In silico prediction of molecular and functional annotation of hypothetical protein (ABC47680) of Acinetobacter venetianus
Main Article Content
Abstract
Acinetobacter venetianus is a non-motile coccobacilli bacterium that is aerobic, gram-negative, has positive catalytic activity, and exhibits negative oxidative behavior. Enormous data on hypothetical or uncharacterized proteins are available in the genomic database of the bacteria. Therefore, appropriate bioinformatics tools are essential for gaining a complete understanding of the bacterial genome. Several bioinformatics approaches were used in this study to determine the prognosis of structural and functional data of the targeted hypothetical protein. An in-silico approach was used to determine several features of the hypothetical protein (HP) (ABC47680) and compare the sequences of related proteins. Various bioinformatics tools were used, including NCBI-search, MEGA-7, ExPASy ProtPram, PSORTb, SWISS-MODEL, and PSIPRED for secondary structure predictions. Physicochemical properties, subcellular localization prediction, and identification were performed, followed by subsequent examination using several approaches. An alpha helix with an extended strand was the secondary predicted structure. After validating with different servers, the tertiary structure of the protein with maximum similarity in our study was revealed. Through functional annotation, the ParE toxin superfamily was discovered as domain containing an oligonucleotide-binding (OB)-fold protein with a beta barrel, and it’s a virulent protein. The OB fold protein is involved in ribonucleic acid (RNA) binding, while ParE is involved in deoxy ribonucleic acid (DNA) damage repair and environmental stress response. The protein promotes plasmid partitioning while inhibiting the process of DNA replication and cell development. Our study on in silico prediction of hypothetical protein Acinetobacter venetianus could be used to combat crop pests, human activities, and distinctive environmental purposes.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Fondi, M., Maida, I., Perrin, E., Orlandini, V., La Torre, L., Bosi, E., ... & Fani, R. (2016). Genomic and phenotypic characterization of the species Acinetobacter venetianus. Scientific reports, 6(1), 1-12.
Vaneechoutte, M., Nemec, A., Musilek, M., van der Reijden, T. J., van den Barselaar, M., Tjernberg, I., ... & Dijkshoorn, L. (2009). Description of Acinetobacter venetianusex Di Cello et al. 1997 sp. nov. International journal of systematic and evolutionary microbiology, 59(6), 1376-1381.
Di Cello, F., Pepi, M., Baldi, F., & Fani, R. (1997). Molecular characterization of an n-alkane-degrading bacterial community and identification of a new species, Acinetobacter venetianus. Research in microbiology, 148(3), 237-249.
Anandham, R., Weon, H. Y., Kim, S. J., Kim, Y. S., Kim, B. Y., & Kwon, S. W. (2010). Acinetobacter brisouii sp. nov., isolated from a wetland in Korea. The Journal of Microbiology, 48(1), 36-39.
Gong, J., Chen, Y., Pu, F., Sun, P., He, F., Zhang, L., ... & Wang, H. (2019). Understanding membrane protein drug targets in computational perspective. Current drug targets, 20(5), 551-564.
Naveed, M., Tehreem, S., Usman, M., Chaudhry, Z., & Abbas, G. (2017). Structural and functional annotation of hypothetical proteins of human adenovirus: prioritizing the novel drug targets. BMC research notes, 10(1), 1-6.
Bashir, Z., Rizwan, M., Mushtaq, K., Munir, A., & Ali, I. (2017). In silico structural and functional prediction of Phaseolus vulgaris hypothetical protein PHA VU_004G136400g. J Proteomics Bioinform, 10, 207-206.
Nimrod, G., Schushan, M., Steinberg, D. M., & Ben-Tal, N. (2008). Detection of functionally important regions in “hypothetical proteins” of known structure. Structure, 16(12), 1755-1763.
Varma, P. B. S., Adimulam, Y. B., & Kodukula, S. (2015). In silico functional annotation of a hypothetical protein from Staphylococcus aureus. Journal of infection and public health, 8(6), 526-532.
Jaroszewski, L., Li, Z., Krishna, S. S., Bakolitsa, C., Wooley, J., Deacon, A. M., ... & Godzik, A. (2009). Exploration of uncharted regions of the protein universe. PLoS biology, 7(9), e1000205.
F de Azevedo, W. (2011). Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Current medicinal chemistry, 18(9), 1353-1366.
Yang, Z., Zhou, J., Xu, Y., Zhang, Y., Luo, H., Chang, K., & Wang, Y. (2017). Analysis of the metabolites of indole degraded by an isolated Acinetobacter pittii L1. BioMed research international, 2017.
Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., & Madden, T. L. (2008). NCBI BLAST: a better web interface. Nucleic acids research, 36(suppl_2), W5-W9.
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547.
Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, 571-607.
Barh, D., Tiwari, S., Jain, N., Ali, A., Santos, A. R., Misra, A. N., ... & Kumar, A. (2011). In silico subtractive genomics for target identification in human bacterial pathogens. Drug Development Research, 72(2), 162-177.
Yu, C. S., Chen, Y. C., Lu, C. H., & Hwang, J. K. (2006). Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics, 64(3), 643-651.
Marchler-Bauer, A., Anderson, J. B., Derbyshire, M. K., DeWeese-Scott, C., Gonzales, N. R., Gwadz, M., ... & Bryant, S. H. (2007). CDD: a conserved domain database for interactive domain family analysis. Nucleic acids research, 35(suppl_1), D237-D240.
Gough, J., Karplus, K., Hughey, R., & Chothia, C. (2001). Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. Journal of molecular biology, 313(4), 903-919.
Kanehisa, M., Goto, S., Kawashima, S., & Nakaya, A. (2002). The KEGG databases at GenomeNet. Nucleic acids research, 30(1), 42-46.
Shen, H. B., & Chou, K. C. (2009). Predicting protein fold pattern with functional domain and sequential evolution information. Journal of Theoretical Biology, 256(3), 441-446.
Mitchell, A., Chang, H. Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., ... & Finn, R. D. (2015). The InterPro protein families database: the classification resource after 15 years. Nucleic acids research, 43(D1), D213-D221.
Söding, J., Biegert, A., & Lupas, A. N. (2005). The HHpred interactive server for protein homology detection and structure prediction. Nucleic acids research, 33(suppl_2), W244-W248.
Sillitoe, I., Cuff, A. L., Dessailly, B. H., Dawson, N. L., Furnham, N., Lee, D., ... & Orengo, C. A. (2012). New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures. Nucleic acids research, 41(D1), D490-D498.
Garg, A., & Gupta, D. (2008). VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC bioinformatics, 9(1), 1-12.
Saha, S., & Raghava, G. P. S. (2006). VICMpred: an SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition. Genomics, proteomics & bioinformatics, 4(1), 42-47.
Lin, K., Simossis, V. A., Taylor, W. R., & Heringa, J. (2005). A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics, 21(2), 152-159.
Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. N Acids Res 31(13):3381–3385
Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic acids research, 32(suppl_2), W526-W531.
Kihara, D., Chen, H., & Yang, Y. D. (2009). Quality assessment of protein structure models. Current Protein and Peptide Science, 10(3), 216-228.
Kamruzzaman, M., & Iredell, J. (2019). A ParDE-family toxin antitoxin system in major resistance plasmids of Enterobacteriaceae confers antibiotic and heat tolerance. Scientific reports, 9(1), 1-12.
Budde, P. P., Davis, B. M., Yuan, J., & Waldor, M. K. (2007). Characterization of a higBA toxin-antitoxin locus in Vibrio cholerae. Journal of bacteriology, 189(2), 491-500.
Canduri, F., Peres, P. C., Caceres, R. A., de Azevedo, J., & Filgueira, W. (2008). CDK9 a potential target for drug development. Medicinal chemistry, 4(3), 210-218.
Xiang, Z. (2006). Advances in homology protein structure modeling. Current Protein and Peptide Science, 7(3), 217-227.
Hooda V, babu Gundala P, Chinthala P. Sequence analysis and homology modeling of peroxidase from Medicago sativa. Bioinformation. 2012;8(20):974-979. doi: 10.6026/97320630008974.