Detecting microbial communities and pathogens in gastrointestinal tracts of commercial broilers in Thailand using high-throughput sequencing technology with different bioinformatic pipelines

Main Article Content

Athisri Sitthipunya
Pichahpuk Uthaipaisanwong
Nuananong Sinwat
Korntip Kanjanavaikoon
Supapon Cheevadhanarak
Kanthida Kusonmano

Abstract

High-throughput sequencing is widely applied to explore microbial communities and detect multiple pathogens simultaneously. The 16S rRNA amplicon sequencing is gaining attention in the poultry industry to monitor animal gut health and pathogens, especially Salmonella. A bioinformatics approach for the accurate characterization of the microbial communities obtained via high-throughput genetic sequences is crucial. This study provides a comparison between the commonly used bioinformatics tools QIIME2 and Mothur for the amplicon-based microbiome analysis of commercial broilers in Thailand and a mock community. We conducted QIIME2 and Mothur with the implementation of amplicon sequence variants (ASVs) and operational taxonomic units (OTUs) for grouping amplicon sequences as a unit of an organism, respectively. The two pipelines provided similar microbial profiles at all taxonomic levels. Most bacteria in the ileum samples belonged to the genera Lactobacillus and Romboutsia. However, different results were found in Salmonella detection. Based on the SILVA138 reference database and the same samples, Mothur provided the taxonomic assigned OTUs of the genus Salmonella, whereas QIIME2 could assign the taxonomy for the identified ASVs only at the level of the family Enterobacteriaceae. We recommend further annotating the ASVs of the family Enterobacteriaceae using a phylogenetic tree and basic local alignment search tool (BLAST) to discriminate the genus Salmonella. This study demonstrates that caution is required for Salmonella detection when performing 16S rRNA amplicon sequencing analysis for the best interpretation output of the tools.

Article Details

How to Cite
Sitthipunya, A., Uthaipaisanwong, P., Sinwat, N., Kanjanavaikoon, K., Cheevadhanarak, S., & Kusonmano, K. (2024). Detecting microbial communities and pathogens in gastrointestinal tracts of commercial broilers in Thailand using high-throughput sequencing technology with different bioinformatic pipelines. Asia-Pacific Journal of Science and Technology, 29(02), APST–29. https://doi.org/10.14456/apst.2024.25
Section
Research Articles

References

Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol. 1999;65(11):4799-4807.

Zhu XY, Zhong T, Pandya Y, Joerger RD. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl Environ Microbiol. 2002;68(1):124-137.

Bell RL, Jarvis KG, Ottesen AR, McFarland MA, Brown EW. Recent and emerging innovations in Salmonella detection: a food and environmental perspective. Microb Biotechnol. 2016;9(3):279-292.

Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS One. 2015;10(2):e0117617.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590-596.

Rychlik I. Composition and function of chicken gut microbiota. Animals (Basel). 2020;10(1):103.

Zhou X, Jiang X, Yang C, Ma B, Lei C, Xu C, et al. Cecal microbiota of Tibetan Chickens from five geographic regions were determined by 16S rRNA sequencing. Microbiologyopen. 2016;5(5):753-762.

Glendinning L, Watson KA, Watson M. Development of the duodenal, ileal, jejunal and caecal microbiota in chickens. Anim Microbiome. 2019;1(1):17.

Kollarcikova M, Kubasova T, Karasova D, Crhanova M, Cejkova D, Sisak F, et al. Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in chicken ileal and cecal microbiota. Poult Sci. 2019;98(6):2347-2353.

Yadav S, Jha R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J Anim Sci Biotechnol. 2019;10:2.

Clavijo V, Flórez MJV. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poult Sci. 2018;97(3):1006-1021.

Jeni RE, Dittoe DK, Olson EG, Lourenco J, Corcionivoschi N, Ricke SC, et al. Probiotics and potential applications for alternative poultry production systems. Poult Sci. 2021;100(7):101156.

Thames HT, Sukumaran AT. A review of Salmonella and Campylobacter in broiler meat: emerging challenges and food safety measures. Foods. 2020;9(6):776.

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4516-4522.

Bukin YS, Galachyants YP, Morozov IV, Bukin SV, Zakharenko AS, Zemskaya TI. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data. 2019;6(1):190007.

Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8(2):e57923.

Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11(12):2639-2643.

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852-857.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537-7541.

López-García A, Pineda-Quiroga C, Atxaerandio R, Pérez A, Hernández I, García-Rodríguez A, et al. Comparison of Mothur and QIIME for the analysis of rumen microbiota composition based on 16S rRNA amplicon sequences. Front Microbiol. 2018;9:3010.

Almeida A, Mitchell AL, Tarkowska A, Finn RD. Benchmarking taxonomic assignments based on 16S rRNA gene profiling of the microbiota from commonly sampled environments. Gigascience. 2018;7(5):1-10.

Andrews S. FastQC: a quality control tool for high throughput sequence data 2010 [Internet]. 2010 [cited 2022 Sep 12]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):3.

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-583.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549.

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-4680.

Stanley D, Hughes RJ, Moore RJ. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl Microbiol Biotechnol. 2014;98(10):4301-4310.

Xiao Y, Xiang Y, Zhou W, Chen J, Li K, Yang H. Microbial community mapping in intestinal tract of broiler chicken. Poult Sci. 2017;96(5):1387-1393.

Bjerrum L, Engberg RM, Leser TD, Jensen BB, Finster K, Pedersen K. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poult Sci. 2006;85(7):1151-1164.

Kunert-Filho HC, Furian TQ, Sesterhenn R, Chitolina GZ, Willsmann DE, Borges KA, et al. Bacterial community identification in poultry carcasses using high-throughput next generation sequencing. Int J Food Microbiol. 2022;364:109533.

Suminda GGD, Bhandari S, Won Y, Goutam U, Kanth Pulicherla K, Son YO, et al. High-throughput sequencing technologies in the detection of livestock pathogens, diagnosis, and zoonotic surveillance. Comput Struct Biotechnol J. 2022;20:5378-5392.

Eng SK, Pusparajah P, Ab Mutalib NS, Ser HL, Chan KG, Lee LH. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015;8(3):284-293.

Videnska P, Rahman MM, Faldynova M, Babak V, Matulova ME, Prukner-Radovcic E, et al. Characterization of egg laying hen and broiler fecal microbiota in poultry farms in Croatia, Czech Republic, Hungary and Slovenia. PLoS One. 2014;9(10):e110076.

Fesseha H, Demlie T, Mathewos M, Eshetu E. Effect of Lactobacillus species probiotics on growth performance of dual-purpose chicken. Vet Med (Auckl). 2021;12:75-83.

van der Hoeven-Hangoor E, van der Vossen JM, Schuren FH, Verstegen MW, de Oliveira JE, Montijn RC, et al. Ileal microbiota composition of broilers fed various commercial diet compositions. Poult Sci. 2013;92(10):2713-2723.

Clavijo V, Morales T, Vives-Flores MJ, Reyes Muñoz A. The gut microbiota of chickens in a commercial farm treated with a Salmonella phage cocktail. Sci Rep. 2022;12(1):991.

Wilson A, Chandry PS, Turner MS, Courtice JM, Fegan N. Comparison between cage and free-range egg production on microbial composition, diversity and the presence of Salmonella enterica. Food Microbiol. 2021;97:103754.

Huang P, Zhang Y, Xiao K, Jiang F, Wang H, Tang D, et al. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome. 2018;6(1):211.

Pedroso AA, Lee MD, Maurer JJ. Strength lies in diversity: how community diversity limits Salmonella abundance in the chicken intestine. Front Microbiol. 2021;12:694215.