Factors Influencing Student Engagement in the Flexible Learning of Foreign Language in Higher Education
คำสำคัญ:
Flexible Learning, Student Engagement, Technology Acceptance Modelบทคัดย่อ
This study aims to: 1) create a factor model of flexible learning that influences student engagement based on the related theories and concepts, 2) test the flexible learning factor model for the relationships between variables, and 3) explain and deepen our understanding of the influencing factors affecting student engagement. The research employs a mixed-methods design, drawing on theories such as learning theory, constructivism, online learning, e-learning, hybrid learning, flexible learning, the technology acceptance model, and motivation. Conducted at Suan Sunandha Rajabhat University, Thailand, the study includes 4,173 students enrolled in foreign language courses in 2023, with a sample of 366 students selected via clustered random sampling.
Two instruments were used: 1) a structured questionnaire for quantitative analysis and 2) a semi-structured interview for qualitative research. Quantitative data were analyzed with basic statistics, factor analysis, and structural equation modeling (SEM), while qualitative data were analyzed through content analysis.
The findings develop a flexible learning factor model and identify various factors that directly and indirectly impact student engagement. The results explain the causes behind these factors and provide a foundation for developing flexible learning models that meet students' needs.
เอกสารอ้างอิง
Anderson, T. (2003). Getting the mix right again: An updated and theoretical rationale for interaction. The International Review of Research in Open and Distributed Learning, 4(2), 1–14.
Barbour, M. K., & Siko, J. P. (2013). Factors influencing middle school students’ perceptions of success in mathematics. Educational Studies in Mathematics, 83(3), 323–344.
Beatty, B. J. (2019). Flexibly adaptive learning environments: A conceptual framework and prototype for a next-generation digital learning environment. Journal of Educational Technology Systems, 47(3), 291–313.
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. https://doi.org/10.1037/0033-2909.107.2.238
Carmines, E. G., & McIver, J. P. (1981). Analyzing models with unobserved variables: Analysis of covariance structures. In G. W. Bohrnstedt & E. F. Borgatta (Eds.), Social measurement: Current issues (pp. 65–115). Sage.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555
Cronbach, L. J. (1954). Educational psychology. Harcourt, Brace.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Eisinga, R., Grotenhuis, M., & Pelzer, B. (2013). The reliability of a two-item scale: Pearson, Cronbach, or Spearman–Brown? International Journal of Public Health, 58(4), 637–642.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.1177/002224378101800104
Garrison, D. R., & Kanuka, H. (2004). Blended learning: Uncovering its transformative potential in higher education. The Internet and Higher Education, 7(2), 95–105.
Garrison, D. R., & Vaughan, N. D. (2008). Blended learning in higher education: Framework, principles, and guidelines. John Wiley & Sons.
Guangying, C. (2014). An experimental research on blended learning in the development of listening and speaking skills in China. Southern African Linguistics and Applied Language Studies, 32(4), 447–460.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage Learning.
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.
Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50(4), 370–396.
Moore, M. G., & Kearsley, G. (2011). Distance education: A systems view of online learning. Cengage Learning.
Rao, K., & Tanners, A. (2011). Curb cuts in cyberspace: Universal instructional design for online courses. Journal of Postsecondary Education and Disability, 24(3), 211–229.
Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25, 54–67.
Schumacker, R. E., & Lomax, R. G. (2010). A beginner’s guide to structural equation modeling (3rd ed.). Routledge.
Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson Education.
Tapsai, C. (2015). The online test bank management system in integration model. Procedia – Social and Behavioral Sciences, 197, 2544–2547.
Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1–10.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, Ed.). Harvard University Press.
Yamane, T. (1967). Statistics: An introductory analysis (2nd ed.). Harper & Row.
ดาวน์โหลด
เผยแพร่แล้ว
รูปแบบการอ้างอิง
ฉบับ
ประเภทบทความ
สัญญาอนุญาต
ลิขสิทธิ์ (c) 2025 วารสารการวิจัยการบริหารการพัฒนา

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของมหาวิทยาลัยราชภัฏสวนสุนันทา
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยราชภัฏสวนสุนันทา และคณาจารย์ท่านอื่นๆ ในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
