Statistical optimization of cost-effective lignocellulosic medium for maximum xylanase activity by Massilia timonae B2YR

Main Article Content

Rajani Thanekar
Savita Mali
Prajakta Kamble
Vikramsinh More
Kailas D. Sonawane
Yasmin C. Attar

Abstract

Response surface methodology was used in the current study to optimise a lignocellulosic waste medium containing wheat bran (agro residue) and Pistia stratiotes (waterweed) for escalating xylanase activity using a bacterial isolate, Massilia timonae B2YR KY942185 screened from sawmill industry soil. After box behnken design (BBD) optimization, the medium composition was wheat bran 1.5 % w/v and Pistia 2 %w/v, demonstrating a 1.95-fold increase in xylanase activity. The xylanase enzyme was purified to 20.61-fold by Cellulose Diethylaminoethyl (DEAE) Chromatography with 32.60% recovery of enzyme activity. The molecular weight of xylanase was found to be 43 kiloDalton (kDa) by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE). Mn, a metal ion, was found to increase xylanase activity (MnCl). Simultaneously, the enzyme demonstrated remarkable stability at acidic pH (4), with a retention of 75% in relative activity after 2 h of incubation in the corresponding pH buffer. Thus, the ideal conditions for maximum xylanase activity were 28± 2°C and pH 7. The kinetic experiments revealed a Michaelis menten constant for enzyme activity (Km)of 2.7 mg/mL and a maximum velocity of enzyme activity (Vmax) of 178.3 mol/min/mg. A crude xylanase fraction treatment on a Pistia and wheat bran mixture yielded 20.66mg of xylooligosaccharides after 18 h.

Article Details

How to Cite
Thanekar, R., Mali, S., Kamble, P., More, V., Sonawane, K. D., & Attar, Y. C. (2023). Statistical optimization of cost-effective lignocellulosic medium for maximum xylanase activity by Massilia timonae B2YR. Asia-Pacific Journal of Science and Technology, 28(06), APST–28. https://doi.org/10.14456/apst.2023.94
Section
Research Articles

References

Jagtap MP, Jagtap PR. Review Paper on Phytoremediation : A Green Technology. Int J Adv Res Sci Eng. 2018;07(03):964-970.

Freitas C De, Carmona E, Brienzo M. Bioactive carbohydrates and dietary fibre xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioact Carbohydr Diet. 2019;18:100184.

Adhyaru DN, Bhatt NS, Modi HA. Optimization of upstream and downstream process parameters for cellulase-poor-thermo- solvent-stable xylanase production and extraction by Aspergillus tubingensis FDHN1. Bioresour Bioprocess. 2015;2(3):1-14.

Nordberg Karlsson E, Schmitz E, Linares-Pastén JA, Adlercreutz P. Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Appl Microbiol Biotechnol. 2018;102(21):9081-9088.

Gupta PK, Agrawal P, Hegde P, Shankarnarayan N, Vidyashree S, Singh SA, et al. Xylooligosaccharide - a valuable material from waste to taste: A review. J Environ Res Dev. 2016;10(03):555-563.

Chakdar H, Kumar M, Pandiyan K, Singh A, Nanjappan K, Lal Kashyap P, et al. Bacterial xylanases: biology to biotechnology. 3 Biotech. 2016;6(2):150.

Kaur A, Chopra C, Joshi A, Sharma NR. Bioprocessing , biochemical characterisation and optimization of solid state fermentation of a new thermostable xylanase producing strain belonging to Bacillus genus. J Chem Pharm Res. 2015;7(1):266-276.

Naz S, Irfan M, Farooq MU. Xylanase production from Bacillus subtilis in submerged fermentation using Box-Behnken design. Pakistan J Biotechnol. 2017;14(2):151-156.

Bibi Z, Ansari A, Zohra RR, Aman A, Ali S. Production of xylan degrading endo-1 , 4- β - xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29. J Radiat Res Appl Sci. 2019;7(4):478-485.

Babu CR, Ketanapalli H, Beebi SK, Kolluru VC, Bran W, Endosperm C. Wheat bran-composition and nutritional quality : A review. Adv Biotechnol Microbiol. 2018;9(1)0021-0027.

Sivasankari B, A DR. A study on chemical analysis of water hyacinth ( Eichornia crassipes ), water lettuce ( Pistia stratiotes ). Int J Innov Res Sci Eng Technol. 2016;5(10):17566-17570.

Thanekar RJ, Attar YC. Study of Xylanolytic Microorganisms by using Xylan Extracted from Natural waste. Int J Res Appl Sci Eng Technol. 2017;5(V):482-488.

Hauli I, Sarkar B, Mukherjee T, Chattopadhyay A, Mukhopadhyay SK. Alkaline extraction of xylan from agricultural waste, for the cost effective production of xylooligosaccharides, using thermoalkaline xylanase of thermophilic Anoxybacillus sp. Ip-C. Int J Pure Appl Biosci. 2013;1(6):126-131.

Bailey MJ, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol. 1992;23(3):257-270.

Gupta S, Bhushan B, Hoondal GS. Isolation, purification and characterization of xylanase from Staphylococcus sp. SG-13 and its application in biobleaching of kraft pulp. J Appl Microbiol. 2000;88(2):325-334.

Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal Chim Acta. 2007;597(2):179-186.

Irfan M, Shakir HA, Qazi JI. Application of Box-Behnken Design for optimization of different pretreatment conditions for cellulase production. J Northeast Agric Univ. 2017; 24(3):51-59.

Laemmli UK. Cleavage of structural proteins during the Assembly of the head of Bacteriophage T4. Nature. 1970;227:680-696.

Chapla D, Pandit P, Shah A. Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol. 2012;115:215-221.

Amorim C, Silvério SC, Gonçalves RFS, Pinheiro AC, Silva S, Coelho E, et al. Downscale fermentation for xylooligosaccharides production by recombinant Bacillus subtilis 3610. Carbohydr Polym. 2019;205:176-183.

Attar, Yasmin C, Mali S. Formulation of cost-effective agro residues containing potassium solubilizing bacterial bio-inoculants using response surface methodology. Biocatal Agric Biotechnol. 2021;35:102113.

Newman. Development of a low-cost fermentation medium for ethanol production from biomass. Appl Microbiol Biotechnol. 1997;625-629.

Kocabas DS, Ozben N. Co-production of xylanase and xylooligosaccharides from lignocellulosic agricultural wastes. RSC Adv. 2014;4(50):26129-26139.

Garai D, Kumar V. Response surface optimization for xylanase with high volumetric productivity by indigenous alkali tolerant Aspergillus candidus under submerged cultivation. 3 Biotech. 2013;3(2):127-136.

Cao Y, Meng DJ, Lu J, Long J. Statistical optimization of xylanase production by Aspergillus niger AN-13 under submerged fermentation using response surface methodology. Afr J Biotechnol. 2008;7(5):631-638.

Kamble PP, Kore M V., Patil SA, Jadhav JP, Attar YC. Statistical optimization of process parameters for inulinase production from Tithonia weed by Arthrobacter mysorens strain no.1. J Microbiol Methods. 2018;149:55-66.

Ghasemi Y, Sadeghi H, Gholami A, Mohkam M, Kargar M. Isolation and identification of highly xylanase producing Bacterium Sphingobacterium sp. SaH-05 from soil. Int J Sci Eng Res. 2014;5(3):205-209.

Kumar VS, Karthi V, Ramkumar A, Ramesh R, Stephen A, Kumaresan S. Isolation, screening, identification, and optimization of xylanase producing bacteria from forests of Western Ghats, India. Int J Agric Environ Biotechnol. 2018;11(1):173-179.

Murugan S, Arnold D, Pongiya UD, Narayanan PM. Production of xylanase from Arthrobacter sp. MTCC 6915 using saw dust as substrate under solid state fermentation. Enzyme Res. 2011;2011(7):696942.

Long C, Liu J, Gan L, Zeng B, Long M. Optimization of xylanase production by Trichoderma orientalis using corn cobs and wheat bran via statistical strategy. Waste Biomass Valorization. 2019;10(5):1277-1284.

Sepahy AA, Ghazi S, Sepahy MA. Cost-Effective production and optimization of alkaline xylanase by indigenous Bacillus mojavensis AG137 Fermented on agricultural waste. Energy Res. 2011;2011:593624.

Pithadiya D, Nandha D, Thakkar A. Partial purification and optimization of xylanase from ,Bacillus circulans. Arch Appl Sci Res. 2016;8(2):1-10.

Nasr S Soudi M Salmanian A Ghadam P. Partial optimization of Endo-1, 4-Β-Xylanase production by Aureobasidium pullulans using agro-industrial residues. Iran J Basic Med Sci. 2013;12:1245-1253.

Shrivastava S, Kumar V, Baweja M, Shukla P. Enhanced xylanase production from Thermomyces lanuginosus NCIM 1374/DSM 28966 using statistical analysis. J Pure Appl Microbiol. 2016;10(3):2225-2230.

Chaturvedi S, Khurana SMP. Partial purification and characterization of cellulase-free xylanase production from Bacillus Licheniformis. Int J Pharma Bio Sci. 2016;7(4):B144-B149.

Khandeparkar R, Bhosle NB. Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112. Res Microbiol. 2006;157(4):315-325.

Irfan M, Syed Q. Partial purification and characterization of xylanase from Trichoderma viride produced under SSF. Int J Appl Res Nat Prod. 2012;5(1):7-11.

Alokika, Singh D, Singh B. Utility of acidic xylanase of Bacillus subtilis subsp. subtilis JJBS250 in improving the nutritional value of poultry feed. 3 Biotech. 2018;8(12):1-7.

Xu B, Dai L, Li J, Deng M , Miao H, Zhou J, et al. Molecular and biochemical characterization of a novel xylanase from Massilia sp. RBM26 Isolated from the feces of Rhinopithecus bieti. J Microbiol Biotechno. 2016;26(1):9-19.

Sanghi A, Garg N, Gupta VK, Mittal A, Kuhad RC. One-step purification and characterization of cellulase-free xylanase produced by alkalophilic Bacillus subtilis ASH. Braz J Microbiol. 2010;41(2):467-476.