Giant dielectric, low loss tangent and non-ohmics properties of CaCu3Ti4.7O12 ceramics prepared by polymer pyrolysis method
Main Article Content
Abstract
In this work, CaCu3Ti4.7O12 (CCT4.7O) powder was prepared by polymer pyrolysis method. The influence of phase composition and microstructure were characterized using X ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the TiO2 secondary phase has a remarkable on the microstructure, dielectric loss tangent (tan and dielectric constant () of CCT4.7O ceramics, respectively. Interestingly, low loss tangent of ~0.03 and giant dielectric constant of 31,908 with temperature coefficients less than ±15% in the temperature range of −50–90 ºC are observed in a ceramic sintered at 1060 ºC for 10h (CCT4.7O-2). Both of ceramics sintered at 1060 ºC for 6h (CCT4.7O-1) and 10 h (CCT4.7O-2) display a non linear current voltage with the non-linear coefficient () and breakdown field (Eb) values of 6.4, 5.6 and 1554, 1020, respectively. The dielectric constant, electrical response of grain boundaries, and related nonlinear currentvoltage behavior are found to be associated with the microstructure of CCT4.7O ceramics.
Article Details
References
[2] Phys. Rev. B. 2006; 73: 094124.
[3] Sinclair DC, Adams TB, Morrison FD, West AR. CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 2002;80: 2153–2155.
[4] Krohns S, Lunkenheimer P, Ebbinghaus SG, Loidl A. Colossal dielectric constants in single‑crystalline and ceramics CaCu3Ti4O12 investigated by broadband dielectric spectroscopy. J. Appl. Phys. 2008;103: 037602.
[5] Ramirez MA, Bueno PR, Tararam R, Cavalheiro AA, Longo E, Varela JA. Evaluation of the effect of the stoichiometric ratio of Ca/Cu on the electrical and microstructural properties of the CaCu3Ti4O12polycrystalline system. J. Phys. D: Appl. Phys. 2009;2: 185503.
[6] Si W, Cruz EM, Johnson PD, Barnes PW, Woodward P, Ramirez AP. Epitaxial thin films of the giant‑dielectric‑constant material CaCu3Ti4O12 grown by pulsed‑laser deposition Appl. Phys. Lett. 2002;81: 2056.
[7] Amaral F, Rubinger CPL, Henry F, Costa LC, Valente MA, Timmons AB. Dielectric properties of polystyrene–CCTO composite. J. Non‑Cryst. Sol. 2008;354: 5321.
[8] Mu CH, Liu P, He Y, Zhou JP, Zhang HW. An effective method to decrease dielectric loss of CaCu3Ti4O12ceramics. J. Alloys Compd. 2009;471: 137.
[9] Thongbai P, Putasaeng B, Yamwong T, Maensiri S. Modified giant dielectric properties of samarium doped CaCu3Ti4O12 ceramics. Mater. Res. Bull. 2012; 47: 2257–2263.
[10] Patterson EA, Kwon S, Huang CC. Effects of ZrO2additions on the dielectric properties ofCaCu3Ti4O12. Appl. Phys. Lett. 2005;87: 182911.
[11] Thomas P, Dwarakanath K, Varma KBR. Effect of calcium stoichiometry on the dielectric response of CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 2012;32: 1681–1690
[12] ShriPrakash B, Varma KBR. The influence of the segregation of Cu-rich phase on the microstructural and impedance characteristics of CaCu3Ti4O12 ceramics. J. Mater. Sci. 2007;42: 7467.
[13] Fang TT, Mei LT. Evidence of Cu deficiency: a key point for the understanding of the mystery of the giant dielectric constant in CaCu3Ti4O12. J. Am. Ceram. Soc. 2007;90: 638–40.
[14] Chen K, Liu YF, Gao F, Du ZL, Liu JM, Ying XN, et al. Ti deficiency effect on the dielectric response of CaCu3Ti4O12 ceramics. Solid State Commun. 2007;141:440–4.
[15] Lin YH, Cai J, Li M, Nan CW. High dielectric and nonlinear electrical behaviors in TiO2-rich CaCu3Ti4O12ceramics. Appl. Phys. Lett. 2006;88: 172902–4.
[16] Liu J, Sui Y, Duan C, Mei WN, Smith RW, Hardy JR. CaCu3Ti4O12: Low‑temperature synthesis by pyrolysis of an organic solution. Chem. Mater. 2006;18: 3878.
[17] Liu J, Smith RW, Mei WN. Synthesis of the giant dielectric material CaCu3Ti4O12 by wet chemistry methods. Chem. Mater. 2007;19: 6020.
[18] Thongbai P, Putasaeng B, Yamwong T, Maensiri S. Improved dielectric and non‑ohmic properties of Ca2Cu2Ti4O12 ceramics prepared by a polymer pyrolysis method. J. Alloys Compd. 2011; 509: 7416–7420.
[19] Swatsitang E, Niyompan A, Putjuso T. Giant dielectric, low dielectric loss, and non‑ohmic properties of nanocrystalline CaCu3Ti4O12. J. Mater. Sci.: Mater. Electron. 2013; 24: 3514.
[20] Mohamed JJ, Hutagalung SD, Ain MF, Ahmad ZA. Effect of excess TiO2 in CaCu3Ti4O12 on the micro-structure and dielectric properties. J. Ceram. Process. Res. 2011; 12: 496-499.
[21] Li T, Fang K, Hao J, Xue Y, Chen Z. The effect of Ca‑rich on the electric properties of Ca1+xCu3−xTi4O12 polycrystalline system. Mat. Sci. Eng. B. 2011;176: 171–176
[22] Zhao J, Liu J, Ma G. Preparation, characterization and dielectric properties of CaCu3Ti4O12 Ceramics. Ceram. Int. 2012; 38: 1221–1225.
[23] Shao SF, Zhang JL, Zheng P, Zhong WL, Wang CL. Microstructure and electrical properties of CaCu3Ti4O12ceramics, J. Appl. Phys. 2006;99: 084106.
[24] Li M, Feteira A, Sinclair DC. Relaxor ferroelectric‑like high effective permittivity in leaky dielectrics/oxide semiconductors induced by electrode effects: A case study of CuO ceramics. J. Appl. Phys. 2009;105: 114109.
[25] Zhang JL, Zheng P, Wang CL, Zhao ML, Li JC, Wang JF. Dielectric dispersion of CaCu3Ti4O12 ceramics at high temperatures. Appl. Phys. Lett. 2005; 87: 142901.
[26] Adams TB, Sinclair DC, West AR. Influence of Processing Conditions on the Electrical Properties of CaCu3Ti4O12 Ceramics. J. Am. Ceram. Soc. 2006; 89: 3129.
[27] Sun DL, Wu AY, Yin ST. Structure, Properties, and Impedance Spectroscopy of CaCu3Ti4O12Ceramic s Prepared by Sol–Gel Process. J. Am. Ceram. Soc. 2008;91: 169
[28] Felix AA, Orlandi MO, Varela JA. Schottky‑type grain boundaries in CCTO ceramics. Solid State Commun. 2011; 151: 1377.