The Development of Systems Thinking Ability on Human Digestion Using the Use-Modify-Create Framework
DOI:
https://doi.org/10.14456/ojed.2025.20Keywords:
systems thinking, Use-Modify-Create framework, human digestionAbstract
The purposes of this research were to: 1) compare student’s systems thinking ability before and after learned through the Use-Modify-Create framework (UMC), and 2) study student’s systems thinking processes after learned through UMC. The research sample consisted of 16 sixth-grade students, selected through purposive sampling. The research employed a one-group pretest-posttest pre-experimental design. The research instruments included: 1) lesson plans and learning behavior observation forms used in units 1 to 3 with content validity, IOC indices of 0.97, 1.00, and 1.00 respectively; 2) a systems thinking test with reliability coefficient of 0.93; and 3) a evaluation form for computer models with an inter-rater reliability of 0.99. Quantitative data analysis included descriptive statistics and the Wilcoxon test. Qualitative analysis was conducted through content analysis of student behaviors during model construction. The results indicated that: 1) The student's systems thinking ability significantly improved after learning through the Use-Modify-Create framework, compared to before using the framework, at a statistical significance level of .05, and 2) Student's systems thinking process developed in all three dimensions: (1) Identifying system organization - students analyzed system components and identified relationships in the digestive system; (2) System Process Analysis - students analyzed the effects of relationships; and (3) System Modeling - students designed and built new models based on a given situation, analyzing causes and predicting outcomes based on changes within the system.
References
ภาษาไทย
ฤทัยรัตน์ ชิดมงคล และ สมยศ ชิดมงคล. (2560). การคิดเชิงระบบ: ประสบการณ์การสอนเพื่อพัฒนาการคิดเชิงระบบ. วารสารครุศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 45(2), 209-224. https://so02.tci-thaijo.org/index.php/EDUCU/article/view/107245
ศูนย์ดำเนินงาน PISA แห่งชาติ สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี. (2566). กรอบการประเมินด้านวิทยาศาสตร์. https://pisathailand.ipst.ac.th/about-pisa/science_competency_framework
สำนักงานคณะกรรมการการศึกษาขั้นพื้นฐาน. (2564). หลักสูตรและการเรียนการสอนฐานสมรรถนะ. https://cbethailand.com
ภาษาอังกฤษ
Darling-Hammond, L. (2017). Teacher education around the world: What can we learn from international practice? European journal of teacher education, 40(3), 291-309. https://doi.org/10.1080/02619768.2017.1315399
Hokayem, H. (2016). Patterns of reasoning about ecological systemic reasoning for early elementary students. Science Education International, 27(1), 117-135. https://files.eric.ed.gov/fulltext/EJ1100182.pdf
Hung, W. (2008). Enhancing systems-thinking skills with modelling. British Journal of Educational Technology, 39(6), 1099-1120. https://doi.org/10.1111/j.1467-8535.2007.00791.x
Kong, S. C., & Abelson, H. (2019). Computational thinking education. Springer Nature. https://link.springer.com/book/10.1007/978-981-13-6528-7
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011). Computational thinking for youth in practice. Acm Inroads, 2(1), 32-37. https://doi.org/10.1145/1929887.1929902
Lytle, N., Cateté, V., Boulden, D., Dong, Y., Houchins, J., Milliken, A., Isvik, A., Bounajim, D., Wiebe, E., & Barnes, T. (2019). Use, modify, create: Comparing computational thinking lesson progressions for stem classes. In B. Scharlau, R. McDermott, A. Pears, & M. Sabin (Eds.), Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science Education (pp. 395-401). Association for Computing Machinery. https://doi.org/10.1145/3304221.3319786
Mambrey, S., Timm, J., Landskron, J. J., & Schmiemann, P. (2020). The impact of system specifics on systems thinking. Journal of Research in Science Teaching, 57(10), 1632-1651. https://doi.org/10.1002/tea.21649
Martin, F., Lee, I., Lytle, N., Sentance, S., & Lao, N. (2020). Extending and evaluating the use-modify-create progression for engaging youth in computational thinking. In J. Zhang, M. Sherriff, S. Heckman, P. Cutter & A. Monge (Eds.), Proceedings of the 51st acm technical symposium on computer science education (pp. 807-808). Association for Computing Machinery. https://doi.org/10.1145/3328778.3366971
Mehren, R., Rempfler, A., Buchholz, J., Hartig, J., & Ulrich‐Riedhammer, E. M. (2018). System competence modelling: Theoretical foundation and empirical validation of a model involving natural, social and human‐environment systems. Journal of Research in Science Teaching, 55(5), 685-711. https://doi.org/10.1002/tea.21436
Nguyen, H., & Santagata, R. (2021). Impact of computer modeling on learning and teaching systems thinking. Journal of Research in Science Teaching, 58(5), 661-688. https://doi.org/10.1002/tea.21674
Papert, S. A. (1980). Mindstorms: Children, computers, and powerful ideas. Basic books. http://www.medientheorie.com/doc/papert_mindstorms.pdf
Rachmatullah, A., & Wiebe, E. N. (2022). Building a computational model of food webs: Impacts on middle school students' computational and systems thinking skills. Journal of Research in Science Teaching, 59(4), 585-618. https://doi.org/10.1002/tea.21738
Senge, P. M. (2006). The fifth discipline: The art and practice of the learning organization. Broadway Business. https://agsystemsthinking.net/wpcontent/uploads/2018/07/sengeondialogue.pdf
Sentance, S., & Waite, J. (2017). PRIMM: Exploring pedagogical approaches for teaching text-based programming in school. In E. Barendsen & P. Hubwieser (Eds.), Proceedings of the 12th Workshop on Primary and Secondary Computing Education (pp. 113-114). Association for Computing Machinery. https://doi.org/10.1145/3137065.3137084
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 An Online Journal of Education

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
