The effect of Bpsl0279 mutation on biofilm formation in Burkholderia pseudomallei

Main Article Content

Supaporn Pimthong
Rasana W. Sermswan
Robert K. Ernst
Surasakdi Wongratanacheewin

Abstract

Burkholderia pseudomallei is a causative agent of a fatal disease, melioidosis, which needs prolonged antibiotic treatment. It can produce biofilms that play some roles in either antibiotic resistance or relapse. Knowledge related to gene(s) that controlling biofilm formation in B. pseudomallei is still limited. From bioinformatics analysis, bpsl0279 and bpsl1080, the hypothetical genes in B. pseudomallei K96243, were found to be homologous with some of 80 biofilm related genes in other bacteria. Reverse transcription polymerase chain reaction (RT-PCR) showed their expression to be higher when growing in biofilm conditions compared to planktonic. Mutagenesis of bpsl0279 gene led to significantly lower biofilm productions. Approximately 75% of biofilm formation was reduced in Δbpsl0279 in static and easily observed in dynamic laminar shear conditions that can be restored by its complementation. The Δbpsl0279 formed only small microcolonies of 10-20 µm in diameter while the wild type established the roughness macrocolonies (> 50 µm) and reached 100 µm after 48 h. In addition, gfp-tagged wild type attached to the glass surface (264 ± 32 cells/field) significantly better than the mutants (120 ± 30 cells/field). The bpsl0279 was later reported as a putative flagella brake protein YcgR1 and was homolog with bth_i0249 in Burkholderia thailandensis. This gene contains PilZ domain, of which is a c-di-GMP binding and involved in many aspects of biofilm formation. Our study concluded bpsl0279 to be involved in the early stage of biofilm formation that may be a good target to interrupt for the benefit of treatment.

Article Details

How to Cite
Pimthong, S., Sermswan, R. W., Ernst, R. K., & Wongratanacheewin, S. (2023). The effect of Bpsl0279 mutation on biofilm formation in Burkholderia pseudomallei. Asia-Pacific Journal of Science and Technology, 28(04), APST–28. https://doi.org/10.14456/apst.2023.59
Section
Research Articles

References

Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Scott LHM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711-45.

O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54:49-79.

Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318-22.

Limmathurotsakul D, Peacock SJ. Melioidosis: a clinical overview. British medical bulletin. 2011;99:125-39.

Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N, Wongsuvan G, Chaisuksant S, Chetchotisakd P, et al. Increasing incidence of human melioidosis in Northeast Thailand. The American journal of tropical medicine and hygiene. 2010;82(6):1113-1117.

Vorachit M, Lam K, Jayanetra P, Costerton JW. Electron microscopy study of the mode of growth of Pseudomonas pseudomallei in vitro and in vivo. J Trop Med Hyg. 1995;98(6):379-391.

Taweechaisupapong S, Kaewpa C, Arunyanart C, Kanla P, Homchampa P, Sirisinha S, et al. Virulence of Burkholderia pseudomallei does not correlate with biofilm formation. Microb Pathog. 2005;39(3):77-85.

Chaowagul W, Suputtamongkol Y, Dance DA, Rajchanuvong A, Pattara-arechachai J, White NJ. Relapse in melioidosis: incidence and risk factors. J Infect Dis. 1993;168(5):1181-1185.

Currie BJ, Fisher DA, Anstey NM, Jacups SP. Melioidosis: acute and chronic disease, relapse and re-activation. Trans R Soc Trop Med Hyg. 2000;94(3):301-304.

Sawasdidoln C, Taweechaisupapong S, Sermswan RW, Tattawasart U, Tungpradabkul S, Wongratanacheewin S. Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance. PLoS One. 2010;5(2):e9196.

Limmathurotsakul D, Paeyao A, Wongratanacheewin S, Saiprom N, Takpho N, Thaipadungpanit J, et al. Role of Burkholderia pseudomallei biofilm formation and lipopolysaccharide in relapse of melioidosis. Clin Microbiol Infect. 2014;20(11):O854-O856.

DeShazer D, Brett PJ, Carlyon R, Woods DE. Mutagenesis of Burkholderia pseudomallei with Tn5-OT182: isolation of motility mutants and molecular characterization of the flagellin structural gene. J Bacteriol. 1997;179(7):2116-2125.

Lazazzera BA. Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr Opin Microbiol. 2005;8(2):222-227.

Waite RD, Paccanaro A, Papakonstantinopoulou A, Hurst JM, Saqi M, Littler E, et al. Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics. 2006;7:162.

Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK. Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol. 2004;64(4):515-524.

Moorthy S, Watnick PI. Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol Microbiol. 2005;57(6):1623-1635.

Alexeyev MF. The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. BioTechniques. 1999;26(5):824-826.

Kovach ME, Phillips RW, Elzer PH, Roop RM, 2nd, Peterson KM. pBBR1MCS: a broad-host-range cloning vector. BioTechniques. 1994;16(5):800-822.

Clarke P, Cuiv PO, O'Connell M. Novel mobilizable prokaryotic two-hybrid system vectors for high-throughput protein interaction mapping in Escherichia coli by bacterial conjugation. Nucleic Acids Res. 2005;33(2):e18.

Choi KH, DeShazer D, Schweizer HP. mini-Tn7 insertion in bacteria with multiple glmS-linked attTn7 sites: example Burkholderia mallei ATCC 23344. Nature protocols. 2006;1(1):162-169.

Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175-179.

Bjarnsholt T, Jensen PO, Burmolle M, Hentzer M, Haagensen JAJ, Hougen HP, et al. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology (Reading). 2005;151(Pt 2):373-383.

Sela S, Frank S, Belausov E, Pinto R. A Mutation in the luxS gene influences Listeria monocytogenes biofilm formation. Appl Environ Microbiol. 2006;72(8):5653-5658.

Caiazza NC, O'Toole GA. SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J Bacteriol. 2004;186(14):4476-4485.

Deziel E, Comeau Y, Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol. 2001;183(4):1195-1204.

Hadpanus P, Permsirivisarn P, Roytrakul S, Tungpradabkul S. Biomarker discovery in the biofilm-forming process of Burkholderia pseudomallei by mass-spectrometry. J Microbiol Methods. 2019;159:26-33.

Alwis PA, Treerat P, Gong L, Lucas DD, Allwood EM, Prescott M, et al. Disruption of the Burkholderia pseudomallei two-component signal transduction system BbeR-BbeS leads to increased extracellular DNA secretion and altered biofilm formation. Vet Microbiol. 2020;242:108603.

Borlee GI, Plumley BA, Martin KH, Somprasong N, Mangalea MR, Islam MN, et al. Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster. PLoS Negl Trop Dis. 2017;11(6):e0005689.

Chin CY, Hara Y, Ghazali AK, Yap SJ, Kong C, Wong YC, et al. Global transcriptional analysis of Burkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence. BMC Genomics. 2015;16:471.

Tamayo R, Pratt JT, Camilli A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol. 2007;61:131-148.

Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol. 2009;7(4):263-73.

Jenal U, Malone J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet. 2006;40:385-407.

Romling U, Gomelsky M, Galperin MY. C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol. 2005;57(3):629-639.

Schirmer T, Jenal U. Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol. 2009;7(10):724-735.

Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell. 2010;38(1):128-139.

Brett PJ, DeShazer D, Woods DE. Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol. 1998;48 Pt 1:317-320.

Lopez CM, Rholl DA, Trunck LA, Schweizer HP. Versatile dual-technology system for markerless allele replacement in Burkholderia pseudomallei. Appl Environ Microbiol. 2009;75(20):6496-6503.

Amikam D, Galperin MY. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics. 2006;22(1):3-6.

Ryan RP, Nielsen TT, Dow JM. When the PilZ don't work: effectors for cyclic di-GMP action in bacteria. Trends Microbiol. 2012;20(5):235-242.

Chattagul S, Khan MM, Scott AJ, Nita-Lazar A, Ernst RK, Goodlett DR, et al. Transcriptomics Analysis Uncovers Transient Ceftazidime Tolerance in Burkholderia Biofilms. ACS Infect Dis. 2021;7(8):2324-2336.