In vitro antioxidant, alpha-glucosidase inhibition and antibacterial properties of Turbinaria decurrens Bory (Sargassaceae, Ochrophyta)

Main Article Content

Eldrin Arguelles
Arsenia B. Sapin

Abstract

The genus Turbinaria is a chemically diverse group of seaweeds containing several phytochemicals with unique pharmacological activities useful in the treatment and management of diseases. This study was done to evaluate the bioactive potential of a brown macroalga, Turbinaria decurrens Bory from Pagkalitan, Batangas. The acidified methanolic extract of T. decurrens has a total phenolic content of 27.84 ± 0.12 mg gallic acid equivalents (GAE)/g. Antioxidant efficacy of T. decurrens exerted potent radical scavenging activity against 2-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2-diphenyl-1-picrylhydrazyl (DPPH) free radicals as well as high reducing capability of copper ions in a dose-dependent manner with half maximal inhibitory concentration (IC50) value of 49.31 μg GAE/mL, 69.91 μg GAE/mL and 17.2 μg GAE/mL, respectively. In vitro study of α-glucosidase inhibition showed that T. decurrens has potent inhibitory activity (IC50 of 11 μg/mL) as compared to that of acarbose and metformin (anti-diabetic drugs) with IC50 values of 7960 μg/mL and 49.66 mg/mL, respectively. Assessment of the antibacterial activities using microtiter plate dilution assay showed that T. decurrens have strong activity against Methicillin-resistant Staphylococcus aureus, minimum inhibitory concentration (MIC=125 μg/mL) followed by Penicillin-acylase producing Bacillus cereus (MIC=250 μg/mL), Staphylococcus epidermidis (MIC=250 μg/mL), and Pseudomonas aeruginosa (MIC=500 μg/mL). This investigation is one of the pioneering research studies in the Philippines showing the potential of T. decurrens extract as a cheap source of biologically active compounds with potential use for the treatment of drug-resistant bacterial infection and diabetes.

Article Details

How to Cite
Arguelles, E., & Sapin, A. B. (2020). In vitro antioxidant, alpha-glucosidase inhibition and antibacterial properties of Turbinaria decurrens Bory (Sargassaceae, Ochrophyta). Asia-Pacific Journal of Science and Technology, 25(03), APST–25. https://doi.org/10.14456/apst.2020.30
Section
Research Articles

References

Supaphon P, Preedanon S. Evaluation of in vitro alpha-glucosidase inhibitory, antimicrobial, and cytotoxic activities of secondary metabolites from the endophytic fungus, Nigrospora sphaerica, isolated from Helianthus annuus. Ann Microbiol. 2019;69:1397-1406.

Arguelles EDLR, Monsalud RG, Sapin AB. Chemical composition and in vitro antioxidant and antibacterial activities of Sargassum vulgare C. Agardh from Lobo, Batangas, Philippines. J ISSAAS. 2019;25(1):112-122.

Rushdi MI, Iman Abdel-Rahman IAM, Saber H, Attia EZ, Abdelraheem WM, Madkour HA, et al. The genus Turbinaria: chemical and pharmacological diversity. Nat Prod Res. 2020.

Lima RL, Pires-Cavalcante MS, Alencar DB, Viana FA, Sampaio AH, Saker-Sampiao S. In vitro evaluation of antioxidant activity of methanolic extracts obtained from seaweeds endemic to the coast of Ceará, Brazil. Acta Sci-Technol. 2016;38(2):247-255.

Wang T, Jónsdóttir R, Ólafsdóttir G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009;116:240-248.

Canoy JL, Bitacura JG. Cytotoxicity and antiangiogenic activity of Turbinaria ornata Agardh and Padina australis Hauck ethanolic extracts. Anal Cell Pathol (Amst). 2018;1-8.

Nettar PS, Pannikar MVN. Taxonomic studies of the species of Turbinaria (Fucales, Phaeophyta) from South India. Feddes Report. 2016;117(1-2):158-163.

AlgaeBase [Internet]. Galway: National University of Ireland; 2020. [cited 2020 Mar 30]. Available from: http://www.algaebase.org.

Gao L, Wang S, Oomah BD, Mazza G. Wheat quality: Antioxidant activity of wheat millstreams. In: Ng P, Wrigley CW, editors. Wheat Quality Elucidation. St. Paul, Minnesota, USA: AACC International; 2002. p. 219-233.

Arguelles EDLR. Proximate analysis, antibacterial activity, total phenolic content and antioxidant capacity of a green microalga Scenedesmus quadricauda (Turpin) Brébisson. Asian J Microbiol Biotechnol Environ Sci. 2018;20(1):150-158.

Arguelles EDLR, Laurena AC, Martinez-Goss MR, Monsalud RG. Antibacterial activity, total phenolic content and antioxidant capacity of a green microalga Desmodesmus sp. (U-AU2) from Los Baños, Laguna (Philippines). J Nature Stud. 2017;16(2):1-13.

Arguelles EDLR, Sapin AB. Bioactive properties of Sargassum siliquosum J. Agardh (Fucales, Ochrophyta) and its potential as source of skin-lightening active ingredient for cosmetic application. J Appl Pharm Sci. 2020;10(7):51-58.

Nuñez-Selles AJ, Castro HTV, Aguero JA, Gonzalez JG, Naddeo F, De Simone F, et al. Isolation and quantitative analysis of phenolic antioxidants, free sugars, and polyols from mango (Mangifera indica L.) stem bark aqueous decoction used in Cuba as a nutritional supplement. J Agric Food Chem. 2002;50:762-766.

Re R, Pellegrine N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231-1237.

Ribeiro SMR, Barbosa LCA, Queiroz JH, Knodler M, Schieber A. Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chem. 2008;110(3):620-626.

Alpinar K, Özyurek M, Kolak U, Guclu K, Aras Ç, Altun M, et al Antioxidant capacities of some food plants wildly grown in Ayvalik of Turkey. Food Sci Technol Res. 2009;15(1):59-64.

Nair SS, Kavrekar V, Mishra A. In vitro studies on alpha-amylase and alpha-glucosidase inhibitory activities of selected plant extracts. Eur J Exp Biol. 2013;3(1):128-132.

Kobayashi A, Koguchi Y, Kanzaki H, Kajiyama S, Kawazu K. Production of a new type of bioactive phenolic compound. Biosci Biotech Biochem. 1994; 58(1):133-134.

Chakraborty K, Praveen NK, Vijayan KK, Rao GS. Evaluation of phenolic contents and antioxidant activities of brown seaweeds belonging to Turbinaria spp. (Phaeophyta, Sargassaceae) collected from Gulf of Mannar. Asian Pac J Trop Biomed. 2013;3(1):8-16.

Chia YY, Kanthimathi MS, Khoo KS, Rajarajeswaran J, Cheng HM, Yap WS. Antioxidant and cytotoxic activities of three species of tropical seaweeds. BMC Com Alt Med. 2015;15: 339-352.

Ponnan A, Ramu K, Marudhamuthu M, Marimuthu R, Siva K, Kadarkarai M. Antibacterial, antioxidant and anticancer properties of Turbinaria conoides (J. Agardh) Kuetz. Clin Phytosci. 2017;3(1):1-10.

Magaji UF, Sacan O, Yanardag R. Alpha-amylase, alpha-glucosidase and glycation inhibitory activity of Moringa oleifera extracts. S Afr J Bot. 2020;128:225-230.

Sirisena S, Ng K, Ajluoni S. Antioxidant activities and inhibitory effects of free and bound polyphenols from date (Phoenix dactylifera L.) seeds on starch digestive enzymes. Int J Food Stud. 2016;5: 212-223.

Ismail GA, Gheda SF, Abo-Shady AM, Abdel-Karim OH. In vitro potential activity of some seaweeds as antioxidants and inhibitors of diabetic enzymes. Food Sci Technol. [Online]. In press. pp.-. Epub Dec 20, 2019. Available from: https://doi.org/10.1590/fst.15619.

Unnikrishnan P, Suthindhiran K, Jayasri M. Inhibitory potential of Turbinaria ornata against key metabolic enzymes linked to diabetes. Biomed Res Int. 2014;1-10.

Amaro HM, Guedes AC, Malcata FX. Antimicrobial activities of microalgae. In: Méndez-Vilas A, editor. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. Badajoz, Spain: Formatex Research Center; 2011. p. 1272-1280.

Boonchum W, Peerapornpisal Y, Kanjanapothi D, Pekkoh J, Amornlerdpison D, Pumas C, et al. Antimicrobial and anti-inflammatory properties of various seaweeds from the gulf of Thailand. Int J Agric Biol. 2011;13:100-104.

Omar H, Shiekh H, Gumgumjee N, El-Kazan M, El-Gendy A. Antibacterial activity of extracts of marine algae from the Red Sea of Jeddah, Saudi Arabia. Afr J Biotechnol. 2012;11:13576-13585.

Kumar SS, Kumar Y, Khan M, Gupta V. New antifungal steroids from Turbinaria conoides (J. Agardh) Kutzing. Nat Prod Res. 2010; 24(15):1481-1487.