Repetitive dilute acid hydrolysis of sugarcane bagasse for ethanol production by Candida shehatae TISTR 5843

Main Article Content

Prawphan Yuvadetkun
Buasai Ackachat
Mallika Boonmee

Abstract

        This article reported the conditions for hydrolyzing hemicellulosic fraction of sugarcane bagasse into sugars using dilute acid and heat treatment. It also included the use of the hydrolyzate for ethanol production by Candida shehatae TISTR 5843. When hydrolyzing the hemicellulosic fraction with dilute acid at 140 and 170 ?C, the highest total sugar concentration obtained when using 2% H2SO4 and 3 repeats of hydrolysis. For 90 min at 140 ?C and 45 min at 170 ?C, the pooled amount of total sugar obtained after 3 repetitive hydrolysis were 351?101 mg/g and 171?62 mg/g respectively. When using the hydrolyzate that was treated with calcium carbonate as substrate for the cultivation of C. shehatae TISTR 5843, ethanol concentration, ethanol yield and ethanol productivity were 1.61 g/L, 0.20 g/g and 0.013 g/L.h respectively.

Article Details

How to Cite
Yuvadetkun, P., Ackachat, B., & Boonmee, M. (2017). Repetitive dilute acid hydrolysis of sugarcane bagasse for ethanol production by Candida shehatae TISTR 5843. Asia-Pacific Journal of Science and Technology, 18(1), 112–121. Retrieved from https://so01.tci-thaijo.org/index.php/APST/article/view/82820
Section
Research Articles

References

[1] Haq I-U, Ali S, Iqbal J. Direct production of citric acid from raw starch by Aspergillus niger.Process Biochem. 2003; 38: 921-4.
[2] Huang L P, Jin B, Lant P. Direct fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Bioprocess Biosyst Eng. 2005; 27: 229-38
[3] Thomsen M H, Guyot J P, Kiel P. Batch fermentations on synthetic mixed sugar and starch medium with amylolytic lactic acid bacteria. Appl Microbiol Biot. 2007; 74: 540-6
[4] Maas R H W, Springer J, Eggink G, Weusthuis R A. Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on L(+)-Lactic acid production. J Ind Microbiol Biotechnol. 2008; 35: 569-78.
[5] Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic waste to improve ethanol and biogas production: A review. Int J Mol Sci. 2008; 9: 1621-51.
[6] Lenihan P, Orozco A, O’Neill E, Ahmad M N M, Rooney DW, Walker G M. Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J. 2010; 156: 395-403.
[7] Kuhad R C, Gupta R, Khasa Y P, Singh A. Bioethanol production from Lantana camara(red sage): Pretreatment, saccharifi cation and fermentation. Bioresource Technol. 2010; 101: 8348-54.
[8] Oberoi H S, Vadlani P V, O’Neill E, Brijwani K, Bhargav V K, Patil R T. Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochem. 2010; 45: 1299-1306.
[9] Chen W-H, Lin T-S, Guo G-L, Huang W-S. Ethanol production from rice straw hydrolysate by Pichia stipitis. Energy Procedia. 2012; 14: 1261-66.
[10] Lee Y Y, Iyer P, Torget R W. Dilute-Acid Hydrolysis of Lignocellulosic Biomass. Adv Biochem Eng Biotechnol. Volume 65, Springer-Verlag, Berlin Heidelberg; 1999.
[11] Nigam J N. Ethanol production from wheat straw hemicelluloses hydrolysate by Pichia stipitis. J Biotechnol. 2001; 87: 17-27
[12] Chandel A K, Kapoor R K, Singh A, Kuhad R C. Detoxifi cation of sugarcane bagasse hydrolysate improves ethanol production by Candida shehataeNCIM 3501. Bioresource Technol. 2007; 98 (10): 1947-50
[13] Zhao L, Zhang X, Tan T. Infl uence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus. Biomass Bioenerg. 2008; 32: 1156-61.
[14] Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956; 28(3): 350-6.
[15] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959; 31(3): 426-8.
[16] Laopaiboon P, Thani A, Leelavatcharamas V, Laopaiboon L. Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresource Technol. 2010; 101: 1036-43.
[17] Arslan Y, Eken-Saraçoğlu N. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia stipitis to ethanol. Bioresource Technol. 2010; 101: 8664-70.
[18] Kim J H, Block D E, Shoemaker S P, Mills D A. Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis. Appl Microbiol Biot. 2010; 86: 1375-85.
[19] Jeong T-S, Um B-H, Kim J-S, Oh K-K. Optimization dilute-acid pretreatment of rapeseed straw for extraction of hemicellulose. Appl Microbiol Biot. 2010; 161 (1-8): 22-33.
[20] Cho D H, Shin S-J, Bae Y, Park C, Kim Y H. Ethanol production from acid hydrolysate based on the construction and demolition wood waste using Pichia stipitis. Bioresource Technol. 2011; 102: 4439-43.