matrices to significantly reduce the number of trainable parameters for downstream 
tasks when applied to multi-head attention mechanisms in transformer encoders. 
 
Compact Model Adjustment  

The researcher introduced a CMA method that was designed to efficiently adapt large models to 
new tasks or domains without requiring full fine-tuning. Full fine-tuning can be computationally 
expensive, time-consuming, and storage-intensive. The CMA method chosen addressed these issues 
by incorporating trainable rank-decomposition matrices into the pre-trained model's parameters 
while freezing the original weights. This approach allows for efficient adaptation while preserving the 
valuable knowledge stored in the pre-trained model. 

Applying CMA to a transformer's multi-head attention mechanism involves a series of steps to 
adapt the pre-trained model weights with updates to trainable rank-decomposition matrices. In 
transformers, the multi-head attention mechanism is a crucial component. It consists of several 
attention heads that allow the model to focus on different parts of the input sequence. Each head 
computes the following (1): 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                                                      (1) 

Where Q=XWQ , K=XWK , V=XWV , X is the input, WQ, WK and WK are learned weight matrices for 
Queries, Keys, and Values, respectively, and dk is the dimensionality of the Key Vectors. 

 

In CMA, the weight matrix W (for any of WQ , WK , WV ) is decomposed into two parts as shown in 
(2). 

W′=W+ΔW                                                                                        (2) 

Where ΔW is an update of trainable rank-decomposition matrices represented as shown in (3). 
    ΔW=B×A                                                                                    (3) 

Where B∈Rd×r and A∈Rr×d   are the trainable rank-decomposition matrices with r (the rank) being 
much smaller than the original dimension d. The idea is to train these trainable rank-decomposition 
matrices A and B while keeping the original W frozen.  

The process begins with a pre-trained transformer model with weights W and initializing these 
trainable rank-decomposition matrices B and A for each attention head. During the forward pass, the 
input X is projected using the adapted weight matrices W′ to compute the Queries, Keys, and Values 
as shown in (4). 

Q′ = X(WQ+ΔWQ) = X(WQ+BQAQ)                                                                 (4) 

The same calculations apply for K′ and V′. During training, only the trainable rank-decomposition 
matrices B and A are modified. The original weights WQ, WK, and WV remain unchanged. By restricting 
the adaptation to the update of trainable rank-decomposition matrices, the number of trainable 
parameters is substantially decreased, resulting in more efficient fine-tuning while still enabling 
effective model adaptation. Figure 2 visually illustrates the Cross-Modal Attention mechanism within 
the encoder transformer's multi-head attention. CMA utilizes a bounding box regression loss function 
to minimize the error between the predicted and ground truth bounding boxes. 

 
Figure 2 Illustration of the Compact Model Adjustment in the Encoder Transformer 

 

 
 
Detection Decoder 

The detection decoder is initialized with a set of object queries, which are learnable embeddings 
that the model uses to search for objects within the encoded features. These queries aid in identifying 
and locating objects in the current frame. The detection decoder processes the encoded features and 
queries to generate object predictions. Specifically, for each query, the decoder outputs a set of 
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bounding boxes and class scores, representing the locations and categories of detected objects in the 
current frame. The detection decoder block's output comprises a set of bounding boxes indicating the 
objects' locations in the current frame, along with corresponding confidence scores for each 
detection, as illustrated in Figure 3(a). 

 
Figure 3 Detection Decoder and Tracking Decoder Architecture 

 

 
 
Tracking Decoder 

The tracking process utilizes track queries, which are derived from the detected objects in the 
previous frame. These track queries preserve the appearance and positional information of objects 
detected in Ft-1. The tracking decoder as shown in Figure 3(b), identical in architecture to the detection 
decoder as shown in Figure 3(a), employs these track queries to associate objects detected in the 
previous frame with those in the current frame. It updates the positions of these objects and generates 
tracking boxes for each object in Ft. The output of the tracking decoder consists of a set of bounding 
boxes that indicate the tracked objects' positions in the current frame, linking them to the detections 
from the previous frame as illustrated in Figure 4.  
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Figure 4 Overview of Object Detection and Object Tracking 
 

 
 

In Figure 4, the image feature maps act as a shared key. This key represents specific regions within 
the image that correspond to the features of an object. These features are crucial for determining the 
relevance of this object to other objects within a sequence. The "object query" refers to the 
representation of the object that the model is focusing on or interested in at a particular moment. The 
attention mechanism uses these keys (feature maps) and queries (object representations) to 
determine which parts of the image are most relevant to the task at hand. 

 
Matching  

The matching model associates detected objects in the current frame with tracked objects from 
the previous frame. This association is based on the bounding boxes and the feature similarities 
between the frames. The final output consists of the detected and tracked objects, where each tracked 
object is linked to its corresponding detection in the current frame. The model outputs the updated 
trajectories for all objects, which are continuously refined as the video progresses. To match detection 
boxes and tracking boxes, the Hungarian algorithm is used based on Intersection over Union (IoU) 
similarity. 
 
Training Loss 
Loss Function 

The training of the model involves a combination of loss functions to train the model. The loss 
function consists of two main components: a classification loss for detecting the presence of objects 
and a bounding box regression loss for accurately predicting the locations of the objects. 
 
Classification Loss 

Classification loss measures the model's ability to correctly identify objects. Equation (5) defined 
the calculation of classification loss (Singh & Príncipe, 2010). 

𝐿𝑐𝑙𝑠 =  − 𝛼𝑡  (1 − 𝑝𝑡)𝛾 log(𝑝𝑡)                                                                  (5) 

In this equation, 𝑝𝑡 represents the model's predicted probability for the correct class. The 
parameter  𝛼𝑡  serves as a weighting factor to balance the significance of positive and negative 
examples. Meanwhile, 𝛾 is a focusing parameter that reduces the loss for well-classified examples, 
making the model focus on challenging cases.  
 
Bounding Box Regression Loss 

For bounding box regression, the researcher used a combination of L1 loss and Generalized 
Intersection over Union (GIoU) loss to evaluate the difference between the predicted bounding boxes 
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and the ground truth boxes. The L1 loss specifically quantifies the absolute difference between the 
predicted and actual bounding box coordinates. It is defined as the average absolute error across all 
bounding boxes, where the loss is computed as the sum of the absolute differences between each 
predicted bounding box and its corresponding ground truth, divided by the total number of bounding 
boxes. The L1 loss for bounding box regression (Zhai et al., 2020) is defined in equation (6): 

𝐿𝐿1 =  
1

𝑁
 ∑ |𝑦𝑖 − 𝑦̂𝑖|𝑁

𝑖=1                                                                            (6) 

In this context, 𝑦𝑖   represents the ground truth bounding box, 𝑦̂𝑖  denotes the predicted bounding box, 
and N is the number of bounding boxes. 
 
Generalized Intersection over Union (GIoU) Loss 

The GIoU loss (Cao, 2021) is defined in equation (7): 

𝐿𝐺𝐼𝑜𝑈 = 1 −  
|𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛|

|𝑈𝑛𝑖𝑜𝑛|
+

|𝐶−𝑈|

|𝐶|
                                                                 (7) 

In this formula, ∣Intersection ∣Intersection∣ represents the area of overlap between the predicted 
and ground truth bounding boxes, while ∣Union∣ denotes the total area covered by both boxes 
combined. The term ∣C∣ refers to the area of the smallest enclosing box that contains both the 
predicted and ground truth boxes, and ∣U∣ corresponds to the area of the union of the two boxes. The 
GIoU loss incorporates these elements to provide a more comprehensive measure of the alignment 
between the predicted and ground truth bounding boxes. 

 
Overall Loss Function 

The overall loss function used for training is a combination of several components, as 
represented in equation (8). 

𝐿 =  𝐿𝑐𝑙𝑠 + 𝐿𝑙1 + 𝐿𝐺𝐼𝑜𝑈                                                                            (8) 

In this formulation, 𝐿𝑐𝑙𝑠 referred to the classification loss, 𝐿𝑙1 denoted the loss associated with 
bounding box regression. Lastly, GIoU represented the Generalized Intersection over Union loss. 
Together, these losses guide the training process to optimize both object classification and bounding 
box accuracy.  
 
Experimental results 
Datasets  

The MOT17 dataset is a widely recognized benchmark for evaluating the performance of multi-
object tracking (MOT) algorithms. As a publicly available dataset, MOT17 serves as a valuable resource 
for researchers to develop and improve their algorithms. It comprises a collection of video sequences 
with annotated bounding boxes, where the primary objective is to track multiple objects, typically 
pedestrians, across frames. Experiments were conducted on the pedestrian-tracking dataset MOT17. 
The researcher utilized the standard split of the MOT17 dataset, which included a training set and a 
validation set. The MOT17 dataset consisted of seven training sequences and seven test sequences, 
each representing a distinct video clip featuring people navigating various environments, such as 
streets, squares, or other public spaces. The dataset was specifically designed to offer diverse and 
challenging scenarios for testing multi-object tracking algorithms. The training sequences were 
provided with ground truth annotations, indicating the trajectories of objects, while the test 
sequences were supplied without ground truth annotations. The evaluation of the test set was 
performed by submitting the results to the MOT Challenge website. The MOT17 test set included 
2,355 trajectories spread across 17,757 frames. Trajectories represented the paths or sequences of 
positions that objects (such as people) follow over time as they move through different frames in a 
video.  
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Evaluation Metrics 
To evaluate the performance of this proposed method, the researcher utilized the widely 

recognized MOT metrics set for quantitative assessment. The primary metric is Multiple-Object 
Tracking Accuracy (MOTA), which measures overall tracking performance. Identity Switches (ID Sw) 
quantify the number of instances where an object's identity is mistakenly assigned to another object. 
This issue arises when the tracker loses track of an object and subsequently re-detects it, leading to 
the assignment of a different ID. The Identity F1 Score (IDF1) represents the harmonic mean of 
precision and recall for object identity, offering a balanced evaluation of how effectively the tracker 
assigns identities to objects. Multiple Object Loss (ML) measures the frequency with which an object 
is incorrectly associated with another object or fails to be associated with any object at all; a lower ML 
value signifies better tracking accuracy. Finally, Missed Targets (MT) counts the instances where an 
object goes undetected by the tracker, with a lower MT value indicating superior object detection 
accuracy. 
 
Implementation Details 

The researcher utilized the ResNet-50 architecture as the backbone of the network. ResNet-50 is 
a widely-used convolutional neural network known for its depth and ability to learn complex patterns, 
which enhances model robustness and generalization. To further improve generalization and prevent 
overfitting, data augmentation techniques were incorporated such as random horizontal flipping, 
random cropping, scaling, and resizing of input images. These techniques artificially expand the size 
and diversity of the training dataset by applying random transformations to the images. The AdamW 
optimizer, initialized with a learning rate of 2.0 x·10⁻⁴, was employed to guide the model's learning 
process. The model was trained for 100 epochs. 
 
Comparison 

The performance comparison between the proposed method and other state-of-the-art methods 
on the MOT17 dataset is summarized in Table I. The proposed method achieved a Multiple-Object 
Tracking Accuracy (MOTA) of 71.0, surpassing all other methods listed, indicating a superior overall 
tracking performance. While this study's Identity F1 Score (IDF1) of 63.8 is slightly lower than SUSHI 
(71.5), it still reflected a robust balance between precision and recall in identity assignment. 

In terms of Missed Targets (MT), this method successfully tracked 1,038 targets, which is among 
the highest, second only to NCT, which tracked 1,092 targets. This demonstrated the method's strong 
ability to maintain object tracking across sequences. Additionally, this method had a relatively low 
number of Multiple Object Losses (ML) at 464, which is among the lowest, although NCT achieved an 
even lower ML of 399. This further highlighted the method's tracking consistency. 

Regarding Identity Switches (ID Sw.), this study's method recorded 4,113 switches, which, 
although not the lowest, showed a reasonable performance when considering the complexity of 
maintaining consistent object identities. Overall, this study's method demonstrated a leading 
performance in MOTA and a strong balance across other key metrics, making it highly effective in 
addressing the challenges posed by the MOT17 dataset. 
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Table 1 Comparison of the Proposed Method and Other Methods Evaluated on MOT17 (Arrows 
Indicating Low or High Optimal Metric Values) 
 

Method MOTA  IDF1  MT  ML  ID Sw.  

TADN (Psalta et al., 2024) 54.6 49.0 528 711 4869 
IQHAT (He et al., 2022) 58.4 61.8 568 829 1261 
UnsupTrack (Karthik et al., 2020) 61.7 58.1 640 760 1864 
SUSHI (Karthik et al., 2020) 62.0 71.5 801 741 1041 
MPTC (Stadler & Beyerer, 2021) 62.6 65.8 627 750 4074 
UTM (You et al., 2023) 63.5 65.1 881 635 1686 
Hugmot (Wan et al., 2021) 64.8 62.8 738 645 2102 
BYTE_Pub (Wan et al., 2021) 67.4 70.0 730 735 1331 
OUTrack_fm_p (Liu et al., 2022) 69.0 66.8 885 464 4472 
NCT (Zeng et al., 2023) 69.5 68.5 1092 399 4919 
PixelGuided (Boragule et al., 2022) 69.7 68.4 903 615 3639 
Proposed method 71.0 63.8 1038 464 4113 

Note. The range for Multiple-Object Tracking Accuracy (MOTA) scores is 0–100; model accuracy is being 
reported.  

 
Conclusion 

In this study, the challenge of Multi-Object Tracking in complex environments was addressed by 
proposing a Compact Model Adjustment approach that enhanced the efficiency of transformer-based 
models. The results demonstrated that incorporating trainable rank-decomposition matrices into 
transformer architecture is an effective strategy for balancing model complexity and performance. By 
leveraging data from both the current and previous frames, this study's approach improved the 
model's ability to track objects over time, thereby addressing some of the critical challenges 
associated with MOT in dynamic and complex environments. The performance of the model was 
comparable to state-of-the-art techniques, highlighting the potential of this approach for real-world 
applications where computational resources may be limited.  

Despite the promising results, this study's approach has limitations. This method is applicable only 
after the full model has been trained, limiting its use in scenarios where training from scratch is 
required. Future work should focus on extending the CMA approach to incorporate multi-camera 
setups or integrating 3D tracking capabilities to enhance the model's robustness in scenarios with 
significant occlusions or complex interactions between tracked objects.  
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