Parametric study of pedicle screw: effect of stress transfer parameters on pullout strength

Main Article Content

Chompunut Somtua
Panya Aroonjarattham
Kitti Aroonjarattham

Abstract

A pedicle screw is an important implant used to fix and stabilize a cervical spine when spinal alignment is needed. The size and characteristics of pedicle screws affect pullout strength of the screws when inserted into the cervical spine. The pullout strength is greatly affected by the quality and duration of cervical spine treatment. To aid orthopedic surgeons in choosing a suitable pedicle screw for Thai cervical spine patients, the pullout strength of pedicle screws had to be considered. Since pedicle screws are different in design, size and characteristics, a middle ground parameter- Stress Transfer Parameter (STP) obtained through formula and finite element analysis, was used to compare the screws. Nine commonly-used pedicle screws were studied under the chosen parameters namely Outer Diameter (OD), Core Diameter (CD), Pitch (P), Proximal Root Radius (PRR), and Distal Root Radius (DRR). Each type of screw was inserted into C3 C4 C5 C6 and C7 of Thai cervical spines to bear the axial load in order to analyze their pullout conditions using Finite Element Analysis and to evaluate the STP. The maximum STP occurred on Y I pedicle screw as follows: 0.57 at C3, 0.48 at C4, 0.43 at C5, 0.48 at C6 and 0.59 at C7. The maximum STP resulted from the large OD and CD which could bear more axial load. The large Pitch decreased the stress concentration on each screw thread and the small PRR and DRR increased the slope of the blade to resist the pullout load.

Article Details

How to Cite
Somtua, C., Aroonjarattham, P., & Aroonjarattham, K. (2021). Parametric study of pedicle screw: effect of stress transfer parameters on pullout strength. Asia-Pacific Journal of Science and Technology, 26(02), APST–26. https://doi.org/10.14456/apst.2021.30
Section
Research Articles

References

Kotani Y, Cunningham BW, Albumi K, McAfee PC. Biomechanical analysis of cervical stabilization system: an assessment of transpedicular screw fixation in the cervical spine. Spine (Phila Pa 1976). 1994;19(22):2529-2539.

Jones EL, Heller JG, Silcox DH, Hutton WC. Cervical pedicle screws versus lateral mass screws. Anatomic feasibility and biomechanical comparison. Spine (Phila Pa 1976). 1997;22(9):977-982.

Johnston TL, Karaikovic EE, Lautenschlager EP, Marcu D. Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths. Spine J. 2006;6(6):667-672.

Schmidt R, Koller H, Wilke HJ, Brade J, Zenner J, Meier O, et al. The impact of cervical pedicle screw for primary stability in multilevel posterior cervical stabilizations. Spine. 2010;35(22):E1167-E1171.

Cho W, Cho SK, Wu C. The biomechanics of pedicle screw-based instrumentation. J Bone Joint Surg Br. 2010;92(8):1061-1065.

Karakasli A, Acar N, Ozcanhan MH, Ertem F. Biomechanical comparison of pullout strengths of five cortical screw types: an innovative measurement method. Eklem Hastalik Cerrahisi. 2016;27(3):138-145.

Shen F, Kim HJ, Kang KT, Yeom JS. Comparison of the pullout strength of pedicle screws according to the thread design for various degrees of bone quality. Appl Sci. 2019;9(8):1-11.

Zhang QH, Tan SH, Chou SM. Effects of bone materials on the screw pull-out strength in human spine. Med Eng Phys. 2006;28(8):795-801.

Hosseinitabatabaei S, Ashjaee N, Tahani M. Introduction of maximum stress parameter for the evaluation of stress shielding around orthopedic screws in the presence of bone remodeling process. J Med Biol Eng. 2017;37:703-716.

Zhang QH, Tan SH, Chou SM. Investigation of fixation screw pull-out strength on human spine. J Biomech. 2004;37:479-485.

Perez A, Mahar A, Negus C, Newton P, Impelluso T. A computational evaluation of the effect of intramedullary nail material properties on the stabilization of simulated femoral shaft fractures. Med Eng Phys. 2008;30(6):755-760.

Gausepohl T, Mohring R, Pennig D, Koebke J. Fine thread versus coarse thread; a comparison of the maximum holding power. Injury. 2001;32(Supple 4):1-7.

Thiele OC, Eckhardt C, Linke B, Schneider E, Lill CA. Factors affecting the stability of screws in human cortical osteoporotic bone: a cadaver study. Bone Jt J. 2007;89(5):901-705.

Zdero R, Olsen M, Bougherara H, Schemitsch EH. Cancellous bone screw purchase: a comparison of synthetic femurs, human femurs and finite element analysis. Proc Inst Mech Eng H. 2008;222(8):1175-1183.

Tankard SE, Mears SC, Marsland D, Langdale ER, Belkoff SM. Does maximum torque mean optimal pullout strength of screws? J Orthop Trauma. 2013;27(4):232-235.

Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite element analysis. J Pros Dent. 2004;92(6):523-530.

Lee WCC, Doocey JM, Branemark R, Adam CJ, Evans JH, Pearcy MJ, et al. FE stress analysis of the interface between the bone and an osseointegrated implant for amputees - Implications to refine the rehabilitation program. Clin Biomech (Bristol, Avon). 2008;23(10):1243-1250.

Aroonjarattham P, Aroonjarattham K, Suvanjumrat C. Effect of mechanical axis on strain distribution after total knee replacement. J Kasetsart (Nat Sci). 2014;48(2):263-282.

Aroonjarattham P, Aroonjarattham K, Chanasakulniyom M. Biomechanical effect of filled biomaterials on distal Thai femur by finite element analysis. J Kasetsart (Nat Sci). 2015;49(2):263-276.

Chalernphon K, Aroonjarattham P, Aroonjarattham K, Somtua C. The effect of static and dynamic loading on femoral bone using finite element analysis. J Res Appl Mech Eng. 2018;6(2):113-130.

Somtua C, Aroonjarattham P, Aroonjarattham K. The correction of Thai varus knee by high tibial osteotomy with Fujisawa’s point using finite element analysis. J Res Appl Mech Eng. 2019;7(1):45-59.

Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage. 2006;31(3):1116-1128.

Hsu CC, Chao CK, Wang JL, Hou SM, Tsai YT, Lin J. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. J Orthop Res. 2005;23(4):788-794.

Amaritsakul Y, Chao CK, Lin J. Multiobjective optimization design of spinal pedicle screws using neural networks and genetic algorithm: mathematical models and mechanical validation. Comput Math in Med. 2013;5:1-9.

Karaikovic EE, Kunakornsawat S, Daubs MD, Madsen TW, JrGaines RW. Surgical anatomy of the cervical pedicles: landmarks for posterior cervical pedicle entrance localization. J Spinal Disord. 2000;13(1):63-72.

Gefen A. Computational simulations of stress shielding and bone resorption around existing and computer- designed orthopaedic screws. Med Biol Eng Comput. 2002;40(3):311-322.

Gefen A. Optimizing the biomechanical compatibility of orthopedic screws for bone fracture fixation. Med Eng Phys. 2002;24(5):337-347.

Shuib S, Ridzwan MIZ, Ibrahim MNM, Tan CJ. Analysis of orthopedic screws for bone fracture fixations with finite element method. J Applied Sci. 2007;7(13):1748-1754.

Ramos A, Simoes JA. Tetrahedral versus hexahedral finite elements in numerical modeling of the proximal femur. Med Eng Phys. 2006;28:916-924.

Chen SI, Lin RM, Chang CH. Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions. Med Eng Phys. 2003;25(4):275-282.