Kerf-width optimization and surface characterization of wire electric discharge machined Ti-6Al-4V using response surface method

Main Article Content

Deepak Doreswamy
Sai D. Shreyas
Satheesh Javaregowda
Anjaiah Devineni
Subraya K. Bhat

Abstract

Wire-Electric Discharge Machining (WEDM) is one of practicable advanced machining techniques for machining of hard materials such as Titanium alloys precisely. It is critical to optimize the settings for control parameters to achieve the desired levels of kerf width and dimensional tolerance. Considering this objective, this research investigates the effects of current, pulse on time (Ton) and pulse off time (Toff) on kerf width of Wire-Electric Discharge (WED) machined Ti-6Al-4V Titanium alloy. The study showed that, increase in current from 2 A to 6 A resulted in increase of kerf width by 9.34% and 12.62%, respectively. But increase of Toff from 20 μs to 30 μs led to a sharp reduction in kerf width by about 6.14%. Further, a regression model is developed to predict the surface roughness with coefficient of determination (R2) =90.11%. The machined surfaces are characterised by the presence of voids and microcracks on the recast layers, formation of micro-globules, ridges and craters due to thermal effects. Within the range of study Toff showed significantly larger influence in minimizing the kerf width compared to other parameters of the study.

Article Details

How to Cite
Doreswamy, D., Shreyas, S. D., Javaregowda, S., Devineni, A., & Bhat, S. K. (2023). Kerf-width optimization and surface characterization of wire electric discharge machined Ti-6Al-4V using response surface method. Asia-Pacific Journal of Science and Technology, 28(03), APST–28. https://doi.org/10.14456/apst.2023.51
Section
Research Articles

References

Pramanik A, Littlefair G. Machining of titanium alloy (Ti-6Al-4V) - theory to application. Mach Sci Technol. 2015;19(1):1-49.

Gupta K, Laubscher R. Sustainable machining of titanium alloys: a critical review. Proc Inst Mech Eng Part B J Eng Manuf. 2016;231(14):2543-2560.

Pramanik A. Problems and solutions in machining of titanium alloys. Int J Adv Manuf Technol. 2014;70: 919-928.

Oke SR, Ogunwande GS, Onifade M, Aikulola E, Adewale ED, Olawale OE, et al. An overview of conventional and non-conventional techniques for machining of titanium alloys. Manuf Rev. 2020;7:34.

Nishanth BS, Kulkarni VN, Gaitonde VN. A review on conventional and nonconventional machining of titanium and nickel-based alloys. AIP Conf Proc. 2019;2200(1):020091.

Astakhov VP. Ecological machining: near-dry machining. In: Davim JP editor. Machining: fundamentals and recent advances. 1st ed. London: Springer; 2008. p. 195-223.

Davim JP. Nontraditional machining processes. 1st ed. London: Springer; 2013.

Davim JP. Machining of titanium alloys. 1st ed. Heidelberg: Springer; 2014.

Qudeiri JAE, Mourad AHI, Ziout A. Electric discharge machining of titanium and its alloys: review. Int J Adv Manuf Technol. 2018;96:1319-1339.

Hourmand M, Sarhan AAD, Sayuti M, Hamdi M. A Comprehensive review on aachining of titanium alloys. Arab J Sci Eng. 2021;46:7087-7123.

Festas A, Ramos A, Davim JP. Machining of titanium alloys for medical application - a review. Proc Inst Mech Eng, Part B: J Eng Manuf. 2021;236(4):309-318.

Saedon JB, Jaafar N, Yahaya MA, Saad N, Kasim MS. Multi-objective Optimization of titanium alloy through orthogonal array and grey relational analysis in WEDM. Proc Technol. 2014;15:832-840.

Raj SON, Prabhu S. Modeling and analysis of titanium alloy in wire cut EDM using grey relation coupled with principle component analysis. Aust J Mech Eng. 2017;15(3):198-209.

Mohamed MF, Lenin K. Optimization of wire EDM process parameters using Taguchi technique. Mater Today: Proc. 2020;21:527-530.

Nourbakhsh F, Rajurkar KP, Malshe AP, Cao J. Wire electro-discharge machining of titanium alloy. Procedia CIRP. 2013;5:13-18.

Golshan A, Ghodsiyeh D, Izman S. Multi-objective optimization of wire electrical discharge machining process using evolutionary computation method: effect of cutting variation. Proc Inst Mech Eng, Part B: J Eng Manuf. 2015;229(1):75-85.

Arikatla SP, Mannan KT, Krishnaiah A. Parametric optimization in wire electrical discharge machining of titanium alloy using response surface methodology. Mater Today Proc. 2017;4(2):1434-1441.

Chaudhari R, Vora J, Parikh DM, Wankhede V, Khanna S. Multi-response Optimization of WEDM parameters using an integrated approach of RSM-GRA analysis for pure titanium. J Inst Eng (India): D. 2020;101(1):117-126.

Fuse K, Dalsaniya A, Modi D, Vora J, Pimenov DY, Giasin, K, et al. Integration of fuzzy AHP and fuzzy TOPSIS methods for wire electric discharge machining of titanium (Ti6Al4V) alloy using RSM. Materials. 2021;14(23):7408.

Khanna, N, Davim JP. Design-of-experiments application in machining titanium alloys for aerospace structural components. Meas. 2015;61:280-290.

Lauro CH, Filho SLMR, Brandao LC, Davim JP. Analysis of behaviour biocompatible titanium alloy (Ti-6Al-7Nb) in the micro-cutting. Meas. 2016;93:529-540.

Hascalik A, Caydas U. Electrical discharge machining of titanium alloy (Ti-6Al-4V), Appl Surf Sci. 2007;253(22):9007-9016.

Sivakumar K, Gandhinathan R. Establishing optimum process parameters for machining titanium alloys (Ti6Al4V) in spark electric discharge machining. Int J Eng Adv Technol, 2013;2:201-204.

Uthirapathi A, Singaravelu DL. Effect of rotating tool electrode on machining of titanium alloy using electric discharge machining. Adv Mater Res. 2013;651:448-452.

Chaudhari R, Vora JJ, Patel V, Lacalle LNLd, Parikh DM. Effect of WEDM process parameters on surface morphology of nitinol shape memory alloy. Materials. 2020;13(21):4943.

Devarasiddappa D, Chandrasekaran M, Arunachalam R. Experimental investigation and parametric optimization for minimizing surface roughness during WEDM of Ti6Al4V alloy using modified TLBO algorithm. J Braz Soc Mech Sci Eng. 2020;42:128.

Chakraborty S, Mitra S, Bose D. Performance analysis on eco-friendly machining of Ti6Al4V using powder mixed with different dielectrics in WEDM. Int J Automot Mech Eng. 2020;17(2):8128-8139.

Sivaprakasam P, Hariharan P, Gowri S. Modeling and analysis of micro-WEDM process of titanium alloy (Ti-6Al-4V) using response surface approach. Eng Sci Technol Int J. 2014;17(4):227-235.

Sneha P, Mahamani A, Kakaravada I. Optimization of wire electric discharge machining parameters in machining of Ti-6Al-4V Alloy. Mater Today Proc. 2018;5(2):6722-6727.

Sonawane SA, Ronge BP, Pawar PM. Multi-characteristic optimization of WEDM for Ti-6Al-4V by applying grey relational investigation during profile machining. J Mech Eng Sci. 2019;13(4):6059–6087.

Doreswamy D, Javeri J. Effect of process parameters in EDM of D2 steel and estimation of coefficient for predicting surface roughness. Int J Mach Mach Mater. 2018;20:101-117.

Deepak D, Shrinivas P, Hemant G, Iasy R. Optimisation of current and pulse duration in electric discharge drilling of D2 steel using graphite electrode. Int J Automot Mech Eng. 2018;15:5914-5926.

Lenin N, Sivakumar M, Selvakumar G, Rajamani D, Sivalingam V, Gupta, M, et al. Optimization of process control parameters for WEDM of Al-LM25/Fly Ash/B4C hybrid composites using evolutionary algorithms: a comparative study. Metals. 2021;11:1105.

Aggarwal V, Pruncu CI, Singh J, Sharma S, Pimenov DY. Empirical investigations during WEDM of Ni-27Cu-3.15Al-2Fe-1.5Mn based superalloy for high temperature corrosion resistance applications. Materials. 2020;13:3470.

Rao KV, Raju LR, Kumar CK. Modeling of kerf width and surface roughness in wire cut electric discharge machining of Ti-6Al-4V. Proc Inst Mech Eng E: J Process Mech Eng. 2020;234(6):533-542.

Abebe T, Palani S, Prakash JU. Kerf width analysis of wire electrical discharge machining of titanium alloy (Ti-6Al-4 V ELI) using response surface method. Mater Today Proc. 2022;62(2):481-487.

Chiang KT, Chang FP, Tsai DC. Modeling and analysis of the rapidly resolidified layer of SG cast iron in the EDM process through the response surface methodology. J Mater Proc Technol. 2007;182(3):525-533.

Li L, Guo YB, Wei XT, Li W. Surface integrity characteristics in Wire-EDM of Inconel 718 at different discharge energy. Procedia CIRP. 2013;6:220-225.

Xu B, Lian MQ, Chen SG. Combining PMEDM with the tool electrode sloshing to reduce recast layer of titanium alloy generated from EDM. Int J Adv Manuf Technol. 2021;117:1535-1545.

Sahu A, Mahapatra SS. Surface characteristics of EDMed titanium alloy and AISI 1040 steel workpieces using rapid tool electrode. Arab J Sci Eng. 2020;45:699-718.

Arooj S, Shah M, Sadiq S. Effect of current in the EDM machining of aluminum 6061 T6 and its effect on the surface morphology. Arab J Sci Eng. 2014;39:4187-4199.