Bioprospecting of microalgae as anticancer, antioxidant, and antidiabetic agents

Main Article Content

Angga P. Asiandu
Widya Sari

Abstract

Algae, either macroscopic or microscopic, often grow rapidly across diverse ecosystems. These organisms offer promising potential in the pharmaceutical and nutraceutical fields due to their valuable bioactive compounds such as astaxanthin, phycocyanin, stigmasterol, polysaccharides, steroids, and minerals. The bioactive compounds play a vital role in scavenging free radicals by binding to their molecules and targeting damaged cells. Additionally, some reports have highlighted the substantial anticancer activity of microalgae. Cancer, characterized by abnormal cell growth in tissues, bones, and blood, can be targeted through certain microalgal bioactive compounds that interact with p53 and Bcl2 proteins to induce apoptosis in the affected cells. Furthermore, microalgal secondary metabolites exhibit antidiabetic effects by stimulating insulin secretion in pancreatic beta cells, synthesizing insulin-like proteins, and mitigating insulin resistance. These microorganisms are potential sources for producing novel green therapeutic agents to combat degenerative diseases. Therefore, optimizing the application of microalgal biorefinery within the pharmaceutical industry is crucial.

Article Details

How to Cite
P. Asiandu, A., & Sari, W. (2024). Bioprospecting of microalgae as anticancer, antioxidant, and antidiabetic agents. Asia-Pacific Journal of Science and Technology, 29(04), APST–29. https://doi.org/10.14456/apst.2024.52
Section
Review Articles

References

Andrade MKA, Lauritano C, Romano G, Ianora A. Marine microalgae with anti-cancer properties. Mar Drugs. 2018;16(5):165:1-17.

Nigjeh ES, Yusoff FM, Alitheen MNB, Rasoli M, Keong YS, Omar AR Bin. Cytotoxic effect of ethanol extract of microalga, Chaetoceros calcitrans, and its mechanisms in inducing apoptosis in human breast cancer cell line. Biomed Res Int. 2013;2013:1-9.

Samarakoon KW, Ko JY, Shah MMR, Lee JH, Kang MC, O-Nam K, et al. In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae. Algae. 2013;28(1):111-119.

Suh SS, Yang EJ, Lee SG, Youn UJ, Han SJ, Kim IC, et al. Bioactivities of ethanol extract from the antarctic freshwater microalga, Chloromonas sp. Int J Med Sci. 2017;14(6):560-569.

Somasekharan SP, El-Naggar A, Sorensen PH, Wang Y, Cheng H. An aqueous extract of marine microalgae exhibits antimetastatic activity through preferential killing of suspended cancer cells and anticolony forming activity. Evid Based Complement Altern Med. 2016;2016:1-8.

Shady AAM, Gheda SF, Ismail GA, Cotas J, Pereira L, Karim AOH. Antioxidant and antidiabetic activity of algae. Life. 2023;13(2):1-26.

Nasirian F, Dadkhah M, Kor MN, Obeidavi Z. Diabetes, metabolic syndrome and obesity: targets and therapy dovepress effects of Spirulina platensis microalgae on antioxidant and anti-inflammatory factors in diabetic rats. Diabetes Metab Syndr Obes. 2018:11:375-380.

Ali MA, Rana K, Bhuiyan MSH, Miah S, Zahid S, Ahmed A, et al. Current status and prospects of microalgae bioactive com-pounds for anticancer and antiviral actions. Biomater J. 2022;1(2):28-36.

Eseberri I, Zorita GS, Trepiana J, Arceo GM, Aguirre L, Laskibar MI, et al. Anti-obesity effects of microalgae. Int J Mol Sci. 2020;21(1):1-21.

Abd El-Hack ME, Abdelnour S, Alagawany M, Abdo M, Sakr MA, Khafaga AF, et al. Microalgae in modern cancer therapy: current knowledge. Biomed Pharmacother. 2019;111:42-50.

Ördög V, Stirk WA, Lenobel R, Bancířová M, Strnad M, Van Staden J, et al. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J Appl Phycol. 2004;16: 309-314.

Matos J, Cardoso CL, Falé P, Afonso CM, Bandarra NM. Investigation of nutraceutical potential of the microalgae Chlorella vulgaris and Arthrospira platensis. Int J Food Sci Technol. 2020;55:303-312.

Rickards RW, Rothschild JM, Willis AC, De Chazal NM, Kirk J, Kirk K, et al. Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron. 1999;55(47):13513-13520

Zhang J, Liu L, Ren Y, Chen F. Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. Int J Biol Macromol. 2019;128: 761-767.

Tabarzad M, Atabaki V, Hosseinabadi T. Anti-inflammatory activity of bioactive compounds from microalgae and cyanobacteria by focusing on the mechanisms of action. Mol Biol Rep. 2020;47:6193-6205.

Gupta SP, Siddiqi NJ, Khan HA, Alrokayan SH, Alhomida AS, Singh RK, et al. Phytochemical profiling of microalgae Euglena tuba and its anticancer activity in Dalton’s lymphoma cells. Front Biosci. 2022;27(4):1-17.

Dash S, Parida S, Sahoo B, Rath B. In vitro screening of antioxidant, antimicrobial and anticancer activities of cyanobacteria found across Odisha coast, India. Res Sq. 2022:1-19.

Carté BK. Biomedical potential of marine natural products. Bioscience. 1996;46(4):271-286.

Banker R, Carmeli S. Tenuecyclamides A-D, cyclic hexapeptides from the cyanobacterium Nostoc spongiaeforme var. tenue. J Nat Prod. 1998;61(10):1248-1251.

Davidson BS. New dimensions in natural products research: cultured marine microorganisms. Curr Opin Biotechnol. 1995;6(3):284-291.

Carmichael WW. Cyanobacteria secondary metabolites-the cyanotoxins. J Appl Bacteriol. 1992;72(6): 445-459.

Moore RE. Cyclic peptides and depsipeptides from cyanobacteria: a review. J Ind Microbiol. 1996;16(2): 134-143.

Ishiguro S, Uppalapati D, Goldsmith Z, Robertson D, Hodge J, Holt H, et al. Exopolysaccharides extracted from Parachlorella kessleri inhibit colon carcinoma growth in mice via stimulation of host antitumor immune responses. PLoS One. 2017;12:1-21.

Fayyad RJ, Ali ANM, Hamdan NT. The specific anti-cancerous mechanisms suggesting Spirulina alga as a promising breast cancer fighter. Res J Pharm Technol. 2021;14(10):5599-5602.

Prabhu PN, Ashokkumar P, Sudhandiran G. Antioxidative and antiproliferative effects of astaxanthin during the initiation stages of 1,2-dimethyl hydrazine-induced experimental colon carcinogenesis. Fundam Clin Pharmacol. 2009;23(2):225-234.

Hosokawa M, Wanezaki S, Miyauchi K, Kurihara H, Konho H, Kawabata J, et al. Apoptosis-inducing effect of fucoxanthin on human Leukemia cell line HL-60. Food Sci Technol Res. 1999;5(3):234-246.

Jahan S, Mahedi RA, Zaman F, Afrin S, Rodela A, Shimu S, et al. Amalgamation of astaxanthin and Spirulina may be a potential anti-carcinogenesis treatment strategy. Biomater J. 2022;1(1):18-22.

Wang Z, Zhang X. Inhibitory effects of small molecular peptides from Spirulina (Arthrospira) platensis on cancer cell growth. Food Funct. 2016;7(2):781-788.

Pungitore CR, Padrón JM, Leon LG, García C, Ciuffo GM, Martin VS, et al. Inhibition of DNA topoisomerase I and growth inhibition of human cancer cell lines by an oleanane from Junellia aspera (Verbenaceae). Cell Mol Biol. 2007;53(3):13-17.

Lee SE, Lim JW, Kim H. Activator protein-1 mediates docosahexaenoic acid-induced apoptosis of human gastric cancer cells. Ann N Y Acad Sci. 2009;1171:163-169.

Senousy HH, Abd Ellatif S, Ali S. Assessment of the antioxidant and anticancer potential of different isolated strains of cyanobacteria and microalgae from soil and agriculture drain water. Environ Sci Pollut Res. 2020;27(15):18463-18474.

Wassila N, Zohra BAF, Hafida M, Ouahiba B, Samira B. Antihyperlipidemic and antioxidant effects of microalgae nannochloropsis gaditana in streptozotocin-induced diabetic rats. Rev Agrobiol. 2019;9(2): 1474-1483.

Priatni S, Ratnaningrum D, Kosasih W. The screening of antidiabetic activity and the cultivation study of local marine microalgae. IOP Conf Ser Mater Sci Eng. 2021;1011:1-8.

Ramdanawati L, Kurnia D, Roni A, Kalimatillah QA, Nurachman Z. Inhibition activities α-amilase of microalgae extract of chlorella vulgaris as candidate of antidiabetes. Indones Nat Res Pharm J. 2020;5(1): 105-113.

Mayer C, Martine C, Ulmann L, Martin I, Zittelli GC, Faraloni C, et al. The potential of the marine microalga diacronema lutheri in the prevention of obesity and metabolic syndrome in high-fat-fed wistar rats. Molecules. 2022;27(13):1-18.

Guldas M, Demirtas ZS, Sahan Y, Yildiz E, Gurbuz O. Antioxidant and anti-diabetic properties of Spirulina platensis produced in Turkey. Food Sci Technol. 2021;41(3):615-625.

Anwer R, Al Shaqha WM, Fareed M. Spirulina as novel photosynthetic micro-algae for promising insulin-like protein other than pancreas. J Biotechnol Biomater. 2015;5(2):75.

Bocanegra A, Gonzales MA, Garcimartin A, Benedi J, Muniz SFJ. Whole alga, algal extracts, and compounds as ingredients of functional foods: composition and action mechanism relationships in the prevention and treatment of type-2 diabetes mellitus. Int J Mol Sci. 2021;22(8):1-39.

Raikar SM, Kalebar VU, Adhoni SA. Screening of pharmacological and cytotoxic activities of fresh water lake isolated microalgae chlorella vulgaris as-13 and chlorella pyrenoidosa as-6. Int J Bio Technology Res. 2018;8(4):1-8.

Goiris K, Muylaert K, Fraeye I, Foubert I, De-Brabanter J, De-Cooman L. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol. 2012;24(6):1477-1486.

Adesalu TA, Temenu TO, Kuti FO, Adisa RA. Lipids composition and antioxidant properties of selected microalgae isolated from freshwater and soil samples. J Pharmacogn Phytochem. 2021;10(6):24-30.

Mursandi H, Susanty D, Nurhayati L, Oksari AA. Short communication: antioxidant activity of ethanol extract of chlorella sorokiniana cultured in tofu wastewater. Nusant Biosci. 2022;14(2):55-59.

El Din SMM, Hussein MH, Hamouda RA, Shehawy MA, El Maksoud AIA. Bioactive potentiality of some secondary metabolites extracted from microalga Spirulina platensis. J Chem Pharm Res. 2019;11(10):22-35.

Banjarnahor SDS, Artanti N. Antioxidant properties of flavonoids. Med J Indones. 2014;23(4):239-244.

Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82(4):513-523.

Balaji M, Thamilvanan D, Vinayagam SC, Balakumar BS. Anticancer , antioxidant activity and GC-MS analysis of selected microalgal members of chlorophyceae. Int J Pharm Sci Res. 2019;8(8):3302-3314.

Wali AF, Dhaheri Y Al, Pillai JR, Mushtaq A, Rao PGM, Rabbani SA, et al. LC-MS phytochemical screening, in vitro antioxidant, antimicrobial and anticancer activity of microalgae Nannochloropsis oculata extract. Separations. 2020;7(4):1-11.

Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, et al. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci. 2016;3:1-2.

Kawee-Ai A, Kim AT, Kim SM. Inhibitory activities of microalgal fucoxanthin against α-amylase, α-glucosidase, and glucose oxidase in 3T3-L1 cells linked to type 2 diabetes. J Oceanol Limnol. 2019;37: 928-937.

Habitri N, Belkacemi L. Antidiabetic effect of oral supplementation with Caulerpa racemosa powder. Eur J Biol Res. 2022;12(2):141-152.