Characterization of a recombinant arylsulfatase enzyme from glucosinolate-metabolizing human gut bacterium Escherichia coli VL8

Main Article Content

Vijitra Luang-In
John T. Rossiter
Abdulhadi A. Albaser

Abstract

Bacterial arylsulfatases can hydrolyze organosulfur compounds. Thus, the objective of this research project was to characterize a recombinant arylsulfatase (ARS) from Escherichia coli VL8, a human gut bacterium able to produce nitrile from desulfo-glucosinolates. The Ars gene (Accession no.: LC685335.1) with a length of 1,494 bp corresponding to ARS enzyme with a length of 497 amino acids was cloned from E. coli VL8 and expressed in E. coli BL21 (DE3) for 16 h at 25°C in lysogeny broth (LB) by induction of isopropyl β-D-1-thiogalactopyranoside (0.5 mM). The recombinant ARS enzyme (57 kDa) was partially purified using Ni2+ affinity column chromatography. This recombinant ARS enzyme was able to desulfate synthetic p-nitrocatechol sulfate (pNCS) substrate to produce p-nitrocatechol as an indicator of ARS activity, with optimal conditions at 30°C and pH 6.0, respectively. The ARS enzyme displayed a Michaelis-Menten kinetic constant (Km) of 1.09 mM and Maximum reaction velocity (Vmax) of 25.1 U/mg for pNCS. ARS enzyme activity toward pNCS was not enhanced by any metal ions, while activity was inhibited by Ca2+, Fe2+, NaHSO4 and Na2SO4.

Article Details

How to Cite
Luang-In, V., Rossiter, J. T., & Albaser, A. A. (2023). Characterization of a recombinant arylsulfatase enzyme from glucosinolate-metabolizing human gut bacterium Escherichia coli VL8. Asia-Pacific Journal of Science and Technology, 28(02), APST–28. https://doi.org/10.14456/apst.2023.29
Section
Research Articles

References

Barbeyron T, Guéguen BL, Carré W, Carrière C, Caron C, Czjzek M, et al. Matching the diversity of sulfated biomolecules: creation of a classification database for sulfatases reflecting their substrate specificity. PloS One. 2016;11(10):e0164846.

Hettle AG, Vickers C, Robb CS, Liu F, Withers SG, Hehemann JH, et al. The molecular basis of polysaccharide sulfatase activity and a nomenclature for catalytic subsites in this class of enzyme. Structure. 2018;26(5):747-758.

Schmidt B, Selmer T, Ingendoh A, Figurat K. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell. 1995;82(2):271-278.

Wittstock U, Fischer M, Svendsen I, Halkier BA. Cloning and characterization of two cDNAs encoding sulfatases in the Roman snail, Helix pomatia. Int Union Biochem Mol Biol Life. 2000;49(1):71-76.

Jarrige P. Purification and properties of sulfatases from the digestive juice of Helix pomatia. Bull Soc Chim Biol (Paris). 1963;31(45):761-782.

Thies W. Detection and utilization of a glucosinolate sulfohydrolase in the edible snail, Helix pomatia. Naturwissenschaften. 1979;66(7):364-365.

Galletti S, Sala E, Leoni O, Cinti S, Cerato C. Aspergillus flavus transformation of glucosinolates to nitriles by an arylsulfatase and a β-thio-glucosidase. Soil Biol Biochem. 2008;40(9):2170-2173.

Wathelet JP, Lori R, Leoni O, Rollin P, Mabon N, Marlier M, et al. A recombinant β-O-glucosidase from Caldocellum saccharolyticum to hydrolyze desulfo-glucosinolates. Biotechnol Lett. 2001;23(6):443-446.

Plant AR, Oliver JE, Patchett ML, Daniel RM, Morgan HW. Stability and substrate specificity of a β-glucosidase from the thermophilic bacterium Tp8 cloned into Escherichia coli. Arch Biochem Biophysics. 1988;262(1):181-188.

Luang-In V, Albaser AA, Rossiter JT. Characterization of a recombinant β–glucosidase of GH3 family from glucosinolate-metabolizing human gut bacterium Enterococcus casseliflavus CP1 for nitrile production. Songklanakarin J Sci Technol. 2020;42(3):549-556.

Yadav VK, Khan SH, Choudhary N, Tirth V, Kumar P, Ravi RK, et al. Nanobioremediation: A sustainable approach towards the degradation of sodium dodecyl sulfate in the environment and simulated conditions. J Basic Microbiol. 2021;66(3-4):348-360.

Stressler T, Seitl I, Kuhn A, Fischer L. Detection, production, and application of microbial arylsulfatases. Appl Microbiol Biotechnol. 2016;100(21):9053-9067.

Helbert W. Marine polysaccharide sulfatases. Front Mar Sci. 2017;4(6):1-10.

Duc HD, Hung NV, Oanh NT. Anaerobic degradation of endosulfans by a mixed culture of Pseudomonas sp. and Staphylococcus sp. Appl Biochem Microbiol. 2021;57:327-334.

Sanchez GM, Klouza M, Holeckova Z, Tlustos P, Szakova J. Organic and inorganic amendment application on mercury-polluted soils: effects on soil chemical and biochemical properties. Environ Sci Pollut R. 2016;23(14):14254-14268.

Lu M, Hashimoto K, Uda Y. Rat intestinal microbiota digest desulfosinigrin to form allyl cyanide and 1-cyano-2,3-epithiopropane. Food Res Int. 2011;44(4):1023-1028.

Luang-In V, Albaser AA, Palop NC, Narbad A, Bennett M, Rossiter JR. Metabolism of glucosinolates and desulfo-glucosinolates by selected human gut bacteria. Current Microbiol. 2016;73(3):442-451.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.

Wang S, Guan J, Zhang Q, Chen X, Li F. Identification and signature sequences of bacterial Δ4,5Hexuronate-2-O-Sulfatases. Front Microbiol. 2019;10:704.

Schlachter CR, O'Malley A, Grimes LL, Tomashek JJ, Chruszcz M, Lee LA. Purification, characterization, and structural studies of a sulfatase from Pedobacter yulinensis. Molecules. 2021;27(1):87.

Uduwela DR, Pabis A, Stevenson BJ, Kamerlin SC, McLeod MD. Enhancing the steroid sulfatase activity of the arylsulfatase from Pseudomonas aeruginosa. ACS Catalysis. 2018;8(9):8902-8914.

Stevenson BJ, Waller CC, Ma P, Li K, Cawley AT, Ollis DL, et al. Pseudomonas aeruginosa arylsulfatase: a purified enzyme for the mild hydrolysis of steroid sulfates. Drug Test Anal. 2015;7(10):903-911.

Sofia HJ, Burland V, Daniels DL, Plunkett G, Blattner FR. Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 1994;22(13):2576-2586.

Monteiro-Maia R, Correa PR, Sousa-Vasconcelos P, Pinho RT, Mendonça-Lima L. Gain of function in Mycobacterium bovis BCG Moreau due to loss of a transcriptional repressor. Mem Inst Oswaldo Cruz. 2018;113(11):e180267.

Gao C, Jin M, Yi Z, Zeng R. Characterization of a recombinant thermostable arylsulfatase from deep-sea bacterium Flammeovirga pacifica. J Microbiol Biotechnol. 2015;25(11):1894-1901.

Wang X, Duan D, Xu J, Gao X, Fu X. Characterization of a novel alkaline arylsulfatase from Marinomonas sp. FW-1 and its application in the desulfation of red seaweed agar. J Ind Microbiol Biotechnol. 2015:42(10):1353-1362.

Kim JH, Byun DS, Godber JS, Choi JS, Choi WC, Kim HR. Purification and characterization of arylsulfatase from Sphingomonas sp. AS6330. Appl Microbiol Biotechnol. 2004;63(5):553-559.

Kim DE, Kim KH, Bae YJ, Lee JH, Jang YH, Nam SW. Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora. Protein Expr Purif. 2005;39(1):107-115.

Tazuke Y, Matsuda K, Adachi K, Tsukada Y. Purification and properties of a novel sulfatase from Pseudomonas testosteroni that hydrolyzed 3-beta-hydroxy-5-cholenoic acid 3-sulfate. Biosci Biotechnol Biochem. 1998;62(9):1739-1744.

Falk KL, Gershenzon J. The desert locust, Schistocerca gregaria, detoxifies the glucosinolates of Schouwia purpurea by desulfation. J Chem Ecol. 2007;33(8):1542-1555.

Roy AB, Williams EA. The sulphatase of H. pomatia. Purification and kinetic properties. Comp Biochem Physiol Part B: Comp Biochem. 1989;93(2):229-237.

Furmanczyk EM, Lipinski L, Dziembowski A, Sobczak A. Genomic and functional characterization of environmental strains of SDS-degrading Pseudomonas spp., providing a source of new sulfatases. Front Microbiol. 2018;9:1795.