Effect of synthetic nutrient concentrations in medium containing tofu wastewater on Spirulina platensis biomass production

Main Article Content

Iqbal Syaichurrozi
Marcelinus Christwardana
Jayanudin Jayanudin

Abstract

Microalgae cultivation employing a combination of organic nutrients from tofu wastewater (TW) and synthetic nutrients is an intriguing and potentially lucrative approach for concurrent biomass production and wastewater treatment. The optimization of the synthetic nutrient concentrations in mediums containing TW for Spirulina platensis cultivation was studied to reduce future operating costs on a commercial scale. The microalgae were cultivated in mediums with TW of 6%v/v and various synthetic nutrient concentrations which were 0, 25, 50, 75, and 100% of complete synthetic nutrients (CSN) consisting of NaHCO3 of 1 g/L and urea of 0.05 g/L. The results showed that the optimal biomass production with a high protein content was obtained from a medium with TW of 6%v/v and 75% of CSN, having C/N and N/P ratios of 10.83 and 11.82, respectively. The biomass productivity and specific growth rate of microalgae in the medium were 8.55 mg/L/day and 0.089 day-1 with a doubling time of 7.80 days. The protein content as the main valuable biochemical in the microalgae was 67.38% dry cell weight. In the medium, the shape of S. platensis looked helix without any defects. In conclusion, about 25% of the synthetic nutrient need can be reduced to get the optimal results in biomass and protein production of S. platensis. This study contributes to informing the optimal synthetic nutrient concentration (which is 75% of CSN) in an S. platensis cultivation medium containing TW of 6%v/v, hence it can reduce the operating costs for commercial purposes in the future.

Article Details

How to Cite
Syaichurrozi, I., Christwardana, M. ., & Jayanudin, J. (2023). Effect of synthetic nutrient concentrations in medium containing tofu wastewater on Spirulina platensis biomass production. Asia-Pacific Journal of Science and Technology, 28(05), APST–28. https://doi.org/10.14456/apst.2023.85
Section
Research Articles

References

Jaiswar S, Balar N, Kumar R, Patel MK, Chauhan PS. Morphological and molecular characterization of newly isolated microalgal strain Neochloris aquatica SJ-1 and its high lipid productivity. Biocatal Agric Biotechnol. 2017;9:108-112.

Marudhupandi T, Gunasundari V, Ajith Kumar TT, Tissera KRA. Influence of citrate on Chlorella vulgaris for biodiesel production. Biocatal Agric Biotechnol. 2014;3(4):386-389.

Jeon YC, Cho CW, Yun YS. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb Technol. 2006;39(3):490-495.

Pan-utai W, Parakulsuksatid P, Phomkaivon N. Effect of inducing agents on growth and astaxanthin production in Haematococcus pluvialis: Organic and inorganic. Biocatal Agric Biotechnol. 2017;12:152-158.

Desmorieux H, Decaen N. Convective drying of spirulina in thin layer. J Food Eng. 2005;66(4):497-503.

Budiyono, Syaichurrozi I, Sumardiono S, Sasongko SB. Production of Spirulina platensis biomass using digested vinasse as cultivation medium. Trends Appl Sci Res. 2014;9(2):93-102.

Habib MAB, Parvin M, Huntington TC, Hasan MR. A review on culture, production, and use of Spirulina as food for humans and feeds for domestic animals and fish. Rome: Food and Agriculture Organization; 2008.

Kumar M, Kulshreshtha J, Singh GP. Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature. Brazilian J Microbiol. 2011;42(3):1128-1135.

Syaichurrozi I, Jayanudin J. Effect of tofu wastewater addition on the growth and carbohydrate-protein-lipid content of Spirulina platensis. Int J Eng Trans B Appl. 2017;30(11):1631-1638.

Hadiyanto H, Azimatun Nur MM, Hartanto GD. Cultivation of Chlorella sp. as biofuel sources in palm oil mill effluent (POME). Int J Renew Energy Dev. 2012;1(2):45-49.

Kamyab H, Din MFM, Keyvanfar A, Majid MZA, Talaiekhozani A, Shafaghat A, et al. Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Proc. 2015;75:2400-2408.

Kamyab H, Din MFM, Hosseini SE, Ghoshal SK, Ashokkumar V, Keyvanfar A, et al. Optimum lipid production using agro-industrial wastewater treated microalgae as biofuel substrate. Clean Technol Environ Policy. 2016;18(8):2513-2523.

Kamyab H, Chelliapan S, Lee CT, Khademi T, Kumar A, Yadav KK, et al. Improved production of lipid contents by cultivating Chlorella pyrenoidosa in heterogeneous organic substrates. Clean Technol Environ Policy. 2019;21(10):1969-1978.

Azimatun Nur M. Evaluation of Carbon, Nitrogen and phosphorus ratio of palm oil mill effluent digested (POMED) wastewater as replacement synthetic medium for Spirulina Sp growth. J Agric Environ Sci. 2014;14(6):536-540.

Nur M, Irawan MA, Hadiyanto. Utilization of coconut milk skim effluent (CMSE) as medium growth for Spirulinaplatensis. Proc Environ Sci. 2015;23:72-77.

Dianursanti, Rizkytata BT, Gumelar MT, Abdullah TH. Industrial Tofu wastewater as a cultivation medium of microalgae Chlorella vulgaris. Energy Proc. 2014;47:56-61.

Syaichurrozi I, Rusdi, Dwicahyanto S, Toron YS. Biogas production from co-digestion vinasse waste and tofu-processing wastewater and kinetics. Int J Renew Energy Res. 2016;6(3):1057-1070.

Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990;56(6):1875.

Setyoningrum TM, A.W. V, A A, Putra NI, Azimatun Nur MM. Evaluation of C/N Ratio in Spirulina platensis cultivation using molasses addition as organic carbon source. Eksergi. 2014;11(2):30-34.

Hadiyanto, Christwardana M, Sutanto H, Suzery M, Amelia D, Aritonang RF. Kinetic study on the effects of sugar addition on the thermal degradation of phycocyanin from Spirulina sp. Food Biosci. 2018;22:85-90.

Christwardana M, Hadiyanto H. The effects of audible sound for enhancing the growth rate of microalgae Haematococcus pluvialis in vegetative stage. HAYATI J Biosci. 2017;24(3):149-155.

Gogoi P, Kalita JC. Proximate analysis and mineral components of some edible medicinally important leafy vegetables of Kamrup District of Assam, India. Int J Pharma Bio Sci. 2014;5(4):P451-P457.

dos Passos MEA, Moreira CFF, Pacheco MTB, Takase I, Lopes MLM, Valente-Mesquita VL. Proximate and mineral composition of industrialized biscuits. Food Sci Technol. 2013;33(2):323-331.

Hadiyanto, Christwardana M, Soetrisnanto D. Phytoremediations of palm oil mill effluent (POME) by using aquatic plants and microalge for biomass production. J Environ Sci Technol. 2013;6(2):79-90.

Maulana Azimatun Nur M, Dwi Hartanto G. Enhancement of biomass production from Spirulina sp. cultivated in POME medium [Internet]. 2012 [cited 2022 July 22]. Available from: http://eprints.undip.ac.id/36886/.

Smith VH, Tilman GD, Nekola JC. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut. 1999;100(1-3):179-196.

Skulberg OM, Codd GA, Carmichael WW. Toxic blue-green algal blooms in Europe: a growing problem. AMBIO A J Hum Environ. 1984;13(4):244-247.

Carmichael WW. Toxic freshwater blue-green algae (cyanobacteria): An overlooked health threat. Heal Environ Netw. 1991;5(6):1-4.

Setyoningrum TM, Nur MMA. Optimization of C-phycocyanin production from S. platensis cultivated on mixotrophic condition by using response surface methodology. Biocatal Agric Biotechnol. 2015;4(4):603-607.

Pilon-Smits E. phytoremediation. Annu Rev Plant Biol. 2005;56:15-39.

Kim CJ, Jung YH, Oh HM. Factors indicating culture status during cultivation of Spirulina (Arthrospira) platensis . J Microbiol. 2007;45(2):122-127.

Uslu L, Işik O, Koç K, Göksan T. The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. Afr J Biotechnol. 2011;10(3):386-389.

Markou G, Chatzipavlidis I, Georgakakis D. Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World J Microbiol Biotechnol. 2012;28(8):2661-2670.

Savvidou MG, Lymperopoulou T V., Mamma D, Balta-Brouma KP, Sotiroudis TG, Kekos D, et al. A study on the combined effects of carbon and nitrogen source on high added value products synthesis by Nannochloropsis oceanica CCMP1779 using response surface methodology. Biocatal Agric Biotechnol. 2017;10:298-307.

Nur MMA, Kristanto D, Setyoningrum TM, Budiaman IG. Utilization of microalgae cultivated in palm oil mill wastewater to produce lipid and carbohydrate by employing microwave- assisted irradiation. Recent Innov Chem Eng. 2017;9(2):107-116.

Volkmann H, Imianovsky U, Oliveira JLB, Sant’Anna ES. Cultivation of Arthrospira (spirulina) platensis in desalinator wastewater and salinated synthetic medium: protein content and amino-acid profile. Brazilian J Microbiol. 2008;39(1):98-101.

Ma Z, Gao K. Spiral breakage and photoinhibition of Arthrospira platensis (Cyanophyta) caused by accumulation of reactive oxygen species under solar radiation. Environ Exp Bot. 2010;68(2):208-213.

Singh SP, Montgomery BL. Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol. 2011;19(6):278-285.

Zhi PW, Zhao Y. Morphological reversion of Spirulina (Arthrospira) platensis (cyanophyta): from linear to helical1. J Phycol. 2005;41(3):622-628.

Vonshak A, editor. Spirulina Platensis Arthrospira. 1st ed. Spirulina platensis Arthrospira. London: CRC Press; 1997.

Jung CHG, Braune S, Waldeck P, Küpper JH, Petrick I, Jung F. Morphology and growth of Arthrospira platensis during cultivation in a flat-type bioreactor. Life. 2021;11(6):536.

Zapata D, Arroyave C, Cardona L, Aristizábal A, Poschenrieder C, Llugany M. Phytohormone production and morphology of Spirulina platensis grown in dairy wastewaters. Algal Res. 2021;59:102469.

Godeanu M, Doina AS, Tanase C. RO111470B1 - Form of Spirulina platensis (nordst) geitl which is growing environment and cultivating process in continuous flow for Spiruline platensis mutant (nordst) geitl - Google Patents [Internet]. 1995 [cited 2022 July 31]. Available from: https://patents.google.com/patent/RO111470B1/en.