The comprehensive review of essential role of microalgae in organic pollutants mechanisms of phycoremediation

Main Article Content

Angga Puja Asiandu
Dita Aulia Yulyanita
Dedy Setyawan
Widya Sari
Ahmad Saifun Naser
Wulan Rahmani Akmal

Abstract

Waste management is a significant problem affecting both developed and developing countries. In addition, the presence of organic pollutants in waste poses a substantial threat to environmental quality and public health. To address this issue, bioremediation using microalgae (phycoremediation) such as Chlorella vulgaris, Botryococcus braunii, Desmodesmus sp., and Chlamydomonas sp., is considered an environmentally friendly and uncomplicated solution. The biomass produced by microalgae can also be used as a source of biodiesel, lipid, biofertilizer, and biohydrogen. Therefore, this research aimed to explore the underlying mechanisms of phycoremediation in addressing organic pollutants, which include biosorption, consumption, and biodegradation. The results showed that phycoremediation was more effective than non-biological methods, but it has not been fully optimized. This showed that further research should focus on the optimization of phycoremediation and its integration with biorefinery to maintain environmental quality from organic pollutants and produce biomass as feedstock in biorefinery activities.

Article Details

How to Cite
Puja Asiandu, A., Aulia Yulyanita, D., Setyawan, D., Sari, W., Saifun Naser, A., & Rahmani Akmal, W. (2024). The comprehensive review of essential role of microalgae in organic pollutants mechanisms of phycoremediation. Asia-Pacific Journal of Science and Technology, 29(02), APST–29. https://doi.org/10.14456/apst.2024.18
Section
Review Articles

References

Ian Tiseo. Global key figures on wastewater generation 2020. 2014 [cited 2023 Jun 23]. Available from https://www.statista.com/statistics/1124488/key-facts-wastewater-generation-globally/.

Zheng C, Zhao L, Zhou X, Fu Z, Li A. Treatment Technologies for organic wastewater. 1st ed. London: IntechOpen; 2013.

Asiandu AP, Wahyudi A, Sari SW. A review: plastics waste biodegradation using plastics-degrading bacteria. J Environ Treat Tech. 2021;9(1):148-157.

Asiandu AP, Widjajanti H, Rosalina R. The potential of tofu liquid waste and rice washing wastewater as cheap growth media for Trichoderma sp. J Environ Treat Tech. 2021;9(4):769-775.

Asiandu AP, Wahyudi A. Phycoremediation: heavy metals green-removal by microalgae and its application in biofuel production. J Environ Treat Tech. 2021;9(3):647-656.

Asiandu AP, Puspito Nugroho A, Saifun Naser A, Ryan Sadewo B, Donny Koerniawan M, Budiman A, et al. The Effect of Tofu Wastewater and pH on the Growth Kinetics and Biomass Composition of Euglena sp. Curr Appl Sci Technol. 2022;23(2):1-16.

Al-Jabri H, Das P, Khan S, Thaher M, Abdulquadir M. Treatment of wastewaters by microalgae and the potential applications of the produced biomass-a review. Water. 2021;13(27):1-26.

Gunasundari E, Kumar PS, Rajamohan N, Vellaichamy P. Feasibility of naphthol green-b dye adsorption using microalgae: thermodynamic and kinetic analysis. Desalin Water Treat. 2020;192:358-370.

Robledo-Padilla F, Aquines O, Silva-Núñez A, Alemán-Nava GS, Castillo-Zacarías C, Ramirez-Mendoza RA, et al. Evaluation and predictive modeling of removal condition for bioadsorption of indigo blue dye by Spirulina platensis. Microorganisms. 2020;8:1-12.

Moghazy RM. Activated biomass of the green microalga chlamydomonas variabilis as an efficient biosorbent to remove methylene blue dye from aqueous solutions. Water SA. 2019;45(1):20-28.

Chin JY, Chng LM, Leong SS, Yeap SP, Yasin NHM, Toh PY. Removal of synthetic dye by Chlorella vulgaris microalgae as natural adsorbent. Arab J Sci Eng. 2020;45(9):7385-7395.

Arteaga LC, Zavaleta MP, Eustaquio WM, Bobadilla JM. Removal of aniline blue dye using live microalgae Chlorella vulgaris. J Energy Environ Sci. 2018;2(1):6-12.

Raymond ES, Kadiri M. Decolourization of textile dye using microalgae (Chlorella vulgaris and decolourization of textile dye using microalgae (Chlorella vulgaris and Sphaerocystis schroeteri). Int J Innov Res Adv Stud. 2017;4(9):15-20.

Gita S, Shukla SP, Prakash C, Saharan N, Deshmukhe G. Evaluation of toxicity of a textile dye (optilan red) towards a green microalga Chlorella vulgaris. Int J Curr Microbiol Appl Sci. 2018;7(8):3346-3355.

Kabra AN, Ji M-K, Choi J, Kim JR, Govindwar SP, Jeon BH. Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana. Environ Sci Pollut Res. 2014:12270-12278.

Kurade MB, Kim JR, Govindwar SP, Jeon B-H. Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: Microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res. 2016;20:126-134.

Hom-diaz A, Llorca M, Rodríguez-mozaz S, Vicent T, Barcelo D, Blanquez P. Microalgae cultivation on wastewater digestate : b -estradiol and 17 a -ethynylestradiol degradation and transformation products identi fi cation. J Environ Manage. 2015;155:106-113.

Escapa C, Coimbra RN, Paniagua S, García AI, Otero M. Nutrients and pharmaceuticals removal from wastewater by culture and harvesting of Chlorella sorokiniana. Bioresour Technol. 2015;185:276-284.

Wang Y, Sun Q, Li Y, Wang H, Wu K, Yu CP. Biotransformation of estrone, 17β-estradiol and 17α-ethynylestradiol by four species of microalgae. Ecotoxicol Environ Saf. 2019;180:723-732.

Encarnação T, Palito C, Pais AACC, Valente AJM, Burrows HD. Removal of pharmaceuticals from water by free and imobilised microalgae. Molecules 2020;25:1-13.

Wang L, Xiao H, He N, Sun D, Duan S. Biosorption and biodegradation of the environmental hormone nonylphenol by four marine microalgae. Sci Rep. 2019;9:1-11.

Vásquez D, Palominos F, Martínez S. Visible-light photocatalytic degradation of aniline blue by stainless-steel foam coated with tio2 grafted with anthocyanins from a maqui-blackberry system. Catalysts. 2020;10:1245.

Benkhaya S, M’rabet S, El Harfi A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon. 2020;6:e03271.

ChemBK. Disperse Red FB. 2022 [ cited 2023 Jun 5]. Available from: https://www.chembk.com/en/chem/Disperse Red FB.

Tang W, Xu X, Ye BC, Cao P, Ali A. Decolorization and degradation analysis of disperse red 3B by a consortium of the fungus: Aspergillus sp. XJ-2 and the microalgae Chlorella sorokiniana XJK. RSC Adv 2019;9(25):14558-14566.

Senasri N, Sriyasak P, Suwanpakdee S, Chumnanka N, Tongkasee P, Sriputhorn K. Toxicity of indigo dye-contaminated water on silver barbs (Barbonymus gonionotus) and pathology in the gills. Environment asia. 2022;15(3):106-115.

Revathi S, Kumar S, Santhanam P, Kumar S, Son N, Kim MK. Bioremoval of the indigo blue dye by immobilized microalga Chlorella vulgaris (PSBDU06). J Sci Ind Res. 2017;76:50-56.

Fazal T, Mushtaq A, Rehman F, Ullah Khan A, Rashid N, Farooq W, et al. Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renew Sustain Energy Rev. 2018;82:3107-3126.

Talukder A, Mahmud S, Lira S, Aziz A. Phycoremediation of textile industry effluent by cyanobacteria Nostoc muscorum and Anabaena variabilis. Bioresearch Commun. 2015;1(2):124-127.

Das C, Ramaiah N, Pereira E, Naseera K. Efficient bioremediation of tannery wastewater by monostrains and consortium of marine Chlorella sp. and Phormidium sp. Int J Phytoremediation. 2018:20(3):284-292

Pathak VV, Singh DP, Kothari R, Chopra AK. Phycoremediation of textile wastewater by unicellular microalga Chlorella pyrenoidosa. Cell Mol Biol. 2014;60(5):35-40.

Simsek K, Aydin SG. Cultivation of green microalgae Golenkinia radiata (Chodat, 1894) in textile wastewater without sterilization. Int J Res Innov Earth Sci 2019;5:136-142.

Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN. Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int. 2008;34:1033-1049.

Wocławek I, Mannelli C, Boruszewska D, Kowalcyzk I, Wasniewski T, Skaryzynski D. Diverse effects of phytoestrogens on the reproductive performance: Cow as a model. Int J Endocrinol. 2013;2013:1-15.

Sharma GK, Khan SA. Bioremediation of sewage wastewater using selective algae for manure production. Int J Environ Eng Manag. 2013;4:573-580.

Malla FA, Khan SA, Rashmi, Sharma GK, Gupta N, Abraham G. Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production. Ecol Eng. 2015;75:343-349.

Apandi N, Mohamed RMSR, Al-Gheethi A, Gani P, Ibrahim A, Kassim AHM. Scenedesmus biomass productivity and nutrient removal from wet market wastewater, a bio-kinetic study. Waste and Biomass Valorization. 2018;10:1-18.

Cai X, Ye J, Sheng G, Liu W. Time-dependent degradation and toxicity of diclofop-methyl in algal suspensions. Environ Sci Pollut Res. 2009;16(4):459-465.

Hanson W, Strid A, Gervais J, Cross A, Jenkins J. Atrazine fact sheet [Internet]. Oregon: Natl Pestic Inf Center; 2020 [cited 2023 Jun 5]. Available from: npic.orst.edu/factsheets/atrazine.html.

Boxall ABA. The environmental side effects of medication. EMBO Rep. 2004;5:1110-1116.

Abd El Hameed AH, Eweda WE, Abou-Taleb KAA, Mira HI. Biosorption of uranium and heavy metals using some local fungi isolated from phosphatic fertilizers. Ann Agric Sci. 2015;60:345-51.

Farooq U, Kozinski JA, Khan MA, Athar M. Biosorption of heavy metal ions using wheat based biosorbents - a review of the recent literature. Bioresour Technol. 2010;101:5043-5053.

Kaplan D. Absorption and adsorption of heavy metals by microalgae. In: Amos Richmond A, Qiang Hu, editors. Handbook of microalgal culture. 2nd ed. New Jersey: John Wiley & Sons, Ltd; 2013. p. 602-611.

Daverey A, Pandey D, Verma P, Verma S, Shah V, Dutta K, et al. Recent advances in energy efficient biological treatment of municipal wastewater. Bioresour Technol Rep. 2019;7:1-12.

Papirio S, Ferraro L, Mattei MR, Ferraro A, Race M, D'Acunto B, et al. Heavy Metal Removal from Wastewaters by Biosorption: Mechanisms and Modeling. In: Rene ER, Sahinkaya E, Lewis A, Lens PNL, editors. Sustainable heavy metal remediation. 1st ed. New York: Springer; 2017. p. 1-288.

Kuyucak N, Volesky B. Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett. 1988;10:137-142.

Goyal N, Jain SC, Banerjee UC. Comparative studies on the microbial adsorption of heavy metals. Adv Environ Res. 2003;7:311-319.

Sag Y, Kutsal T. Recent trends in the biosorption of heavy metals: a review. Biotechnol Bioprocess Eng. 2001;6:376-385.

Scott JA, Palmer SJ. Sites of cadmiun uptake in bacteria used for biosorption. Appl Microbiol Biotechnol. 1990;33:221-225.

Chai WS, Tan WG, Halimatul Munawaroh HS, Gupta VK, Ho SH, Show PL. Multifaceted roles of microalgae in the application of wastewater biotreatment: A review. Environ Pollut. 2021;269:116236.

Skowronski T. Adsorption of cadmium on green microalga Stichococcus bacillaris. Chemosphere. 1986;15(1):69-76.

Skowronski T. Uptake of cadmium by Stichococcus bacillaris. Chemosphere. 1984;13:1385-1389.

Skowronski T. Energy-dependent transport of cadmium. Chemosphere 1984;13:1379-1384.

Mustafa S, Bhatti HN, Maqbool M, Iqbal M. Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: prospects, challenges and opportunities. J Water Process Eng. 2021;41:102009.

Delrue F, Álvarez-Díaz PD, Fon-Sing S, Fleury G, Sassi JF. The environmental biorefinery: using microalgae to remediate wastewater, a win-win paradigm. Energies. 2016;9:1-19.

Shanab S, Essa A, Shalaby E. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian isolates). Plant Signal Behav. 2012;7:392-3299.

Katagi T. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. Rev Env Contam Toxicol. 2010;204:132.

Baghour M. Algal degradation of organic pollutants. In: Martínez L, Kharissova O, Kharisov B, editors. Handbook of ecomaterials. 1st ed. New York: Springer Cham; 2019. p. 565-586.

Pérez-Legaspi IA, Ortega-Clemente, LA; Moha-León , JD; Ríos-Leal, E; Gutiérrez, SC; Rubio-Franchini I. Effect of the pesticide lindane on the biomass of the microalgae Nannochloris oculata. J Environ Sci Heal Part B. 2015;51:103-106.

Taghavi N, Singhal N, Zhuang WQ, Baroutian S. Degradation of plastic waste using stimulated and naturally occurring microbial strains. Chemosphere. 2021;263:127975.

Gowthami A, Syed Marjuk M, Raju P, Nanthini Devi K, Santhanam P, Dinesh Kumar S, et al. Biodegradation efficacy of selected marine microalgae against low-density polyethylene (LDPE): an environment friendly green approach. Mar Pollut Bull. 2023;190:114889.

Matamoros V, Uggetti E, García J, Bayona JM. Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. J Hazard Mater. 2016;301:197-205.

Ben Ouada S, Ben Ali R, Cimetiere N, Leboulanger C, Ben Ouada H, Sayadi S. Biodegradation of diclofenac by two green microalgae: Picocystis sp. and Graesiella sp. Ecotoxicol Environ Saf. 2019;186:109769.

Bordel S, Guieysse B, Muñoz R. Mechanistic model for the reclamation of industrial wastewaters using algal-bacterial photobioreactors. Environ Sci Technol. 2009;43:3200-3207.

Wierzchos J, DiRuggiero J, Vítek P, Artieda O, Souza-Egipsy V, Škaloud P, et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front Microbiol. 2015;6:1-17.

Mubashar M, Naveed M, Mustafa A, Ashraf S, Baig KS, Alamri S, et al. Experimental investigation of chlorella vulgaris and enterobacter sp. Mn17 for decolorization and removal of heavy metals from textile wastewater. Water. 2020;12:1-14.

Smitha M, Singh S, Singh R. Microbial biotransformation: a process for chemical alterations. J Bacteriol Mycol Open Access. 2017;4:47-51.

Albasha M. Synthesis, Characterization of new azo compounds and their biological evaluation. Int J Acad Sci Res. 2018;6:16-24.

Sample KT, Cain RB, Schmidt S. Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett. 1999;170:291-300.

Chen H, Wang Q. Microalgae-based nitrogen bioremediation. Algal Res. 2020;46:101775.

Wang J, Zhou W, Chen H, Zhan J, He C, Wang Q. Ammonium nitrogen tolerant Chlorella strain screening and its damaging effects on photosynthesis. Front Microbiol. 2019;9:1-13.

Salbitani G, Carfagna S. Ammonium utilization in microalgae: a sustainable method for wastewater treatment. Sustain. 2021;13:1-17.

Lea PJ, Miflin BJ. Nitrogen assimilation and its relevance to crop improvement. Nitrogen Metab Plants Post-Genomic Era. 2011;42:1-40.

Dragićević M, Simonović A, Bogdanović M, Subotić A, Ghalawenji N, Dragićević I, et al. Differential regulation of GS-GOGAT gene expression by plant growth regulators in Arabidopsis seedlings. Arch Biol Sci. 2016;68:399-404.

Jacques NR, McMartin DW. Evaluation of algal phytoremediation of light extractable petroleum hydrocarbons in subarctic climates. Remediation. 2009:119-132.

Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol. 2010;101:2623-2628

Qu W, Loke P, Hasunuma T, Ho S. Bioresource technology optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp. QWY37 used for cell- displayed bioethanol production. Bioresour Technol. 2020;305:1-9.

Gressler PD, Bjerk TR, De Cassia Souza Schneider R, Souza MP, Lobo EA, Zappe AL, et al. Cultivation of Desmodesmus subspicatus in a tubular photobioreactor for bioremediation and microalgae oil production. Environ Technol. 2014;35:209-219.

Resdi R, Lim JS, Kamyab H, Lee CT, Hashim H, Mohamad N, et al. Review of microalgae growth in palm oil mill effluent for lipid production. Clean Technol Environ Policy. 2016;18:2347-2361.