Effect of the fabrication parameters of MWCNTs/α-MnO2 nanocomposite through the Taguchi technique

Main Article Content

Zakir Hussain
Pranjal Sarmah

Abstract

The objective of this research was to examine the effect of powder-processing parameters on the responses: bulk mass density and microhardness of multi-walled carbon nanotubes (MWCNTs)/manganese dioxide (α-MnO2) nanocomposite through the Taguchi technique. The impact of powder-preparing parameters on responses was examined utilizing the signal-to-noise ratio, and an analysis of variance. The production of the MWCNTs/α-MnO2 nanocomposite was confirmed by X-ray diffraction (XRD), scanning electron microscopy, and energy-dispersive X-ray investigation. Four variables viz. wt.% loading of MWCNTs in α-MnO2, compaction pressure, sintering temperature, and holding time were utilized in this work as powder processing parameters. The results indicated that the experiment was carried out at optimal bulk mass density with a 10 wt.% loading of MWCNTs, an 80 MPa compaction pressure, a 475°C sintering temperature, and a 15 min holding time. Similarly, the experiment was done at a 10 wt.% MWCNTs loading, an 80 MPa compaction pressure, a 500°C sintering temperature, and a 0-min holding time to obtain the optimal microhardness value of the nanocomposite. The analysis of variance shows that the effect of the wt.% loading of MWCNTs was significant in both situations. The percentage contribution of all variables to responses revealed that the wt.% loading of MWCNTs provided the highest contribution to both responses, followed by compaction pressure. Furthermore, the confirmation test revealed that the percentage errors between the estimated and experimental signal-to-noise ratios for bulk mass density and microhardness were 0.6% and 0.66%, respectively.

Article Details

How to Cite
Hussain, Z., & Sarmah, P. (2024). Effect of the fabrication parameters of MWCNTs/α-MnO2 nanocomposite through the Taguchi technique. Asia-Pacific Journal of Science and Technology, 29(02), APST–29. https://doi.org/10.14456/apst.2024.31
Section
Research Articles

References

Hussain MZ, Khan S, Nagarajan R, Khan U, Vats V. Fabrication and microhardness analysis of MWCNT/MnO2 nanocomposite. J Mater. 2016;2016:1-10.

Taguchi G. Introduction to quality engineering: designing quality into products and processes. 9th ed. Tokyo: Asian Productivity Organization; 1986.

Hussain MZ, Khan S, Gaur A, Shuaib M. Optimum yield parameters of MWCNT/MnO2 nanocomposite, Int J Adv Res Innov. 2017;5(2):279-282.

Hussain MZ, Khan S, Khan U. Optimization of MWCNTs/Al nanocomposite fabrication process parameters for mass density and hardness. Proc Inst Mech Eng C J Mech Eng Sci. 2022;236(14):8073-8091.

Hussain MZ, Khan S, Sarmah P. Optimization of powder metallurgy processing parameters of Al2O3/Cu composite through Taguchi method with Grey relational analysis. J King Saud Univ Eng Sci. 2020;32(4):274-286.

Ujah CO, Popoola API, Popoola OM, Aigbodion VS. Optimisation of spark plasma sintering parameters of Al-CNTs-Nb nano-composite using Taguchi design of experiment. Int J Adv Manuf Technol. 2019;100(5):1563-1573.

Ravichandran M, Anandakrishnan V. Optimization of powder metallurgy parameters to attain maximum strength coefficient in Al-10 wt% MoO3 composite. J Mater Res. 2015;30(15):2380-2387.

Chauhan S, Verma V, Prakash U, Tewari PC, Khanduja D. Analysis of powder metallurgy process parameters for mechanical properties of sintered Fe–Cr–Mo alloy steel. Mater Manuf Process. 2017;32(5):537-541.

Pour GT, Moghadam SM. Optimisation of nano-calcium carbonate production process using Taguchi method. Int J Mater Mech Manuf. 2014;2(1):77-80.

Navaneethakrishnan S, Athijayamani A. Taguchi method for optimization of fabrication parameters with mechanical properties in fiber and particulate reinforced composites. Int J Plast Technol. 2015;19(2):227-240.

Pietrzak K, Jach K, Kalinski D, Chmielewski M, Morgiel J. Processing and microstructure of Al2O3-Cu composite material interpenetrating network type. The Euro International Powder Metallurgy Congress and Exhibition (Euro PM 2011); 2011 Oct 9-12; Barcelona, Spain. Belgium: European Powder Metallurgy Association; 2011. p.1-6.

Vairamuthu J, Kumar SA, Stalin B, Ravichandran M. Optimization of powder metallurgy parameters of TiC-and B4C-reinforced aluminium composites by Taguchi method. Trans Can Soc Mech Eng. 2020;45(2):249-261.

Alam MA, Ya HH, Yusuf M, Sivraj R, Mamat OB, Sapuan SM, et al. Modeling, optimization and performance evaluation of TiC/graphite reinforced Al 7075 hybrid composites using response surface methodology. Materials. 2021;14(16):4703.

Kandala AV, Solomon DG, Arulraj JJ. Advantages of Taguchi method compared to response surface methodology for achieving the best surface finish in wire electrical discharge machining (WEDM). J Mech Eng. 2022;19(1):185-200.

Hussain MZ, Khan U, Chanda AK, Jangid R. Fabrication and hardness analysis of F-MWCNTs reinforced aluminium nanocomposite. Procedia Eng. 2017;173:1611-1618.

Hussain MZ, Khan U, Jangid R, Khan S. Hardness and wear analysis of Cu/Al2O3 composite for application in EDM electrode. IOP Conf Ser Mater Sci Eng. 2018;310(1):012044.

Chen Y, Liu CG, Liu C, Lu GQ, Cheng HM. Growth of single-crystal α-MnO2 nanorods on multi-walled carbon nanotubes. Mater Res Bull. 2007;42(11):1935-1941.

Zou MM, Ai DJ, Liu KY. Template synthesis of MnO2/CNT nanocomposite and its application in rechargeable lithium batteries. Trans Nonferrous Met Soc China. 2011;21(9):2010-2014.

Thiraviam R, Sornakumar T, Kumar SA. Development of copper: alumina metal matrix composite by powder metallurgy method. Int J Mater Prod Technol. 2008;31(2-4):305-313.

Tjong SC. Carbon nanotube reinforced composites. 1st ed. Weinheim: Wiley VCH; 2009.

Xia H, Wang Y, Lin J, Lu L. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Res Lett. 2012;7(1):1-10.

Wang H, Peng C, Peng F, Yu H, Yang J. Facile synthesis of MnO2/CNT nanocomposite and its electrochemical performance for supercapacitors. J Mater Sci Eng B. 2011;176(14):1073-1078.

Wernik JM, Meguid SA. Recent developments in multifunctional nanocomposites using carbon nanotubes. Appl Mech Rev. 2010;63(5):050801.

Hussain, MZ, Khan S, Sarmah P. Effect of dry sliding wear parameters on the specific wear rate of α-MnO2-epoxy nanocomposites. Proc Inst Mech Eng C J Mech Eng Sci. 2022;237(6):1370-1392.

Fraser A, Borg JP, Jordan JL, Sutherland G. Micro-mechanical behavior of Al-MnO2-Epoxy under shock loading while incorporating the epoxy phase transition. DYMAT 2009-9th International Conferences on the Mechanical and Physical Behaviour of Materials under Dynamic Loading; 2009 Sept 7-11; Brussels, Belgium. Paris: EDP Sciences; 2009. p.1575-1582.

Tanabi H, Erdal M. Effect of CNTs dispersion on electrical, mechanical and strain sensing properties of CNT/epoxy nanocomposites. Results Phys. 2019;12:486-503.

Meignanamoorthy M, Ravichandran M, Mohanavel V, Afzal A, Sathish T, Alamri S, et al. Microstructure, mechanical properties, and corrosion behavior of Boron carbide reinforced aluminum alloy (Al-Fe-Si-Zn-Cu) matrix composites produced via powder metallurgy route. Materials. 2021;14(15):4315.

Trinh VP, Luan VN, Minh PN, Phuong DD. Effect of sintering temperature on properties of CNT/Al composite prepared by capsule-free hot isostatic pressing technique. Trans Indian Inst Met. 2017;70:947-955.

Campo M, Suárez JA, Ureña A. Effect of type, percentage and dispersion method of multi-walled carbon nanotubes on tribological properties of epoxy composites. Wear. 2015;324-325:100-108.

Carneiro Í, Simões S. Strengthening mechanisms in carbon nanotubes reinforced metal matrix composites: a review. Metals. 2021;11:1613.