Feasibility study of bagasse lignin utilization as an alternative antimicrobial agent

Main Article Content

Siriluck Liengprayoon
Tucksin Lerksamran
Supanida Winitchai
Natedao Musigamart
Jatuporn Chaiyut
Warawut Suphamitmonkol
Jackapon Sunthornvarabhas

Abstract

A comparative study was performed using lignin isolated from bagasse dissolved in ethylene glycol (LEG) at 0.5% (w/w) and lignin nanoparticles (LNPs) as an alternative antimicrobial agent. To target safe, commercial use, the LNP preparation conditions involved a simple dialysis of LEG in distilled water for 24 h without chemical modification. This condition yielded 200 nm LNPs with a zeta potential of -39 mV which resulted in good colloidal stability. The original LEG and the obtained LNPs were further tested for their antimicrobial and antioxidant activities. Similar levels of antioxidant activity from both types of lignin compared to gallic acid were obtained based on DPPH radical scavenging testing. The radical scavenging activity levels of LEG and LNPs were 82.4–89.5% and 82.8–91.4%, respectively. Only LEG exhibited positive antimicrobial activity against 5 Gram-positive Staphylococcus epidermidis (DMST 15505), Staphylococcus aureus (DMST 8840), Bacillus sp. (TISTR1323), methicillin-resistant Staphylococcus aureus (MRSA; DMDT 20651) and Staphylococcus aureus (DMST 8840)) and 4 Gram-negative (Escherichia coli (TISTR 117), Pseudomonas aeruginosa (TISTR 781), Pseudomonas fluorescens (TISTR 358) and Salmonella typhimurium (TISTR 1469) bacterial strains, with LNPs being less effective. Regardless of the antimicrobial activity, additional market surveying showed that Thai companies in the preservatives business were interested in an antimicrobial agent in the form of LEG instead of LNPs because the former was easier to handle and had a competitive production cost.

Article Details

How to Cite
Liengprayoon, S., Lerksamran, T., Winitchai, S., Musigamart, N., Chaiyut, J., Suphamitmonkol, W., & Sunthornvarabhas, J. (2022). Feasibility study of bagasse lignin utilization as an alternative antimicrobial agent. Asia-Pacific Journal of Science and Technology, 27(04), APST–27. https://doi.org/10.14456/apst.2022.55
Section
Research Articles

References

Ko FK, Goudarzi A, Lin LT, Li Y, Kadla JF. Lignin-based composite carbon nanofibers. In: Faruk O, Sain M, editors. Lignin in polymer composites. 1st ed. Norwich: William Andrew Publishing; 2015. p. 167-194.

Liengprayoon S, Suphamitmongkol W, Jantarasunthorn S, Rungjang W, Sunthornvarabhas J, Tanthana J. Investigation of the potential for utilization of sugarcane bagasse lignin for carbon fiber production: Thailand case study. SN Appl Sci. 2019;1(10):1-7.

Ratanasumarn N, Chitprasert P. Cosmetic potential of lignin extracts from alkaline-treated sugarcane bagasse: optimization of extraction conditions using response surface methodology. Int J Biol Macromol. 2020;153:138-145.

Yearla SR, Padmasree K. Preparation and characterisation of lignin nanoparticles: Evaluation of their potential as antioxidants and uv protectants. J Exp Nanosci. 2016;11(4):289-302.

Vinardell MP, Mitjans M. Lignins and their derivatives with beneficial effects on human health. Int J Mol Sci. 2017;18(6):1219. PMID: 28590454.

Sriroth K, Sunthornvarabhas J. Lignin from sugar process as natural antimicrobial agent. Biochem Pharmacol. 2018;7(1):1-4.

Sriroth K, Vanichriratana W, Sunthornvarabhas J. The current status of sugar industry and by-products in thailand. Sugar Tech. 2016;18(6):576-582.

Mahmood Z, Yameen M, Jahangeer M, Riaz M, Ghaffar A, Javid I. Lignin as natural antioxidant capacity. In: Poletto M, editor. Lignin - trends and applications. 3rd ed. London: IntechOpen; 2018. p. 182-205.

Dong X, Dong MD, Lu YJ, Turley A, Jin T, Wu CQ. Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind Crop Prod. 2011;34(3):1629-1634.

Sláviková E, Košíková B. Inhibitory effect of lignin by-products of pulping on yeast growth. Folia Microbiol. 1994;39(3):241-243.

Alzagameem A, Klein SE, Bergs M, Do XT, Korte I, Dohlen S, et al. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polymers. 2019;11(4):1-18.

Yang W, Owczarek JS, Fortunati E, Kozanecki M, Mazzaglia A, Balestra GM, et al. Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Ind Crop Prod. 2016;94:800-811.

Sunthornvarabhas J, Liengprayoon S, Suwonsichon T. Antimicrobial kinetic activities of lignin from sugarcane bagasse for textile product. Ind Crop Prod. 2017;109:857-61.

Spasojević D, Zmejkoski D, Glamočlija J, Nikolić M, Soković M, Milošević V, et al. Lignin model compound in alginate hydrogel: A strong antimicrobial agent with high potential in wound treatment. Int J Antimicrob Agents. 2016;48(6):732-735.

Prociak PJ, Banach M. Silver nanoparticles – a material of the future…? Open Chem. 2016;14(1):76-91.

Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908-931.

Sudha PN, Sangeetha K, Vijayalakshmi K, Barhoum A. Chapter 12 - nanomaterials history, classification, unique properties, production and market. In: Barhoum A, Makhlouf ASH, editors. Emerging applications of nanoparticles and architecture nanostructures. Amsterdam: Elsevier; 2018. p. 341-84.

Beisl S, Miltner A, Friedl A. Lignin from micro- to nanosize: production methods. Int J Mol Sci. 2017;18(6):1244. PMID: 28604584.

Nair SS, Sharma S, Pu Y, Sun Q, Pan S, Zhu JY, et al. High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-polyvinyl alcohol blends. ChemSusChem. 2014;7(12):3513-3520.

Gilca IA, Popa VI, Crestini C. Obtaining lignin nanoparticles by sonication. Ultrason Sonochem. 2015;23:369-375.

Beisl S, Friedl A, Miltner A. Lignin from micro- to nanosize: applications. Int J Mol Sci. 2017;18(11):1-24.

Chen L, Shi Y, Gao B, Zhao Y, Jiang Y, Zha Z, et al. Lignin nanoparticles: Green synthesis in a γ-valerolactone/water binary solvent and application to enhance antimicrobial activity of essential oils. ACS Sustain Chem Eng. 2020;8(1):714-722.

Basri D, Fan S. The potential of aqueous and acetone extracts of galls of Quercus infectoria as antibacterial agents. Indian J Pharmacol. 2005;37(1):26-29.

Fagali N, Catala A. Antioxidant activity of conjugated linoleic acid isomers, linoleic acid and its methyl ester determined by phtotoemission and dpph techniques. Biophys Chem. 2008;137(1):56-62.

Lievonen M, Delgado VJJ, Mattinen ML, Hult EL, Lintinen K, Kostiainen MA, et al. A simple process for lignin nanoparticle preparation. Green Chem. 2015;18(5):1416-1422.

Moghayedi M, Ahmadzadeh H, Ghazvini K, Goharshadi EK. Neglected antibacterial activity of ethylene glycol as a common solvent. Microb Pathog. 2017;107:457-461.

Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater. 2015;2015:1-8.

Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, et al. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep. 2015;5(1):1-12.

Yang W, Fortunati E, Gao D, Balestra GM, Giovanale G, He X, et al. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials. ACS Sustain Chem Eng. 2018;6(3):3502-3514.

Hayden SC, Zhao G, Saha K, Phillips RL, Li X, Miranda OR, et al. Aggregation and interaction of cationic nanoparticles on bacterial surfaces. J American Chem Soc. 2012;134(16):6920-6923.

Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227-1249.

Lintinen K, Luiro S, Figueiredo P, Sakarinen E, Mousavi Z, Seitsonen J, et al. Antimicrobial colloidal silver–lignin particles via ion and solvent exchange. ACS Sustain Chem Eng. 2019;7(18):15297-15303.

Chandna S, Thakur NS, Reddy YN, Kaur R, Bhaumik J. Engineering lignin stabilized bimetallic nanocomplexes: Structure, mechanistic elucidation, antioxidant, and antimicrobial potential. ACS Biomater Sci Eng. 2019;5(7):3212-3227.

Joshi SKM, Sethi YA, Ambalkar AA, Sonawane HB, Rasale SP, Panmand RP, et al. Lignin-mediated biosynthesis of zno and tio2 nanocomposites for enhanced antimicrobial activity. J Compos Sci. 2019;3(3):1-13.