Genetic variation of wild Bulbophyllum reclusum Seidenf. in Northeast Thailand based on chloroplast matK sequence analysis

Main Article Content

Siwaporn Homhuan
Weerachai Saijuntha
Sudarat Thanonkeo

Abstract

Bulbophyllum reclusum is one of the endangered wild orchid species in Thailand, and its genetic variation has never been elucidated using molecular techniques. The present study is the first to provide genetic variation information of wild B. reclusum collected from Northeast Thailand using the chloroplast maturase K (matK) gene as a marker. Based on the matK sequence analysis of 43 orchid samples from Sakon Nakhon and Ubon Ratchathani Provinces, 25 variable nucleotide sites were detected. There was no genetic variation in the samples collected from Sakon Nakhon Province. In contrast, high levels of intra- and inter-population genetic variation were observed in the samples collected from Ubon Ratchathani Province. However, the genetic differences between the populations were not significant and in a phylogenetic analysis, they clustered as a monophyletic group.

Article Details

How to Cite
Homhuan, S., Saijuntha, W., & Thanonkeo, S. (2023). Genetic variation of wild Bulbophyllum reclusum Seidenf. in Northeast Thailand based on chloroplast matK sequence analysis. Asia-Pacific Journal of Science and Technology, 28(04), APST–28. https://doi.org/10.14456/apst.2023.61
Section
Research Articles

References

Seidenfaden G, Wood JJ. The orchids of Peninsular Malaysia and Singapore. 1st ed. Fredensborg: Olsen & Olsen; 1992.

Tan KH, Nishida R, Toong YC. Floral synomone of a wild orchid, Bulbophyllum cheiri, lures Bactrocera fruit flies for pollination. J Chem Ecol. 2002;28:1161-1172.

Nishida R, Tan KH, Wee SL, Hee AKW, Toong YC. Phenylpropanoids in the fragrance of the fruit fly orchid, Bulbophyllum cheiri, and their relationship to the pollinator, Bactrocera papayae. Biochem Sys Ecol. 2004;32:245-252.

Tanaka N, Yukawa T, Htwe KM, Koyama T, Murata J. New or noteworthy plant collections from Myanmar (7): fourteen additional species of Orchidaceae. Acta Phytotax Geobot. 2011;61:161-165.

Chamchumroon V, Suphuntee N, Tetsana N, Poopath M, Tanikkool S. Threatened plants in Thailand. 1st ed. Bangkok: Omega Printing; 2017.

Bellstedt DU, Linder HP, Harley EH. Phylogenetic relationships in Disa based on non-coding trnL-trnF chloroplast sequences: evidence of numerous repeat regions. Am J Bot. 2001;88:2088-2100.

Fischer GA, Gravendeel B, Sieder A, Andriantiana J, Heiselmayer P, Cribb PJ, et al. Evolution of resupination in Malagasy species of Bulbophyllum (Orchidaceae). Mol Phylgenet Evol. 2007;45:358-376.

Xiang XG, Schuiteman A, Li DZ, Huang WC, Chung SW, Li JW, et al. Molecular systematics of Dendrobium (Orchidaceae, Dendrobieae) from mainland Asia based on plastid and nuclear sequences. Mol Phylogent Evol. 2013;69:950-960.

Luo J, Hou BW, Niu ZT, Liu W, Xue QY, Ding XY. Comparative chloroplast genomes of photosynthetic orchids: insights into evolution of the Orchidaceae and development of molecular markers for phylogenetic applications. PloS One. 2014;9:e99016.

Hosseini S, Dadkhah K. Molecular systematics of some Bulbophyllum species in Peninsular Malaysia based on ITS sequences. J Plant Biol Res. 2015;4:73-82.

Wonnapinij P, Sriboonlert A. Molecular phylogenetics of species of Bulbophyllum sect. Trias (Orchidaceae; Epidendroideae; Malaxidae) based on nrITS and plastid rbcL and matK. Phytotaxa. 2015;226:001-017.

Hosseini S, Go R, Dadkhah K, Nuruddin AA. Studies on maturase K sequences and systematic classification of Bulbophyllum in Peninsular Malaysia. Pak J Bot. 2012;44:2047-2054.

Batista JA, Borges KS, Faria MW, Proite K, Ramalho AJ, Salazar GA, et al. Molecular phylogenetics of the species-rich genus Habenaria (Orchidaceae) in the new world based on muclear and plastid DNA sequences. Mol Phylogent Evol. 2013;67:95-109.

Li H, Xiao W, Tong T, Li Y, Zhang M, Lin X, et al. The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants. Sci Rep. 2021;11:1424.

Raskoti BB, Ale R. DNA barcoding of medicinal orchids in Asia. Sci Rep. 2021;11:23651.

Jing YU, Hua JXU, Liang SZH. New universal matK primers for DNA barcoding angiosperms. J Syst Evol. 2011;49(3):176-181.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-410.

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95-98.

Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564-567.

Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451-1452.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549.

Richards AJ. Plant breeding systems. 2nd ed. London; Chapman Hall; 1990.

Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc. 2005;84(1):1-54.

Hamilton MB. Population genetics. 1st ed. West Sussex, Wiley-Blackwell; 2009.

Ueno S, Rodrigues JF, Pereira AA, Pansarin ER, Veasey EA. Genetic variability within and among populations of an invasive, exotic orchid. AoB Plants. 2015;7:plv077.

Sletvold N, Grindeland JM, Zu P, Agren J. Strong inbreeding depression and local outbreeding depression in the rewarding Orchid Gymnadenia conopsea. Conserv Genet. 2012;13:1305-1315.

Chen YY, Bao ZX, Qu Y, Li W, Li ZZ. Genetic diversity and population structure of the medicinal Orchid Gastrodia elata revealed by microsatellite analysis. Biochem Syst Ecol. 2014;54:182-189.

Begg GS, Wishart J, Young MW, Squire GR, Iannetta PPM. Genetic structure among arable populations of Capsella bursa-pastoris is linked to functional traits and in-field conditions. Ecography. 2012;35(5):446-457.

Soltis DE, Soltis PS. Choosing an approach and an appropriate gene for phylogenetic analysis. In: Soltis DE, Soltis PS, Doyle JJ, editors. Molecular systematics of plants II: DNA sequencing. 1st ed. Boston: Kluwer; 1998.

Muller KF, Borsch T, Hilu KW. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F, and rbcL in basal angiosperms. Mol Phylogenet Evol. 2006;41(1):99-117.

Kocyan A, de Vogel EF, Gravendeel B. Molecular phylogeny of Aerides (Orchidaceae) based on one nuclear and two plastid markers: a step forward in understanding the evolution of the aeridinae. Mol Phylogenet Evol. 2008;48(2):422-443.

Drescher A, Ruf S, Calsa T, Carrer H, Bock R. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. 2000;22(2):97-104.

Neubig KM, Whitten WM, Carlsward BS, Blanco MA, Endara L, Williams NH, et al. Phylogenetic utility of ycf1 in orchids: a plastid gene more variable than matK. Plant Syst Evol. 2009;277(1):75-84.

Raubeson LA, Jansen RK. Chloroplast genomes of plants. In: Henry RJ, editor. Plant diversity and evolution: genotypic and phenotypic variation in higher plants. 1st ed. Cambridge: CABI publishing; 2005.

Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, et al. The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol. 2006;23(2):279-291.