Characteristics and antioxidant activity of royal lotus pollen, butterfly pea flower, and oolong tea kombucha beverages
Main Article Content
Abstract
Kombucha is a fermented functional tea beverage that is prepared by inoculating a microbial consortium comprising acetic acid bacteria and yeast into sweetened black tea and incubating it under aerobic conditions. In this study, kombucha beverages of royal lotus pollen (Nelumbo nucifera), butterfly pea flowers (Clitoria ternatea), and oolong tea (Camellia sinensis) leaves were prepared via fermentation with a kombucha consortium containing acetic acid bacteria and yeast for a period of 20 days. The amounts of acetic acid and ethanol in royal lotus pollen kombucha (LK), butterfly pea flower kombucha (BK), and oolong tea kombucha (OK) samples gradually increased after fermentation. In addition, the total phenolic contents (TPCs), total flavonoid contents (TFCs), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) free radical scavenging capacities, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging capacities of all the kombucha beverages gradually increased after fermentation; the beverages exhibited the highest antioxidant capacity on day 20 of fermentation. The kombucha beverages from butterfly pea flowers and oolong tea leaves significantly inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production by increasing the synthesis of antioxidant enzymes such as catalase, manganese superoxide dismutase (Mn-SOD), glutathione reductase (GRe), glutathione peroxidase-1 (GPx-1), and heme oxygenase-1 (HO-1) in human embryonic kidney-293 (HEK-293) cells. Therefore, the consumption of these antioxidant-rich kombucha beverages can reduce the risk of oxidative stress, which is the cause of many diseases.
Article Details
References
[2] Chen C, Liu BY. Changes in major components of tea fungus metabolites during prolonged fermentation. J Appl Microbiol. 2000;89(5):834-934.
[3] Velicanski AS, Cvetkovic DD, Markov SL, Tumbas-Saponjac VT, Vulic JJ. Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa officinalis L.) tea with symbiotic consortium of bacteria and yeasts. Food Technol Biotechnol. 2014;52(4):420-9.
[4] Lambert JD, Yang CS. Cancer chemo-preventive activity and bioavailability of tea and tea polyphenols. Mutat Res. 2003;523-524:201-8.
[5] Yang J, Liu RH. The phenolic profiles and antioxidant activity in different types of tea. Int J Food Sci Technol. 2012;48(1):163-71.
[6] Oguis GK, Gilding EK, Jackson MA, Craik DJ. Butterfly Pea flower (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Front Plant Sci. 2019;10:645.
[7] Kamkaen N, Wilkinson JM. The antioxidant activity of Clitoria ternatea flower petal extracts and eye gel. Phytother Res. 2009;23:1624-5.
[8] Mukherjee PK, Mukherjee D, Maji AK, Rai S, Heinrich M. The sacred lotus (Nelumbo nucifera)-phytochemical and therapeutic profile. J Pharm Pharmacol. 2009;61:407-22.
[9] Battikh H, Chaieb K, Bakhrouf A, Ammar E. Antibacterial and antifungal activities of black and green kombucha teas. J Food Biochem. 2012;37:231-6.
[10] Vázquez-Cabral BD, Larrosa-Pérez M, Gallegos-Infante JA, Moreno-Jiménez MR, González-Laredo RF, Rutiaga-Quiñones JG, et al. Oak kombucha protects against oxidative stress and inflammatory processes. Chem Biol Interact. 2017;272:1-9.
[11] Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugar and related substances. Anal Chem. 1956;28:350-65.
[12] Anantachoke N, Lomarat P, Praserttirachai W, Khammanit R, Mangmool S. Thai fruits exhibit antioxidant activity and induction of antioxidant enzymes in HEK-293 cells. Evid Based Complement Alternat Med. 2016;14:6083136.
[13] Vongsak B, Mangmool S, Gritsanapan W. Antioxidant activity and induction of mRNA expressions of antioxidant enzymes in HEK-293 cells of Moringa oleifera leaf extract. Planta Med. 2015;81:1084-9.
[14] Khammanit R, Lomarat P, Anantachoke N, Sato VH, Ungsurungsie M, Mangmool S. Inhibition of oxidative stress through the introduction of antioxidant enzymes of pigmented rice bran in HEK293 cells. Nat Prod Commun. 2017;12:1107-10.
[15] Patitungkho S. Antioxidant capacity and antibacterial activity of Pseuderatherum platiferum extract. J Health Sci. 2010;27:123-36.
[16] Supasuteekul C, Nuamnaichati N, Mangmool S, Likhitwitayawuid K, Tengamnuay P, Putalun W, et al. Antioxidant activity and upregulation of antioxidant enzymes of phenolic glycosides from Auilaria crassna leaves. Nat Prod Commun. 2017;12(11):1691-4.
[17] Jaisupa N, Moongkarndi P, Lomarat P, Samer J, Tunrungtavee V, Muangpaisan W, et al. Mangosteen peel extract exhibits cellular antioxidant activity by induction of catalase and heme oxygenase-1 mRNA expression. J Food Biochem. 2018;42:e12511.
[18] Jayabalan R, Malbasa RV, Loncar ES, Vitas JS, Sathishkumar M. A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity and tea fungus. Compr Rev Food Sci Food Saf. 2014;13:538-50.
[19] Marsh AJ, Sullivan OO, Hill C, Ross RP, Cotter PD. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol. 2014;38:171-8.
[20] Arıkan M, Mitchell AL, Finn RD, Gürel F. Microbial composition of kombucha determined using amplicon sequencing and shotgun metagenomics. J Food Sci. 2020;85(2):455-64.
[21] Jayabalan R, Marimuthu S, Swaminathan K. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chem. 2007;102:392-8.
[22] Neffe-Skocińska K, Sionek B, Šcibiszi I, Kolozyn-Krajewska D. Acid contents and the effect of fermentation condition of kombucha tea beverage on physicochemical, microbiological and sensory properties. CYTA J Food. 2017;15:601-7.
[23] Chen C, Liu BY. Changes in major components of tea fungus metabolites during prolonged fermentation. J Appl Microbiol 2000;89:834-9.
[24] Amarasinghe H, Weerakkody NS, Waisundaza VY. Evaluation of physicochemical properties and antioxidant activities of kombucha ‘‘tea fungus’’. J Nutr Sci. 2018;6:659-65.
[25] Durfesne C, Farnworth E. Tea, kombucha and health: a review. Int Food Res J. 2000;33:409-21.
[26] Widowati W, Herlina T, Ratnawati1 H, Constantia G, Deva IDGS, Maesaroh M. Antioxidant potential of black, green and oolong tea methanol extracts. Biol Med Natural Prod Chem. 2015;4(2):35-9.
[27] Pure AE, Pure ME. Antioxidant and antibacterial activity of kombucha beverages prepared using banana peel, common nettles and black tea infusions. Appl Food Biotechnol. 2016;3(2):125-30.
[28] Cardoso RR. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Int Food Res J. 2020;128:1-10.
[29] Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D, Gachhui R. Kombucha tea fermentation: microbial and biochemical dynamics. Int J Food Microbiol. 2016;220:63-72.
[30] Kallel L, Desseaux V, Hamdi M, Stocker P, Ajandouz EH. Insights into the fermentation biochemistry of kombucha teas and potential impacts of kombucha drinking on starch digestion. Int Food Res J. 2012;49(1):226-32.
[31] Maisuthisakul P, Pongsawatmanit R. Gordon MH. Characterization of the phytochemicals and antioxidant properties of extracts from Teaw (Cratoxylum formosum Dyer). Food Chem. 2007;100:1620-9.
[32] Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol. 1999;39:67-101.
[33] Kruk J, Aboul-Enein HY, Kladna A, Bowser JE. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res. 2019;53(5):497-521.